Holomorphic curves and the moment map

Five Lectures by Dietmar Salamon



Introduction

These lectures were delivered by Dietmar Salamon at the Summer School in Symplectic
Geometry, Paris, July 12-19th and they are based on joint work of Kai Cieliebak, Rita
Gaio, Ignasi Mundet and Dietmar Salamon. Their main point of concern is the study of

holomorphic curves in symplectic quotients.



Lecture 1

1.1 Group actions on symplectic manifolds

Let (M, w) be a symplectic manifold and G a compact Lie group with Lie algebra g. An
action of G on M induces an infinitesimal action of g on the tangent space at any point
x € M as a linear map

L,:9g—T,M

n— X, (z) exp(tn)z

_d
B a|t:o
As an example, in the case of a circle action on M there is, basically, only one interesting
element 7 as above, namely a generator of the Lie algebra g = ¢R. One calls the action
hamiltonian if there is a function H : M — R which is a primitive of the 1-form ¢(X,)w
and, in this case, X, will be called a hamiltonian vector field.

In the higher dimensional case one calls the action of G hamiltonian if there is a
moment map

w:M— g

such that
(generalized Hamilton equations) Vn € g, ¢«(X,)w = d{(u,n)
(G-equivariance) Vz € M, p(g-z) =g - pu(z)

Roughly speaking, that means that not only all embedded 1-dimensional actions are to
be hamiltonian, but they are required to fit together in a pointwise linear and globally

equivariant way.
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In what follows we shall suppose that G is endowed with a bi-invariant metric (-, -)
which will allow the identification of g* and g; the moment map will take values in g and

we will ask that
Vneg, «(Xy)w=d{u,n)

Ve e M, plg-z)=g-puz)

The equivariance of p ensures that the level sets which are invariant under the action

of G correspond precisely to the central elements 7 € Z(g). Indeed, the condition
zep (1) =g -v€p(r)

is equivalent with 7 € g being invariant under the adjoint action of G on g, whose
linearization at e € G is given by the Lie bracket, hence 7 € Z(g). The converse follows
in a similar way.

A similar argument shows that, if the moment map exists, then it is unique up to
adding a central element in g: the Hamiltonian condition forces the difference of any two
moment maps to be a constant, which moreover has to be central by G-equivariance.

We shall therefore study in the sequel hamiltonian actions of compact Lie groups G
on symplectic manifolds (M,w), carrying a moment map denoted by u, subject to the

following hypothesis:
(H1) p is proper, T € Z(g) is a regular value of u and G acts freely on p~'(7)

These three conditions will ensure respectively the existence of the compact smooth

quotient
M = 7\ (7)/G

carrying a symplectic structure induced by w. The quotient will sometimes be denoted

M = MJ|G(T)

1.1.1 Examples

1. Complex projective spaces. Let G = S! act on (M,w) = (C",wp) by complex
multiplication (to the left) on each coordinate. Here wy = ), dz; Ady; = > 4z A\
dz; is the standard symplectic form. The action is hamiltonian with moment map
o C* — 1R given by

() = —2|2f (1.1)



To see this, identify g = +R with R in the obvious way and the infinitesimal action

will be X, (2) = nXi(z), with X1(z) =iz = —i(z2Z — z2). Thus

i) = d(—32P)

Now, any element in the Lie algebra is central. For 7 = —Z, one gets

?

_ Q2n—1
y) =S

T

CJs'(—5) = CP™!

. Complex grassmannians. One can identify the space M, ,,(C) of complex matrices
having k lines and n columns with (M,w) = (C*** wy) by successively writing the
lines of a matrix in order to form a vector in C***. The natural action of the unitary
group G = U(k) on My ,(C) by left multiplication induces an action of G on M.
Let us fix on u(k) the scalar product

[
B
I
~
=
(1]
B

We claim that the map
p:M— g=u(k)
7; %
¢ — —§¢¢ (1.2)

is a moment map for this action. First notice that the symplectic form wy can be
read directly on My ,(C) as

wo(A, B) = Im(tr(AB")) = —%tr(AB* _ BAY)
The infinitesimal action is
g — TyuMpn(C) = M, (C)
Er— Xg(M)=E-M
and we successively have
((E M)wo) (B) = —r(EMB ~ BM'=")
= —%tr(EMB* + BM*=)
= —%tr ((MB*+ BM™)*E)
= d(p, =) (B)



The central elements in u(k) are represented by diagonal matrices and p~'(—% Id)

consists of all unitary k-frames in C*. Thus
vk //U(k)(—% 1d) = G(k, n)

is the grassmannian of k-planes in C".

. Complex flag manifolds. Let n > k; > kg > --- > k; > 0 be a strictly decreasing
sequence of positive integers. We call

F(kl,]fg,...,kl;n) = {ch_lc‘/gc‘/]_c(cn

Vi is a complex vector subspace of C" of dimension £;}

the manifold of flags of type (ki, ko, ..., k) in C*. Notice that F(ky;n) = G(k1,n)
and flag manifolds can be thought of as generalizations of the grassmannians.

The product group G = U(k;) X U(k;—1) X - -- x U(k1) acts on the product manifold
M = Mk (C) X My, 4y, (C) X -+ X My, »,(C) by left and right multiplication:

(96, 91-15---,91) - (D1, P11, - - -, D1) = (QD1G/_15 G—1D1-19] o, - - -, G2D297, G101)

The standard symplectic form on M =2 Cki-1>ki x Chi2xki1 % ... x CPk1 g
o
Z * *
wo ((As, A=t - -, A1), (Br, Bi—y, ..., B1)) = 5 ZtT(AiBi — B A7)
i—1

while the scalar product on the Lie algebra g = u(k;) x u(k;—;) x - - - x u(k;) is given
by

l
( (El, El—l; PPN El), (Tl, Tl—l; ey Tl) > = Zt’f‘(E:TZ)
i=1

We claim that the map

p:M— g=]Juk)

=1

6= (G611, 61) = — (O}, B 10— B, D16 — i)

is a moment map for the above action. The G-equivariance is obvious and one only
has to check the Hamilton equation. The infinitesimal action of g is
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E=EL,E11,---,21) — Xe(0) = G + &= 1, Zim1bi—1 + Gim1=] o, - -, E101)

and thus
((X=(@)wo)(B) = —5 3" tr(Xe(9)iB; — BX=(6)))

o
= —% Ztr((5i¢i — $:Zi-1) By — Bi(Eii — ¢:Zi—1)")
i—2

Z. L * k =k
_5757"(:1%31 — B1¢1E])
!

o1 .
= 5 2o tr((B] + Big)=:) — 5 D tr((61Bi+ BIo)=io)
=1 =2
= d(u.=),(B)

The central elements of g are = = (Z;,Z,_1,...,Z1) such that each =; is central in

u(k;), i.e. each Z; is a diagonal matrix. We claim that
(= 5041, . 1)) /G = F(ks, ks, .. ki)

In order to see this, use the following simple observation: if £ < p and A € My ,(C)
verifies AA* = D, with D € M;(C) a diagonal matrix having positive real entries,

then

D 0

A*A = e M,(C)

0 0
Proof: If AA* = D, thereis a g € U(k) such that A = g-M, with M = ( Dl/2 | 0 ) Then A*A = M*g*gM =
M*M, ie.

1/2% H1/2
A ( DY/2*D 0 )
0 0

O

Thus g~ (—%(Id,1d, .. .,1d)) is consituted of all elements ¢ = (¢, ..., ¢1) satisfying

[-1d 0

-1d 1—-1)-1d
didy =1d, d11¢]_, = ( 20 1(31 ) 1 = (=1

0 Id

These are to be interpreted as follows: up to normalization, ¢, represents ordered

unitary kj-frames in C", ¢, represents ordered unitary ko-frames inside Span(¢;)
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and so on, up to ¢, which represents ordered unitary k;-frames inside Span(¢;_;).

The quotient will therefore be the desired flag manifold.

Basically, the action of G is designed so that the multiplication to the left identifies
frames spanning the same vector space, while the multiplication to the right keeps

track of the identification of frames at the upper level.

. A configuration space. Consider the diagonal action of G = SO(3) on M =
S% x ... x S? where the product is taken an odd number of times. The Lie algebra
—_——

2k+1
consists of antisymmetric matrices

0 —p n
g=50(3)={ p 0 —-m : m,n,pER}
-n m 0

We shall identify g with R?® by associating to a matrix of the above form the vector
(m,n,p) € R®. The following hold:

(i) the Lie bracket in so0(3) corresponds to the vector product in R?;

(ii) the adjoint action of SO(3) on s0(3) corresponds to the natural left action of
SO(3) on R?

(iii) the infinitesimal action of SO(3) on R® corresponds to performing the vector

product in RR3.

Define now
p:SPx.. . xS?P—g=R?
2k+1

(@1, -+, Topy1) — Z T
i=1

We claim that p is a moment map for the action of G on M, having 0 as a regular

value. The equivariance is obvious by taking into account (ii).

Let us now focus on the Hamiltonian condition. Keeping in mind (iii), the infinites-

imal action of G on M at a point z = (x1,... ,Ze41) is given by

3 ~ L 1

vi— Xy(x) = (v X 21, ... ,0 X Togy1)



The symplectic form on M is
w=01€B...EBUQk+1

where o; is the standard area form on the ¢-th factor. Pick any Y € T, M and get

2k+1

(X @] (V) = 3 il x i Y)

= 2w
i=1
= d{p,v),(Y)
which shows that u also verifies Hamilton’s equations.
As for seeing that 0 is a regular value for p, it is enough to write

dp (X1, Xopg1) = Xo+ .o+ Xogy, Xi eﬂ?z‘L

which shows that z is a critical point iff all the z;’s lie on the same line (i.e. all the
z; coincide). The set ;1~1(0) consists of all configurations with center of mass equal
to 0, and in the case of an odd number of points it is impossible to have them all
lying on the same line. Thus 0 is a regular value and M /SO(3)(0) describes up to
a rotation all configurations having center of mass equal to 0.

. Toric varieties. Let T be a finite dimensional torus and
p=(p1,...,pn): T — (S)"

be a homomorphism of Lie groups. We can make 7" act on C" via p and the diagonal
action of (S1)".

Denote the Lie algebra of T" by t. We exhibit two remarkable lattices, called “inte-
gral” by analogy with the case T = (S')". They are defined by

Ai={ret:ep(r)=1}Ct
AN ={wet : (w,r)€2rZ, VTeA}cCt

The action of T is in fact determined by its weights w; € A*, 1 < j < n, which
are defined by the identity

pj(exp(T)) = exp(i{w;, 1)), VTet
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Remark: Identify naturally Lie(S!)” with R™, and let (e1, ... ,e,) be the standard basis. Then the weights of the
diagonal action on C" are precisely the elements of the dual basis (e},... ,e;,) and it is easy to verify that

wj=p"(e}), 1<j<n

We claim that the action of 7" on C" is hamiltonian with moment map

uw:C"—
I,
1) = () = =5 3 Iz Py
j=1

It is a general fact that, given a morphism of Lie groups p : H — G and a
hamiltonian action of G on M with moment map pug : M — g*, the induced
action of H on M is hamiltonian with moment map puy = p* o ug : M — b*.

In our case, taking into acount the preceding remark, it is enough to see that the

diagonal action of (S')” on C" is hamiltonian with moment map

1 C" — Lie(SY)" = R

n

1 *
ple) = =5 1zl
7j=1
The infinitesimal action at a point z € C" is given by
Xo(2) = (iv121, ... ,i02,), v € R" = Lie(ShH)"

and after a computation similar to that of Example 1 we get

1 < 0 0 _
L(Xv(Z))W() = 5;1)]- L(zjﬁ—j_zja_zj)d’zj/\dzj
"1
= Z_§d(|zj|2)vj
7j=1
= dlu"v>|z

As to the properness of the action, we quote the following

Lemma 1. [G] The action of T on C" is proper if and only if one of the following

four equivalent conditions s fulfilled:



(i) 1y '(0) =0;
(it) >2;85w; =0, s;>20=s5=...=s5,=0;
(1it) p,(C")\ {0} is contained in a positive open halfspace;

(iv) there is a vector v € t such that w;(v) > 0 for all j.

The quotients of the type C"/T(7) with 7 a generic element of t* are called toric

varieties.

. The Atiyah-Bott construction for the moduli space of flat connections ([AB]; see
also [CGS], §2.2 and [CdS], §25 for an introduction). Let S be a compact Riemann
surface on which we fix a Riemannian metric, G a compact or semi-simple Lie group
and P -~ S a principal G-bundle over S, on which G acts freely on the left. Let
us look at a construction which generalizes the already presented finite dimensional
framework: an infinite dimensional Lie group (the gauge group) will act on an
infinite dimensional symplectic manifold (the space of connections) in a Hamiltonian
way, with moment map given by the curvature and such that the quotient space

will be the moduli space of flat connections (modulo gauge equivalence).

Definition 1. A connection on P is a Lie algebra valued 1-form A € QY(P, g) that

18

e G-equivariant : Agy(gv) = gA,(v)gt, v € T,P, g € G;

e vertical: A(Ep) =&, € € g with Ep being the infinitesimal generator of the flow
exp(t§) : P — P.

We shall denote the space of connections by
M = A(P) (1.3)

Any connection A as above determines a splitting TP = V @ H, where V = ker . is the vertical subbundle of TP
and H = ker A. This in turn determines splittings

QH(P) = Qert (P) ® Dtoria(P)
QQ(P) = Q%/ert(P) @ Q%/[ixed ® Q%—Ioriz(lj)

where, for example, Q. (P) = {w € Q}(P) : w|,, = 0} and the other spaces have similar obvious meanings. By

definition, A € 4, . (P, g) if the splitting is determined by A itself.

Let A be a connexion 1-form on P. Then A + ¢ is still a connection 1-form if a

is a g-valued horizontal and equivariant 1-form. Conversely, the difference of any
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1
Horiz

ariant 1-form. The space A(P) is thus an affine space modeled on (Qf;,.;, (P, g))G.

Horiz

two connection 1-forms is an element of (Q}.;, (P, g))G i.e. a horizontal and equiv-

Moreover, it can be endowed with a symplectic structure defined as
G~
wlad)= [(@nB), afe @hu(Pa)’ =TaM (1.4)
s

where (-, -) is an invariant scalar product on g (obtained either by averaging if G is
compact or by using the Killing form if G is semi-simple).
In order to be able to perform the wedge product of two Lie algebra valued 1-forms, one needs a supplementary
bilinear operation (call it B(-,-) : g X g — g): the wedge product of two 1-forms o = > a; ® X; and 8 =3 b; ®Y;
in Q1(P) ® g will be

anB 2 Blanp) = ai Abj ®B(X;,Y;) € QX(P)®g

If B is real-valued, then B(a A 8) € Q2(P). Moreover, if a and 3 are equivariant while B is invariant with respect
to the adjoint action on g, then B(a A ) is invariant with respect to the left action on P and thus descends to a

2-form on the base. This is how (1.4) is to be understood.

Consider now the “gauge group”
G =G(P) = (Map(P,G))°

of maps g : P — (G that are equivariant with respect to the left adjoint action of
G on itself, i.e. g(hr) = hg(z)h™', h € G, x € P. The group G acts on the left on
A(P) by

g-A=—gldg+g 'Ag

One can define the gauge group in an equivalent way as being the group of all fibre preserving diffeomorphisms
f : P — P that are G-equivariant. The correspondence between the two definitions is given by f(p) = g(p)p, p € P.

The action on A(P) is given by defining g - A to be the push-forward of A through the diffeomorphism defined by
g. The above formula should be read as

(9-4), =—9~ ' (p)dg, +9~ ' (P)A},9(p)

The Lie algebra of G is obviously
Lie(g) = (2°(P.9))°

The pairing
(Ve (P 9)) 7 x (2°(P,9))" — R

() — [nw)
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is perfect and exhibits (%, (P, g))G as Lie(G)*.

Atiyah and Bott [AB] have remarked that the action of G on M is Hamiltonian with
moment map given by the curvature Fy = dA + [A, A], A € A(P):

p: AP) — (i, (P, 9)) = Lie(G)*
Ar— Fy
The infinitesimal action at A € A(P) is
Lie(g) = (2°(P,8))" — (Utona(P, 8) " = TaA(P)

o — —dsa "2 X, (A)

where d4 denotes the covariant derivative induced by A. It is defined as the hor-

izontal part of the exterior derivative and on g-valued functions is computed to
be

D, (v) = doy (vhes) = o, () + [A(0), a(p)]
Take now a € (2°(P,g))¢ and 8 € (o, (P,8))°. One has
(X))@ = = [(daanp)
2 [ landas) = (@ ), (9
The last equality is obtained as follows
(), (B) = %h_o /5 (A (d(A+158) + [A+ 16, A+ 16]))
= [tan @8-+ 20, )

= [tanam

|a

One has [A, 3] = 0 since A is vertical while 3 is horizontal.

This completes the proof of the fact that the action is hamiltonian with moment
map F4. The symplectic quotient A(P)//G(0) is the moduli space of flat connec-
tions modulo gauge equivalence. It turns out that this space is a finite dimensional

symplectic orbifold.
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1.2 The Cauchy-Riemann equation for pseudo-

holomorphic curves in symplectic quotients

We shall assume throughout the rest of the lectures that the condtition (H1) is fulfilled.
Let us first derive a useful description of the tangent space

Tou\(r) _ ker dp

TiuM = =
2] T, Gx im L,

One can think of TMM as being the middle homology group of the complex
0—g Ly T,M itz g—0

where dp, 0o L,(-) = [, u(z)] = 0if pu(x) =7 € Z(g). In the presence of scalar products

one has a baby Hodge decomposition which is readily verified
TuM =im L, ® im dp & (ker dp, Nker LY) (1.5)

The term kerdu, N ker L} corresponds to harmonic elements for the formal laplacian
L,L} 4 dpidu, and is isomorphic to the middle homology group of the above complex.
Hence one can identify

TiyM = ker du(z) Nker L, (1.6)

As usual in symplectic geometry, scalar products are to be built from compatible almost

complex structures and we are thus led to considering such J’s satisfying

w(-,J-) > 0 is a a positive definite riemannian metric
J is G - invariant i.e. g*J = J

Notation. Call Js(M,w) the set of almost complex structures satisfying the above two
conditions. It is a non-empty contractible set (homotopically equivalent with the set of
G-invariant riemannian metrics on M).
Notation. Call (-,-); the scalar product w(-, J-).

If J € Jo(M,w), then by equivariance it descends to an almost complex structure .J
on M. Indeed, (1.6) and the identity

dugJ = L, (1.7)

imply that the tangent space Tmﬂ is stable under J. In order to prove (1.7), choose
arbitrary n € g, £ € T, M and write

(0, LE)g = (Lan, €) 5 = w(Lyn, JE) = w(Xy(x), JE) = (n, dusJE) g

13



Let us now describe holomorphic curves @ : C — M. FEach such curve lifts to a
smooth u : C — M with p(u) = 7. Conversely, a map u : C — M descends to a
J-holomorphic map into M if and only if there exist maps ®, ¥ : C — g such that

-+ Ly ® L,0) =
{8u+ + J(Ou + L,¥) =0 1)

p(u) =7

In fact, in view of (1.5) and (1.6), the maps ® and ¥ are uniquely determined by the

conditions

{ Lz (8yu+ L,®) =0 19)

L (8u+ L,¥) =0

which mean that d,u + L,® and 0;u + L,V are the harmonic representatives of d,u and
Oyu respectively.

There is a natural gauge group of maps g : C — G acting on triples (u, ®, V) as
9 (u, @, %) = (97 'u, g 059+ g '®g,g 'O+ g ' Vg)

Two triples (u, ®, ¥) and (v, ®, ¥') induce the same (holomorphic) map u : C — M
if and only if there is a g : C — G such that (v/, &', V') = g*(u, ®, V).

We focus now on the global version of (1.8). Let X be a compact oriented Riemann
surface with a fixed almost complex structure Js. A map @: ¥ — M need not lift to a
map u : ¥ — M. However, if one considers ;~1(7) as a principal bundle over M, then
u obviously lifts as an equivariant map from the pull-back bundle to p~*(7) and hence to
M.

It will be made precise in lecture 2 that a principal bundle P as above is determined
up to isomorphism by some equivariant homology class. In view of the fact that we
shall construct the moduli space of maps u representing such an equivariant homology
class, it is non-restrictive to fix from the very beginning a principal bundle 7 : P — %
and investigate under what conditions an equivariant map v : P — M descends to a
(Js, J)-holomorphic curve.

We therefore study pairs (u, A) consisting of

e a G-equivariant map u : P — M satisfying p(u) = 7,

e a connection A € A(P),
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where 7 : P — Y is a fixed principal G-bundle. The covariant derivative of the map
u : P — M with respect to the connection A is given by d u : TP — u*T M defined as

dAu(p)U d:ef dAu(p)Uhoriz = du(p)v + XAp(v) (u(p)) € Tu(p)M

The 1-form dsu € Q'(P,u*TM) is equivariant (as are the map u and the horizontal
distribution) and horizontal (vanishing by definition on the vertical part of TP). As a
consequence, d4 descends on ¥ as an element of Q' (X, u*TM/G). Notice that u*TM/G

is a complex vector bundle.

Definition 2. The twisted Cauchy-Riemann operator O 7.4 associated to the connection
A is the (0,1) part of da i.e.

EJ,A(U) = %(dAU-FJOdAuOJE) (1.10)

Even if J5, does not act on T,P, the composition dsu o Jy, is to be understood as
follows : take a vector in T, P, project it to Tr()%, apply Jx, lift to T, P and finally apply
dau. As dau vanishes on vertical vectors, the result is well defined and independent of
the lift.

T,P T,P

: dau
w l lift 4
\

TaE > Trw®  TupM
One can verify that 0;4(u) € Q%(3,u*TM/G) coincides in local coordinates with the
first term in (1.8).

Here is now an equivalent way of looking at solutions of d;4(u) = 0. Consider the
associated bundle J\N4 = P XM with fibres diffeomorphic to M. The connection A induces
a horizontal distribution on P xg M and one can define therefore an almost complex
structure j induced by Jy and J. An equivariant map u : P — M gives rise to a section
% : $ —M which is J-holomorphic if and only if 8, 4(u) = 0.

We shall consider in lecture 2 the moduli space of solutions of the equation

{ 0s(u) =0 (1.11)

*xFy + p(u) =71

This is a deformed version of (1.8). It is inspired by the Atiyah-Bott construction and
has the advantage (over (1.10) combined with p(u) = 7 alone) of uncoupling A and u by
introducing the curvature term. Its similarities with both the Yang-Mills equation and
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the Gromov-Witten construction of moduli spaces make one hope that it can provide an
alternative way of identifying Gromov and Seiberg-Witten invariants.

One essential feature of (1.11) is that, unlike the classical Gromov-Witten theory, it
puts into play the metric on ¥ via the Hodge *-operator. We shall fix throughout the rest
of the lectures the volume form dvoly, and hence the metric on X. It will play an essential
role in the results to follow.
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Lecture 2

In this lecture, we study the solutions of the equation

8J7A(/U,) =0
*«Fy +pu(u) =71

2.1 Gauge invariance
Definition 3. The group of gauge transformations is
G(P)={g : P — G/g(ph) = h™"g(p)h}.
This group acts on C¥ (P, M) x A(P) by :

g (u, A) = (97 'u, g 'dg + g ' Ag).

Thus, if (u, A) is solution of (2.1), then ¢g*(u, A) is solution of (2.1).

2.2 Equivariant homology

Let EG be an infinite dimensional contractible space on which the group G acts freely.
And let BG = EG/G.
Example : If we assume that G C U(k), then we can define explicitly :

EG"= {0 e C>* /00 =1}
Thus EG" € EG™™ (by embedding C* in C"*!), and we define :

EG = U,EG™*.

Notes by A.-L. Biolley
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Definition 4. Let Mg = M Xg EG. The equivariant homology of M is defined as the
homology of Mg.

There exists an equivariant map from P to EG, obtained from a map § : ¥ — BG,
which is the classifying map for P :

6 lifts by pull-back to 6.
Then the map u x 0 : P — M x EG is equivariant and so descends to a function

uag -
P 2% MxEG
Y 24 Mg
We define :

Definition 5. [u] = (ug).[X] € Ho(Mg,Z)

There is a natural projection 7 : Mz — BG (induced by the projection EG — BG),
and so the homology class [u] determines a homology class in Hy(BG) : (7).([u]) = (7o
ug)«([X]). If G is connected, then this class determines the bundle P up to isomorphism
(if (moug)«([X]) = (7 o uly)«([X]), then P and P’ are isomorphic).

We fix a class B € Hy(Mg,Z). We consider the moduli space of all solutions which

represent that homology class :

MVB,X(T, J) ={(u,A) € CZ (P, M) x A(P) / (u, A) is solutionof (2.1) and [u] = B}.

Let :

MB,E(T, J) = MVB,E(T: J)/Q(P).
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2.3 Energy

Definition 6. We define the energy of an element of C¥ (P, M) x A(P) :

1
B(u, A) = 5/E(|d,4u|2+ Fal? + () — 712)dvols. (2.2)

Lemma 2.
B(u, A) = /E (184 (u)? + 2 % Fa -+ ) — )dvols, + /E (w'w — d(u(u) — 7, A)). (2.3)

The last term is a topological invariant of the class B (X is closed, but the integral
is different of 0 because (u(u) — 7, A) is only defined on P and does not descend on ).
Thus, if (u, A) is solution of (2.1), then it is a minimum of E in its homology class.

proof :

We choose a holomorphic coordinates chart n : U — X, where U(3 s + it) is an
open set of C, and 77 : U — P a lift of n. Then we consider u in local coordinates :
u=u(=uon) : U — M. Also in local coordinates we have A = Al*¢ = &ds + Wdt,
where ®, ¥ : U — g, and dvoly = X2ds A dt, where A\ : U — (0, 00).

Thus,

Fu= (8,9 — 0,® + [®, ¥])ds A dt,

dau(:=du + L,A) = (0su + L,®)ds + (Oyu + L, V)dt,
= 1
Ora(u) = 5((6Su + L,®) + J(0u + L,V)ds — J((0su + L,®) + J(Oyu + L, ¥))dt).

Then, the equation (2.1) locally writes :

(Osu + Ly®) + J(Opu + L,¥) =0

(2.4)
0,V — 0, + [®, U] + A2 (u(u) —7) = 0.

Let K := 0,V — 0,® + [®, V], vy := Osu + L,® and v; := dyu + L,¥. Then the local
energy E'¢ = [ edsdt, where :

1 A2
e = §|vs + Ju 2 + E|)\*2K+ pw(u) — 7> + R,
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with R a mixed term :
R = w(vs, vy) — (K, pu(u) — 7).
By direct calculations, we have :
R = w(0su, Oyu) — Os{pu(u) — 17, 0) + O{p(u) — 7, ®) = v*w — d{u(u) — 7, A),

and this ends the proof.

2.4 Unique continuation

Definition 7. A solution (u,A) of (2.1) is called horizontal if dau = 0, F4 = 0 and
pulu) = 7.

We see that a solution (u, A) is horizontal < [u] is torsion. Indeed, if [u] is torsion,
then E = 0 (according to the lemma). Conversely, if (u, A) is horizontal, then every
equivariant cohomology class vanishes when evaluated on [u].

We can prove :

Lemma 3. If (u, A) is a solution of (2.1) and dau = 0, u(u) = 7 on some open set, then

(u, A) is horizontal.
So, we have :

Corollary 1. Assume U C X is an open set, dau =0 on U, and Lypy : g — TypM is
injective Vp € U. Then (u, A) is horizontal.

proof of the corollary : According to the lemma, we just have to show that p(u) = 7.
We have 0 = du € Q' (3, u*TM/G). We use the identity : 0 = Vadau = L, Fa.
As L, is injective, we deduce F)y = 0in U. So, pu(u) = 7 in U (because (u, A) is solution
of (2.1)).

This lemma and the corollary are results of unique continuation.

2.5 Compactness

In general, the moduli space Mg x(7, J) will not be compact. (As usual for holomorphic
curves, we do not have compactness if there exist holomorphic spheres. So, there will be
a problem if M is compact and S' C G.)

Thus, we look at no compact M.
In order to have compactness, we have to make some hypothesis of convexity :
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Definition 8. A convex structure for (M,w, u) is a pair (f,J) where f : M — [0, 00),
J € Jo(M,w), such that :

(1) f is G-equivariant and proper,
(1) f(z) =2 co = (VeVf(z),8) >0, V6 € T, M,
(118) f(z) = co(T) = df (2)JoLlo(p(z) — T) > 0.

example : If M = C" and G C U(n), then we can choose f(zr) = |z|? and J = i.
The existence of such a pair guarantees that the solutions of (2.1) stay in compact
set :

Lemma 4. If (f,J) is a convex structure, then, for all solutions (u, A) of (2.1),
m}gxf ou < maz(cy, co(T)).

proof : Computations show that A(f owu) > 0 whenever f ou > max(cg, co(T)).
Let (H2) be :
(H2) there exists such a convex structure (f, J) and ([w], mo(M)) = 0.

Theorem 1. Assume (H1) and (H2). Then VB € Hy(Mg,Z), Mpx(t,J) is compact,
i.e. for all sequences (u,,A,) € Mpx(r,J), 39, € G(P) such that g%(u,, A,) has a
C>®-convergent subsequence.

sketch of proof :

e All solutions of the equation (2.1) stay in some given compact subset K of M (i.e.
u(P) C K).

As u verifies the equation xF4 + pu(u) = 7, Je such that V(u, A) € MB,E(T, J),
I Fallpe < e

For any p large enough (p > 2 for example), we can assume || A, ||;;1., < C (thanks
to Uhlenbeck theorem).

Thus, the only obstruction to compactness will be ”bubbling”, if

¢y = || dau, || — oo (2.5)
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In local coordinates, the following equation holds true :
(Osuy + Ly, @) + J(Oiuy + Lu, ¥,) =0,
and (2.5) writes : there exist (s,,t,) such that :
105ty (Ssty) + Ly (5,,4,)P0| = ¢, — 00. (2.6)

Let ¢, := é
Let v,(s,t) = u,(s, +€,8,t, +€,t). Then |0;v5(0)| ~ 1 (because L,, ¢, is bounded,
so €,Ly, ¢, — 0).

Moreover, 0sv, + JOw, = —e€,w,, with w, = L, ¢, + L, ¥, bounded in L*. So,
0sv, + Jowv, — 0.

Thus, by elliptic bootstrapping, we obtain a subsequence of (v,) which converges to
v : C— M, with 0;v + JOv = 0 and |0;v(0)| = 1. But, by hypothesis, there is

no sphere with positive w. So, we have a contradiction.
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Lecture 3

In this lecture, we will complete the construction of the moduli space Mg 5, of solutions
of

5]7,411, =0 (3 1)
*Fa+p(u) = 7 '

We will use it to define an invariant &, and compute it in a simple example.

3.1 Fredholm theory
The tangent space to the configuration space B = C& (P, M) x A(P) is given by
T(U’A)B = QO(E, ’U,*TM/G) X QI(E, gp)

where gp = P X g is the bundle associated to P for the adjoint representation of G on

g
After linearizing equations (3.1) at (u, A) € B, we obtain the operator

Dya: QE,w*TM/G) ® Q(Z, gp) = Q¥ (S, w*TM/G) & Q°(S, gp) ® Q°(S, gp)

that is given by

f Du,A§ + (Lua)o’l
( ) = du(u)é + xdaa
“ L — d'a

where D,, 4 is the linearized Cauchy-Riemann operator at u.

The first two components correspond to the linearization of the 2 equations (3.1). On the

Notes by F. Bourgeois
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other hand, we are only interested in solutions of (3.1) modulo gauge equivalence. That

is why we have a third component, corresponding to the condition

dya = Ly
This is the equation of a local slice for the gauge group, that is a subspace of T(, 1) that
is supplementary to the tangent space of the gauge orbit at (u, A).

In order to prove the Fredholm property, we can concentrate on the highest order terms
only for each component. These are respectively D, 4§, *daa and dor.
Of course, in order for the operator D, 4 to be Fredholm, we have to extend its domain

and target spaces to some Sobolev spaces.

Lemma 5. D, 4 is Fredholm and index(Dy 4) = (5 dim M —dim G)x(X)+2(c1, B), where
B =[u] € Hy(Mg,Z) and ¢, = e1(TM x¢ EG) € HX(Mg, 7).

Proof. By the Riemann-Roch theorem, the operator
Dya: Q2w TM/G) — Q" (S, w*TM/G)

is Fredholm with index  dim M () + 2¢, (u*TM/G).
On the other hand, consider the operator d4 & d% : Q'(X, gp) — Q*(X, gp) ® Q°(2, gp).
Its kernel is H*(X, gp) and its cokernel is H%(X, gp) ® H°(X, gp). Therefore, adding the

index of both summands, we obtain the expected formula. O

In order to construct the moduli space of solutions, we need the operator D, 4 to be
surjective.

Lemma 6. If D, 4 is onto for all (u, A) € MB,E(J) and if G acts freely on MVB,E(J),

then Mpys = Mpx/G is a smooth manifold of dimension 2m = index(Dy, 4)-
This lemma can be proved using the implicit function theorem.
Lemma 6 shows that it is important to know whether G acts freely on M B,y

Definition 9. A solution (u, A) of (3.1) is called irreducible if there exists p € P such
that

(i) Gu) = {1}

(i) Im LygyN Im JLygy = {0}
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Lemma 7. Assuming (H1) and Vol(3X) >> 1, every solution of (3.1) is irreducible.

Proof. Using the energy functional, we have

/ \p(u) — 72dvols, < E(u, A)
>

Therefore, for a large volume of ¥,

E(u, A
min u(u) — 7f? < E0 2

<4
— Vol(X) —

for some small 6 > 0. This holds for every solution (u,A) because the energy is a
topological invariant.
Therefore, we can choose p so that u(p) is arbitrarily close to u~*(7). Assumption (H1)

then guarantees that p satisfies the 2 properties of definition 9. O

Given a convex structure (f, Jo) on M, choose a compact subset K C M so that f satisfies
(H2) for allz € M \ K.

Let J =4{J:¥ = Je(M,w) : z — J, such that J, = Jy in M \ K}.

Of course, all solutions of (3.1) are contained in K. Let J,¢(B) ={J € J : all (u,A) €
Mg x(J) is irreducible and D, 4 is onto}.

Theorem 2. If B is not a torsion class, then J.q 15 a countable intersection of open
dense subsets of J .

Remark. We need to assume that B is not torsion so that dsu # 0 somewhere; this is

necessary to find generic J.

The proof of this theorem uses Sard-Smale theorem and the analysis of the linearized

operator when J varies. Details can be found in chapter 3 of [McS].

Corollary 2. Assume (H1), (H2), B is not torsion, Vol(£) >> 1 and J € J,c4(B).

Then Mpx(t,J) is a compact oriented smooth manifold of dimension 2m.

Proof. We combine theorems 1 and 2, and lemmata 6 and 7. O

3.2 The invariant ¢

Let us construct an evaluation map Mpgs — Mg. Fix a point pyo € P. Consider the
bundle Ppy = Mpyx/Go — Mpyx, where Gy = {9 € G|g(ps) = 1}. To this principal
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G-bundle corresponds a unique classifying map 6, : Mp sy, — BG up to homotopy, so that
the diagram )
Ppy —— EG

l J

Mgy —2 BG

is commutative. The map 0y is equivariant : 6y(g  u, g*A) = g(po)fo (u, A).

We can then define
evg MB,E — M Xg EG

[, Al = [u(po), Bo(u, A)]

Note that the G-equivalence class in M is well-defined, because of the behavior of 6.

Using evg, we can construct a map @ﬁ;g” : H*(Mg) — Z defined by

M
@B,’S’T(a) = / evg
MB,E(T,J)

It is independent of the choice of J, but depends on 7 via some wall crossing formula.

Remark. Using the projection map Mpys — A(P), we can also pull-back a cohomology

class from the space of connections. We can also let the point py vary.

3.3 Example

Let M = C*, G = S! acting on C* by multiplication of each component by a phase.
Then, H*(Mg) = H*(BS") since C" is contractible. A circle bundle P over ¥ is classified
by deg(P) = d (corresponding to the data of B); let g be the genus of X.

Proposition 1.
(I)S:;,Sl(cm) —n9

where m =n(d+1— g) + g — 1 and c is the generator of H*(BS").
This formula was first obtained via the vortex equation by Weitsmann et al.

Proof. Fix Ay € A(P). Let

2mid
Vol(X) }

Aoz{AE.A(P)|d*(A—A0):Oand x Fy = —
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and
Go={9€G(P)|d(g~"dg) = 0}

Intuitively, Ay is an analog of the set of flat connections, and G, consists of gauge trans-

formations preserving Aj.

We have Ay/Gy = T?. To see this, pick a basis vi,...,7s, of Hi(X,Z) consisting of
simple curves, and such that v; - 7,44, = 1, all other intersection numbers being zero. Let
a; be harmonic 1-forms representing the cohomology classes dual to 7;.

Let A, = Ay + Z?il t;2micy, where t; € R

Claim. A = gj A, where k = (k1, ... , ko), kj € Z and g € Gy satisfy

1 1

il ~Lda. = k.

2T v.gk 9k J
J

Hence, after dividing out by gauge equivalence, we obtain ¢t € T%.

Let E = P x4 C be the complex line bundle over ¥ associated to P. Let E = E x T%
over ¥ x T%. We will denote 1E|gx{t} by E;. It will be equipped with connection A;.

Consider now the family of operators

04,

Q°(E) Q0 ()

N

T?9
where 04, is the (0,1) part of the covariant derivative d4,.

The kernel manifold M, is defined to be
Mo={(ts) | teT¥ sc QO(E,]Et@”),gAts =0, |s]|z2 =1}/S"

Intuitively, we expect this manifold to be closely related to the moduli space M(g;’s "
Indeed, sections of E®" are equivariant maps P — C", and the condition ||s||z = 1 is
i

somewhat analogous to p(u) = —3.

Fact 1. M, is cobordant to Mg;’sl.

Fact 2.
[ o= [ c-InD@™)
M7 72
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where IND(9;) = ker(9;) — coker(d;) is the index bundle of 9;.

By the Atiyah-Singer index theorem, we have

ch(IND®") =n / td(TX)ch(E) € H*(T)

The characteristic classes are given by
td(TY) = 14+(1—g)o
1
ch(E) = 1+¢(E)+ 501(1]3)2

29
Cl(E) = do + Zaj A dtj
j=1
where o is the positive generator of H%(3, Z).
Hence
29
aE)? = -0 dt; Adtj,
j=1

= —o}

where ( is the intersection 2-form on H'(%, R).

Therefore,

td(TE)ch(E) = (14+(1—g)o)(1+do—o2+...)
= 1+d+1-9g)o—0Q+...

The omitted terms have a zero contribution after integration on ¥. We obtain
ch(UND)=d+1—-g—-Q
so that

1
¢o(~IND®") = Ecl(—IND@”)g
!]Qg

After integrating on 729, we obtain n? as predicted.
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Lecture 4

In this lecture, we will establish the relationship between the invariant ® and the Gromov-
Witten invariants of the symplectic reduction M = M J/G.

On M : On M :
5']’,411, =0 EJ’AU =0
—
*xFy+u(u) = 0 plu) = 0

The correspondance will be established using an adiabatic limit. We replace Vol(X) with
Vol(X) e 2. The equations become

EJ,AU =0 (4 1)
*xFa+e?p(u) = 0 '

For ¢ = 1, we obtain the equations on M, but if we let ¢ — 0, we obtain the equations on

M.

4.1 Correspondance theorem
Let us define
V={v:D?> = M|v(dD) C 1= '(0),v(e") = g(8)zo where zy € p~'(0), g : R/27Z — G}

Let m : V — Z be the Maslov index. Given a map v : D? — M, we can trivialize the
tangent bundle of M over D? so that the differentials g(f), give a loop of symplectic
matrices based at g(0). = Id. Then m(v) is the Maslov index of this loop.

Remark. m(v) is nothing but 2¢; evaluated on the equivariant homology class of v.

Notes by F. Bourgeois
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We now introduce a monotonicity assumption on M.

(H3) X > 0 such that Vv € V,/ v'w = Am(v)

D2

We define the minimal Maslov number of M by

N= min m(v)
veV,m(v)>0

so that m(V) = NZ.

Note that, since
M~ 7 (0) xg EG — M xqg EG = Mg

we have maps H,(M) — H,(Mg) and H*(Mg) — H*(M). We will denote both maps by
K.

Theorem 3. (R. Gaio, D. Salamon [GS]) Assuming (H1), (H2) and (H3), if B =
k(B), &; = k(ay), Y deg(a;) = dim Mpx and deg(a;) < 2N, then

GWH (@, ..., 6x) = Dpt(en U... Uay)

Remark 1. The Gromov-Witten invariant GW is defined here for fixed (¥, jx) and with
fixed marked points z; € ¥ :

GWgE(O_‘I: ., 0p) = #{u : ¥ — M(jx,J) — holomorphic | [a] = B, u(z) € Y;}

where Y; are generic cycles in M representing homology classes dual to ;.

Remark 2. We cannot allow deg(a;) > 2N. Consider indeed the example from lecture
3: M = C", S' acts on C* by multiplication of each component by a phase, so that
M = CP™!. In that case, N = n and

8t _
D4, (™) =n?
where m =n(d+1—g)+ g —1, but
Gngn_l(cml, ce, ™) =0

if m; > n for some 1.
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4.2 Extension to quantum cohomology

The condition on the degree of «; is rather restrictive. It is interesting to reformulate

theorem 3 on the quantum cohomology of M rather than its usual cohomology.

Recall that the quantum cohomology QH*(M) of M consists of elements of the form

a=>y age’
B
where ag € H*(M), B € Hy(M) and deg(ag) + 2¢,(B) = deg(a), with the condition
#{B|dg7é0,/w§0}<oo
B
for all C € R.

a) Product structure on QH*(M) : pick a basis & of H*(M); let & be the dual basis,
i.e. fﬁ e; U € = d;;. Then the quantum product is given by

o (s~ o\ s B
Qy * Qg = E E GWps_p,_B, (041,31,042,32a &) eie
B1,B2,B i

b) Multilinear map GW3 : QH*(M) ® ... ® QH*(M) — 7Z given by

GWa(on,...,00) =Y GWa_ g _p(onp, .- 03,
B,

3

¢) Gluing theorem for GW :
GWg(ay,... ,0x) = GWa(ay * ... % ay)
Hence, we can view the Gromov-Witten invariant as a map GWpg : QH*(M) — Z.

We are now in position to reformulate theorem 3.

Corollary 3. Assume (H1), (H2) and (H3). If H*(Mg) is generated by classes of degree
< 2N, then there exists a unique ring homomorphism ¢ : H*(Mg) — QH*(M) such that
if dega < 2N then p(a) = k().

Moreover,

a) ¢ is onto.
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b) The diagram

QH*(M

\/

Proof. If o = ), a;, U... Uq,,, then we define p(a) = >, k() U ... Uk(ey,). This
is well-defined, because of theorem 3, i.e. p(a) #0 = a # 0. O]

18 commautative.

4.3 Proof of the theorem

Let M% sy, be the moduli space of solutions of (4.1). We wish to establish a relation
between M§ 5, for € > 0 and MY

For Gy > 0, let My 5(Co) = {(u, A) € My s, | [|daullre < Co, [|Fallzee < Co}-

Theorem 4. For all Cy > 0 and B € Hy(Mg), there exists €g > 0 such that Ve € (0, ),
there is an embedding

7'6 . M%;(Co) — M%,E

Both moduli spaces have the same dimension, so we can think of this embedding as the
elementary embedding f : R — S' such that f(R) = (4,27 —d) for some § > 0. Of course,

such a map is not surjective, but we can control the image of 7€ using the following result.

Theorem 5. Fix 6 > 0. For all C' > 0, there are €y, Cy > 0 such that if
(u,A) e Mps  ldauflee <C  |lp(u)llze <6
then [u, Al € Im T*.

Roughly speaking, the discrepancy between GW and & will correspond to solutions of
(4.1) that are never contained in the image of the embedding 7°¢, for every € > 0.

If e — 0 and (u;, 4;) € Mz \ Im T, then |da,u;(w;)| — oo, for some w; € ¥ and
w; — w. Therefore, the sequence (u;, A;) will converge to a holomorphic map in M, with
a bubble at w.

Case 1 : w # z;
The bubble takes some energy, hence the dimension of the moduli space for the
remaining part decreases, by the monotonicity assumption (H3). So, there will be

no holomorphic curves with the prescribed conditions at points z;.
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Case 2 : w = z;
There will be no condition at z; for the remaining part, but the dimension of the

moduli space will drop even more, so the conclusion is the same.

Intuitively, the conclusion of this discussion is that the solutions outside Im7° do not

contribute to GW, so the invariants must coincide.

Remark. When bubbling occurs, we are in one of the following cases :

(l) ||dAiui||Loer- — OO
This corresponds to the case of a bubble in M. But these do not exist, by assumption
(H2).

(11) ||dAiui||Loo€i —0 -
This corresponds to the case of a bubble in M, and it will contribute to GW™M.

After rescaling, we lose the factor € in equation (4.1). We obtain the bubbling of a
vortex over C, satisfying :

Osu + L, ® + J(Opu + L, ¥) =
05U — 0, + [D, V] + p(u) =

with finite energy.

Let MY% be the moduli space of finite energy vortices over C. In radial coordinates, we
have
u(re”) — g(0)zy when r — oo

with p(zo) = 0.

Hence, we can define an evaluation map eve, : M% — M by evy,(u, ®, ¥) = [x].
On the other hand, we have an evaluation map at point 0 € C : evy : MY — Mg.
Using these maps, we can construct explicitly the homomorphism ¢ of corollary 3 :

() :ZZ/ . (evia U eviel) & eP
i B "Mus
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Lecture 5

This lecture treats explicit examples and gives some hints on possible links with other

classical constructions of symplectic or gauge theoretical invariants.

Example 1: Vortex equations. Consider the standard action of G = S' on M = C,
with moment map p(z) = —%[z[? (see also (1.1)). The quotient at a nonzero element of
Lie(S') = iR is a point, but the solutions of (1.11) are still interesting to look at.

Consider P = ¥ a circle bundle of degree d. The complex line bundle associated
to P is precisely F = P xg1 C and the degree of P is (¢;(E), [X]). An equivariant map
u : P — C is identified with a section © : ¥ — FE while a connection A on P gives rise
to a hermitian connection on E - still denoted by A . One has HS' (C) = H,(CP*) and
any map u as above represents the class d - [CP!].

The operator d;,.4 : (Map(P, (C))G — Q%(X, TM/S") translates precisely to the

Cauchy-Riemann operator
04:T(Z,E) — Q%(3,E)

and the equations (1.11) become the ”vortex equations”

{aQ:O (5.1)

; o _
*ZFA+T_7_; T€R

The necessary condition of existence of solutions is easily obtained by integrating over

¥ the second equation in (5.1) and writes

2md

TS

Notes by A. Oancea
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The moduli space
{(4,0):(5.1)}
Map(%, S?)
can be identified via the zeroes of © with the set of effective divisors of degree d, hence
with

May(%) =

VX ...XXD
Sym(%) = =g

Example 2: Bradlow pairs. Let G = U(2) act on M = C* by multiplication on
the left, with moment map p(z) = —%zz* (see also (1.2)). The quotient is the empty
set for any nonzero central element of u(2), but the space of solutions of (1.11) is again
interesting.

Let P — ¥ be a U(2)-bundle of degree d and E = P Xy C? the associated rank 2

vector bundle. As in the preceding example, the equations (1.11) become

040 =0 (5.2)
xiFy + 100" = 71d '

with A € A(E) and © € T'(Z, E). The term O0O* is well defined as an element of End(F)
because it is invariant under the action of U(2).
A first necessary condition of existence of solutions is obtained as before by integrating

over ¥ the trace of the second equation in (5.2) and writes 7 > VgldE' It turns out that

the complete necessary and sufficient condition for the existence of solutions is

7d cr< 2md
Vol ¥ T_VOIZ

Thaddeus [Th] studied in detail the behaviour of the moduli space

{(4,0) :(5.2)}
G(E)

M, =

as 7 varies. The critical parameters are

27k d
"~ Vol ¥’ 2
For large d, the picture is the following :

Tk <k<d, kelZ

e if 7,1 < 7T <74 then M, ~ CP?3%¢ with g the genus of &

e M, is smooth for 7 # 7, and the singular part of M, can be identified with
Sym‘=F(%)
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wd
Vol X

tions on F with projective spaces as fibres.

o if

< T < Tgja41 then M, is a bundle on the moduli space of flat U(2) connec-

By studying the change of topology in M, when 7 crosses the critical values, one can
obtain information on the topology of the moduli space of flat U(2)-connections.

In [BDW] the authors construct a "master space ” incorporating all the M,’s . Fix a
point zo on X and put Gy = {g € G(F) : det(g(z0)) = 1}. Then define

{(4,0) :(5.2) for some 7}
Go

The group S! acts on MBadlow yig sauge transformations and this action is hamiltonian

MBra.dlow —

with moment map

MBradlow —5 R
(A, @)I—>—1/ 10| 2dvols,
2 /s

Then
M, = MBradIOW//Sl(i(%Td — 27Vol E))

Example 3: Anti-self-dual Yang-Mills equations. In what follows, the setting
of (1.11) is enlarged to the infinite dimensional symplectic manifold of connections on a
principal bundle (see also (1.3)). Let S be a compact oriented 2-dimensional riemannian
manifold and Q@ — S a non-trivial SO(3)-bundle. For simplicity, we shall write G
for SO(3) and g for so(3). Recall from lecture 1 that the space of connections M =
A(Q) carries a symplectic structure and that the action of the gauge group G = G(Q) of
equivariant fibre preserving diffeomorphisms is hamiltonian with moment map given by

the curvature
A@) — (P, 8) 7 = Lie(9)"
Ar— Fy
The symplectic quotient at 0 was seen to be the moduli space of flat connections on
. Note that the Hodge *-operator on S induces a Hodge operator on (QﬁoriZ(P, g))G as
follows : if a € QF_. (P, g))G, there is a unique form 3 € Q% (P, g))G denoted by *«

Horiz Horiz
such that
G
s(MAa)y=(nAB), Vne (QPg))

when seen as forms on S. For k = 1, this gives a complez structure on
a
TAA(Q) = (Q%‘Ioriz(Pﬂ g))
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Recall from lecture 1 that the infinitesimal action is given by the covariant derivative

(2(P,9)" — (Uoria(P,0))°
N+ —dan

Hence, the local equations (1.8) write

{ DA — da® + +(9,A — daT) = 0 53)

0¥ — 0@+ [®, U] +e?xFy =0

Here s and t are local coordinates on the Riemann surface ¥, A + ®ds + ¥dt is a
connexion on C x S realized as the local expression of a connexion on ¥ x S while the
local volume on X writes € 2ds A dt. These are precisely the equations of anti-self-dual
instantons on ¥ x S.

When letting the volume of ¥ tend to infinity (as in lecture 4) the last equation
becomes

*Fy =0

and one obtains the equations of holomorphic curves in the moduli space of flat con-
nections. The adiabatic limit argument in the main theorem of lecture 4 establishes a
correspondence between anti-self-dual instantons on ¥ x .S and holomorphic curves in the
moduli space of flat connections. This was the main idea in the proof of the Atiyah-Floer
conjecture [DS].

Example 4: Seiberg-Witten equations. We consider another infinite dimensional
version of our construction. Let F — S be a degree d line bundle over a compact

oriented Riemann surface. Consider the space
M ={(A,0) € A(E) xT'(S,E) : 040 =0}

The usual symplectic structure on A(FE) x ['(S, E) induces a symplectic structure on M.
The gauge group G = Map(S,S!) acts on M in a hamiltonian way with moment map
given by

M — Q°(S) = Lie(G)

(4,0) — +Fy — 5[0/

The symplectic quotient M /G (—i7) is precisely the moduli space My(S) of solutions of
the vortex equations (5.1). This was identified previously with Sym?(S).
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On the other hand, the equations (1.8) now write

040 =0

8,0 + ®O + (8,0 + VO) = 0

OsA — d® + x(A — d¥) = 0

0¥ — @ + e 2(x Fy— 1O +ir) =0

(5.4)

where s+it are local coordinates on X, A(s,t) € A(E), O(s,t) € I'(S, E), ®(s,t), (s, t) €
0°(S,iR) and dvoly, = e 2dsAdt. These are precisely the Seiberg-Witten equations on the
product ¥ x S in the integrable case i.e. when the complex structure on S is independent
of s and ¢.

Again, as € goes to zero, the last equation becomes
i .
*Fy — 5\@\2 +it=0

and thus (5.4) describes precisely holomorphic curves in My(S) (see (1.8)). The adiabatic
limit argument works again [S] and provides a correspondence between the Seiberg-Witten

equations on 3 x S and holomorphic curves in Sym?(S).

Conclusions. Let X be a 4-dimensional symplectic manifold. Donaldson proved that
X admits the structure of a Lefschetz fibration over the sphere S? with generic fibre S.
By cutting out the singular fibres and replacing the generic ones by Sym?(S) or Mf2t(S)
( the moduli space of flat SO(3)-connections on S) one gets symplectic manifolds denoted
by X4 and X2 respectively. Make the following “notations”:

SW(X) = Seiberg-Witten invariants of X;

D(X) = Donaldson invariants of X;

Gr(X!t) = Gromov invariants of X%at;

Gr(X¥) = Gromov invariants of X%

Gr(X) = Gromov invariants of X.

The diagram below expresses known (continous arrows) or conjectured (dotted arrows)

relations between the quantities above.

[PT]

SW(X) <L D(X)
adiabatic Atiyah-Floer
limit conjecture [DS]
[T] Gr(X ) <> Gr(Xfat)
A
v
Gr(X)
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The link between Gr(X¥) and Gr(X%?*) should go through a study related to the
work of Thaddeus [Th] (cf. Example 2 above). The link between Gr(X) and Gr(X)
is the object of a current research project of Simon Donaldson and Ivan Smith. When
completed, it should provide together with the adiabatic limit technique an alternative
connection between SW(X) and Gr(X), besides the classical one of Taubes [T].
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