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Lecture 1

Contact structures and Reeb

dynamics

1.1 Contact structures

In these lectures, M will denote a compact, orientable manifold of dimension 2n − 1.

Definition 1. A contact structure ξ on M is a maximally non-integrable hyperplane distribution.

In other words, if ξ = kerα locally, then α ∧ (dα)n−1 is a non-vanishing top form.

The aim of these lectures is to introduce contact homology HC∗(M, ξ), a powerful invariant of

(M, ξ). It is a part of the Symplectic Field Theory [6] of Eliashberg, Givental and Hofer. But

first, let us discuss other contact invariants that are easier to define and compute.

Let

J = {J : ξ → ξ | J2 = −I, dα(J ·, J ·) = dα(·, ·), dα(·, J ·) > 0}

be the set of compatible complex structures on ξ. It is non empty and contractible.

The “classical invariants” of ξ are the topological invariants of the complex vector bundle (ξ, J),

for some J ∈ J .

Example 1. We will be particularly interested in the following classical invariants :

• The Chern class c(ξ) of (ξ, J). In particular, the first Chern class c1(ξ) will play a role

later in these lectures.

• The formal homotopy class of ξ, defined as the homotopy class of the reduction of the

structure group of TM to U(n − 1) × I. It is sometimes called almost contact structure,

and it encodes all the topological information from (ξ, J).

These invariants do not always distinguish non diffeomorphic contact structures.
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Example 2. On T 3, consider the contact structures ξn, n ≥ 1, defined as

ξn = ker
(
cos(nθ)dx + sin(nθ)dy

)
.

Using 3-dimensional techniques, Giroux [9] and Kanda [17] proved independently that these

contact structures are not diffeomorphic. However, their classical invariants vanish identically.

We shall see in Lecture 4 that contact homology can distinguish these contact structures ξn.

1.2 Reeb dynamics

In order to define contact homology, we first have to study the Reeb dynamics on contact

manifolds.

Definition 2. The Reeb vector field Rα that is associated to a contact form α is characterized

by {
ı(Rα)dα = 0,

α(Rα) = 1.

Note that the dynamics of the vector field Rα strongly depend on the choice of a contact form

α for a given contact structure ξ on M . We can indeed multiply α by any positive or negative

function on M .

The closed trajectories of this vector field naturally appear in the study of the action functional

A : C∞(S1,M) → R : γ →

∫

γ
α.

Contact homology can be considered intuitively as a variant of Morse theory for the action

functional. We are therefore interested in the critical points of A.

Lemma 1. γ ∈ Crit(A) ⇐⇒ γ is a closed Reeb orbit of period A(γ).

Proof. Let γt, t ∈ [0, 1], be a 1-parameter family of loops in M , with γ0 = γ. We have

d

dt
A(γt)|t=0 =

d

dt
|t=0

∫

S1

γ∗
t α

=

∫

S1

γ∗LXα where X =
d

dt
γt|t=0

=

∫

γ
ı(X)dα

=

∫

γ
dα(X, γ̇)

Hence,

d

dt
A(γt)|t=0 = 0 for all γt ⇐⇒ ı(γ̇)dα = 0

⇐⇒ γ̇ is proportional to Rα
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Moreover, since α(Rα) = 1, we see that
∫
γ α is the period of γ when it is parametrized so that

γ̇ = Rα.

As in Morse theory, we need to study the Hessian of A at the critical points. This corresponds

to the linearized Reeb flow near a periodic orbit. Let γ be a closed Reeb orbit of period T , and

let p ∈ γ. Let ϕt : M → M be the Reeb flow after time t; note that this map preserves ξ . The

linearized return map Ψγ : ξp → ξp is the restriction to ξp of the differential at p of the map

ϕT : M → M . Since the Reeb flow preserves dα, this map is symplectic.

Definition 3. The closed Reeb orbit γ is non-degenerate if the map Ψγ : ξp → ξp has no

eigenvalue equal to 1.

Note that γ is non-degenerate if and only if γ is a non-degenerate critical point of A, modulo

reparametrization. Non-degeneracy can always be achieved by a small perturbation.

Lemma 2. For any contact structure ξ on M , there exists a contact form α for ξ such that all

closed orbits of Rα are non-degenerate.

Proof. Consider the graph Γα of the Reeb flow in R+×M×M : (t, x, y) ∈ Γα iff ϕt(x) = y, t ≥ 0.

Fix T > 0. We want to find an arbitrarily small perturbation αT of α so that the perturbed

graph ΓαT
is transverse to the graph R+×∆M of the identity in the compact set [0, T ]×M ×M .

Let p ∈ Γα ∩ [0, T ]×∆M be a point of non-transversal intersection, and let γ be the degenerate

closed Reeb orbit through p. Given a function fp such that dfp = 0 along γ and supported in a

small tubular neighborhood of γ and ε > 0 very small, we can replace α with (1 + εfp)α. Then

the linearized Reeb flow along γ has the additional term

ε

(1 + εfp)2
JHess(fp) for J ∈ J ,

where Hess(fp) is the Hessian of fp with respect to the metric dα(·, J ·). Hence, we can choose

fp so that the perturbed linearized Reeb flow along γ is non-degenerate. If ε > 0 is sufficiently

small, no closed orbit of period ≤ T will be created by this perturbation. Therefore, there is

a neighborhood Up of p so that all closed Reeb orbits with period ≤ T passing through Up are

non-degenerate. We can do this for all p ∈ Γα ∩ [0, T ] × ∆M . Extract a finite covering for the

compact set Γα ∩ [0, T ] × ∆M consisting of open sets Upi
, i = 1, . . . , N . Let R be the vector

space generated by the corresponding functions fpi
, i = 1, . . . , N . By construction, the manifold

Γα,R = {(t, x, y) ∈ R+ × M × M | ϕf
t (x) = y, f ∈ R, ‖f‖ small}

is transverse to [0, T ] × ∆M , where ϕf is the perturbed Reeb flow corresponding to (1 + f)α.

By Sard theorem, we can pick a regular value fT ∈ R, arbitrarily close to 0, of the projection

map Γα,R ∩ [0, T ] × ∆M → R. Then, the closed Reeb orbits with period ≤ T for the contact

form αT = (1 + fT )α are all non-degenerate.
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The above discussion shows hat the set CT of contact forms for ξ such that all closed orbits of

Rα with period ≤ T are non-degenerate, is open and dense. By Baire theorem, ∩
T≥0

CT is not

empty.

In order to define contact homology, we have to assume that α is chosen generically, so that all

closed Reeb orbits are non-degenerate.

Let γ be a non-degenerate closed Reeb orbit of period T . Fix a symplectic trivialization of ξ

along γ. Then the path dϕt : ξp → ξϕt(p), t ∈ [0, T ], is represented by a path Ψγ(t), 0 ≤ t ≤ T ,

of symplectic matrices, such that Ψγ(0) = I and det(Ψγ(T ) − I) 6= 0. A number t ∈ [0, T ] is

called a crossing if det(Ψγ(t)− I) = 0. We denote ker(Ψγ(t)− I) by Et. For a crossing t ∈ [0, T ],

the crossing form Γ(Ψγ , t) is the quadratic form on Et defined by

Γ(Ψγ , t)v = dα(v, Ψ̇γv) for v ∈ Et.

A crossing t is regular if the crossing form at t is non-degenerate. If the path Ψγ has regular

crossings, we define

µCZ(Ψγ) =
1

2
sign Γ(Ψγ , 0) +

∑

t crossing 6=0

sign Γ(Ψγ , t).

The next Lemma [24] shows that the Conley-Zehnder index is invariant under some deformations.

Lemma 3. (Robbin, Salamon) Two paths of symplectic matrices Ψ0 and Ψ1, that are homo-

topic with fixed ends and have regular crossings, satisfy µCZ(Ψ0) = µCZ(Ψ1).

Therefore, we can make the following definition for more general paths.

Definition 4. The Conley-Zehnder index of a path of symplectic matrices Ψ(t), t ∈ [0, T ],

satisfying Ψ(0) = I and det(Ψ(T ) − I) 6= 0, is defined as

µCZ(Ψ̃) =
1

2
sign Γ(Ψ̃, 0) +

∑

t crossing 6=0

sign Γ(Ψ̃, t)

for a small pertubation Ψ̃ of Ψ with fixed ends, having regular crossings.

Note that there are other ways to define the Conley-Zehnder index (see for example [24]), but

this approach is useful for computations.

For any closed Reeb orbit γ in M 2n−1, we define |γ| = µCZ(Ψγ) + n − 3. Of course, the index

µCZ(Ψγ) depends on the choice of the trivialization. In particular, if γ is homologically trivial,

we choose a spanning surface Sγ for γ and trivialize ξ on Sγ . Given A ∈ H2(M, Z), we can form

the connected sum Sγ]A. To this new spanning surface corresponds a new trivialization of ξ.

We have

µCZ(γ;Sγ]A) = µCZ(γ;Sγ) + 2〈c1(ξ), A〉.
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It is therefore natural to introduce the following grading on H2(M, Z) :

|A| = −2〈c1(ξ), A〉 for A ∈ H2(M, Z).

Let R be a submodule of H2(M, Z) with zero grading. Then the quotient H2(M, Z)/R has a

well-defined grading.

Let γ = γ1 be a closed Reeb orbit with minimal period T . We are also interested in the multiples

covers γm of γ with period mT , m ≥ 2.

There are 2 ways the grading of γm can behave :

(i) the parity of |γm| is the same for all m ≥ 1.

(ii) the parity for the even multiples |γ2k|, k ≥ 1, disagrees with the parity for the odd multiples

|γ2k−1|, k ≥ 1.

Definition 5. In the second case, the even multiples |γ2k|, k ≥ 1, are called bad orbits. An orbit

that is not bad is called good.

Note that this notion is well-defined, since |γ| mod 2 is independent of te choice of a trivializa-

tion of ξ along γ.

Definition 6. Let C∗ be the graded module freely generated by all good closed Reeb orbits γ,

over the graded ring Q[H2(M, Z)/R].

Elements of Q[H2(M, Z)/R] will be written as
∑k

i=1 qie
Ai , where qi ∈ Q and Ai ∈ H2(M, Z)/R.

The module C∗ splits as the direct sum ⊕
ā

C ā
∗ , where ā denotes a free homotopy class for the

closed Reeb orbits γ.

Definition 7. Let A be the graded supercommutative algebra with a unit, freely generated by all

good closed Reeb orbits γ, over the graded ring Q[H2(M, Z)/R].

Here supercommutative means that γ1γ2 = (−1)|γ1 ||γ2|γ2γ1. Note that the coefficient ring is

commutative since its grading is even.

Next, we need to introduce a differential d on C∗ and A, counting J -holomorphic curves in the

symplectization of M .
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Lecture 2

Holomorphic curves in

symplectizations

Pseudo-holomorphic curves were introduced in symplectic geometry by Gromov [10]. The con-

struction of the moduli spaces of pseudo-holomorphic curves in closed symplectic manifolds is

nicely explained by McDuff and Salamon [22]. On the other hand, pseudo-holomorphic curves

were not considered in symplectizations of contact manifolds for some time, because their be-

havior near the ends of the symplectization was not understood. Hofer [12] was the first to use

such holomorphic curves, in order to prove the Weinstein conjecture on S 3. Since then, they

have been the object of important analytical work, as in the papers [13], [14], [15] and [16].

Definition 8. The symplectization of the contact manifold (M, ξ) with contact form α is the

symplectic manifold (R × M,d(etα)), where t is the coordinate of R.

Given J ∈ J , we can extend J to an almost complex structure (that we still denote by J)

on R × M , compatible with ω = d(etα) : ω(J ·, J ·) = ω(·, ·) and ω(·, J ·) > 0. We define this

extension by letting J ∂
∂t = Rα.

We will be interseted in J -holomorphic curves in the symplectization, i.e. maps F : (Σ, j) →

(R × M,J) defined on a Riemann surface (Σ, j) and satisfying dF ◦ j = J ◦ dF .

We restrict ourselves to rational curves Σ = S2 \ {x, y1, . . . , ys} with several punctures. We

require the following behavior near the punctures : let (ρ, θ) be polar coordinates centered on a

puncture; we write F = (a, f) ∈ R × M . We want

lim
ρ→0

a(ρ, θ) = +∞ for puncture x,

= −∞ for punctures y1, . . . , ys,

lim
ρ→0

f(ρ, θ) = γ(−
T

2π
θ) for puncture x,

= γi(
Ti

2π
θ) for puncture yi (i = 1, . . . , s),

6



for some closed orbits γ of period T and γi of period Ti, i = 1, . . . , s. In other words, F must

converge at t = ±∞ to vertical cylinders over closed Reeb orbits. Note that these are clearly

J -holomorphic, since J ∂
∂t = Rα.

PSfrag replacements

R

M

F

x

y1 y2

γ

γ1 γ2

Figure 2.1: Holomorphic map F in R × M with s = 2.

We denote by Hol(γ; γ1, . . . , γs) the set of J -holomorphic curves F : (S2 \ {x, y1, . . . , ys}, j) →

(R × M,J) that are asymptotic to γ near x at +∞ and to γi near yi, i = 1, . . . , s at −∞.

We introduce on this set the following equivalence relation : the holomorphic maps F : (S 2 \

{x, y1, . . . , ys}, j) → (R×M,J) and F ′ : (S2 \ {x′, y′1, . . . , y
′
s}, j

′) → (R×M,J) are equivalent if

and only if there exists a biholomorphism h : (S2, j) → (S2, j′) so that h(x) = x′, h(yi) = y′i for

i = 1, . . . , s, and F = F ′ ◦ h.

Definition 9. The moduli space of J-holomorphic curves M(γ; γ1, . . . , γs) is the set of equiva-

lence classes in Hol(γ; γ1, . . . , γs). It has an R-action induced by the translation t → t + ∆t in

R × M .

We would like M to have a geometric structure that is as nice as possible. We can achieve this

by perturbing the Cauchy-Riemann equation ∂F = 1
2(dF +J ◦dF ◦j) = 0. We use a multi-valued

perturbation ∂F = ν(F ) ∈ Γ(F ) that is invariant under the action of biholomorphisms. The

perturbation of the moduli spaces follows the approach of Liu and Tian [20]; additional details

about this construction can be found in the exposition [21] by McDuff. Note that there are other

approaches to the perturbation of the moduli spaces; these are due to Fukaya and Ono [8], Li
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and Tian [19], Ruan [23], and Siebert [26]. After this delicate process, we obtain the following

structure on M.

Proposition 1. M(γ; γ1, . . . , γs)/R is a compact branched labeled manifold with corners, i.e.

the union of manifolds with corners along a codimension 1 branching locus, with each manifold

having a rational weight, so that near each branching point, the sum of all entering weights

equals the sum of all exiting weights. Each manifold with corner has dimension

(n − 3)(1 − s) + µCZ(γ) −
s∑

i=1

µCZ(γi) + 2crel
1 (ξ,Σ) − 1

where crel
1 (ξ,Σ) is the relative first Chern class of ξ on Σ, relative to the fixed trivializations of

ξ along the closed Reeb orbits at the punctures.

The rational weights take into account the automorphisms of J -holomorphic curves : if F is a

rigid element in M/R of dimension 0, then the weight of F is 1
k , where k is the order of the

automorphism group of F .

According to the compactness theorem [4], the boundary of M/R consists of “broken” J -

holomorphic curves, i.e. finite collections Cj = {F1,j , . . . , Fl,j}, j = 1, . . . , k of J -holomorphic

curves as above, such that

(i) the closed orbits at +∞ in Cj coincide exactly with the orbits at −∞ for Cj−1, j = 2, . . . , k,

(ii) the closed orbit at +∞ for C1 is γ,

(iii) the closed orbits at −∞ for Ck are γ1, . . . , γs.

This is illustrated by Figure 2.2. The codimension of such broken J -holomorphic curves in M/R

is given by k − 1. Conversely, any such “broken” J -holomorphic curve lies in the boundary of

M/R.

We now explain why this degeneration process does not involve J -holomorphic curves with

several closed orbits at +∞. In order to approach such a limiting curve, a J -holomorphic curve

would have to develop a maximum for the t coordinate in R×M and have this maximum diverge

to +∞. However, the existence of such a maximum is prohibited by the following lemma.

Lemma 4. For any J-holomorphic curve F = (a, f) : (Σ, j) → (R × M,J), the function a has

no local maximum.

Proof. Note that ∆ea = F ∗(−ddcet), where dcβ = d(β ◦ J). But

−ddcet = −d(det ◦ J)

= −d(etdt ◦ J)

= d(etα)

= ω.
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Figure 2.2: “Broken” holomorphic map with k = 2.
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Hence, ∆ea = F ∗ω > 0 on Σ and the function ea can have no maximum. In particular, the same

restriction applies to a.

The moduli spaces M can be oriented in a coherent fashion, if we fix an ordering of the orbits

γ1, . . . , γs at −∞.

These orientations satisfy the following properties :

(i) the gluing map

M(γ; γ1, . . . , γs) ×M(γs; γ
′
1, . . . , γ

′
s′) → M(γ; γ1, . . . , γs−1, γ

′
1, . . . , γ

′
s′)

preserves the coherent orientations,

(ii) exchanging the order of the orbits γi and γi+1 in M(γ; γ1, . . . , γs) changes the coherent

orientation by (−1)|γi||γi+1|.

These coherent orientations are constructed in [5]; another approach is outlined in [6].

Note that, if one of the orbits γ, γ1, . . . , γs is bad, there is no well-defined coherent orientation

on M(γ; γ1, . . . , γs). This is why we had to ignore the bad orbits in the definition of C∗ and A.

To each holomorphic curve in M, we want to associate a homology class in H2(M, Z). In order to

do this, we must make additional choices, for each closed Reeb orbit. We write H1(M, Z) = F⊕T ,

where F is a free module and T is a torsion module. Pick representatives C1, . . . , Ck in M for

a basis of F , together with a trivialization of ξ along each representative Ci, i = 1, . . . , k. Pick

representatives D1, . . . , Dl in M for a minimal set generating T , together with a trivialization

of ξ along each representative Dj , j = 1, . . . , l. Now, for a closed Reeb orbit γ, we distinguish

the following cases :

(i) [γ] = 0 ∈ H1(M, Z). As in the previous lecture, we choose a spanning surface Sγ and use

it to trivialize ξ along γ.

(ii) 0 6= [γ] ∈ F . We choose a surface Sγ realizing a homology between γ and a linear

combination of the representatives Ci, i = 1, . . . , k. We then use Sγ to extend the chosen

trivializations of ξ along the Ci, i = 1, . . . , k to γ.

(iii) 0 6= [γ] /∈ F . Choose a surface Sγ realizing a homology between γ and a linear combination

of the representatives Ci, i = 1, . . . , k and Dj , j = 1, . . . , l, with minimal nonnegative

coefficients for the representatives Dj , j = 1, . . . , l. We then use Sγ to extend the chosen

trivializations of ξ along the Ci, i = 1, . . . , k and the Dj , j = 1, . . . , l, to γ. Let γm be the

smallest multiple of γ so that [γm] ∈ F . We have 2 different trivializations of ξ along γm :

one obtained from case (ii) above, and the other obtained by pull-back from γ. Let w ∈ Z

be the rotation number of the second trivialization with respect to the first one. We define

|γ| = µCZ(γ) − 2
w

m
+ n − 3 ∈

1

m
Z.
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To a J -holomorphic curve in M(γ; γ1, . . . , γs), we can glue the chosen surfaces Sγ , Sγ1
, . . . , Sγs

and obtain a closed surface in M . Let A ∈ H2(M, Z) be its homology class; we can use it to

decorate the corresponding connected component MA(γ; γ1, . . . , γs) of the moduli space.

If we define the grading of the orbits γ using the trivializations of ξ defined above, then the

dimension formula for the moduli spaces takes the convenient form

dimMA(γ; γ1, . . . , γs) = |γ| −
s∑

i=1

|γi| + 2〈c1(ξ), A〉.

Note that the right hand side if always an integer, even if the grading is fractional as in case

(iii) above.

We are now in position to define the differential for our chain complexes C∗ and A.

Differential d on C∗

The numbers

nA
a,b =

{
0 if dimMA(γa; γb) 6= 1
∑

p∈MA(γa;γb)/R weight(p) if dimMA(γa; γb) = 1

count rigid J -holomorphic cylinders joining closed orbits γa and γb, with homology class A ∈

H2(M, Z). Note that the rational numbers nA
a,b are always finite, and are nonzero for finitely

many homology classes A ∈ H2(M, Z), since the moduli spaces M/R are compact.

We combine this information in the coefficients

na,b =
∑

A∈H2(M,Z)

nA
a,be

π(A) ∈ Q[H2(M, Z)/R]

where π : H2(M, Z) → H2(M, Z)/R is the natural projection.

We finally define

dγa = ma

∑

b

na,bγb

where ma is the multiplicity of γa.

By the dimension formula for the moduli spaces, the grading of the differential is −1 :

d : Ck → Ck−1 for all k ∈ Z.

Differential d on A

Let b̄ = (b1, . . . , bs). The numbers

nA
a,b̄ =

{
0 if dimMA(γa; γb1 , . . . , γbs

) 6= 1
∑

p∈MA(γa;γb1
,...,γbs )/R weight(p) if dimMA(γa; γb1 , . . . , γbs

) = 1
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count rigid J -holomorphic curves converging to the closed orbit γa at +∞ and to the closed

orbits γb1 , . . . , γbs
at −∞, with homology class A ∈ H2(M, Z). As before, the rational numbers

nA
a,b̄

are always finite, and are nonzero for finitely many homology classes A ∈ H2(M, Z), since

the moduli spaces M/R are compact.

We combine this information in the coefficients

na,b̄ =
∑

A∈H2(M,Z)

nA
a,b̄e

π(A) ∈ Q[H2(M, Z)/R]

where π : H2(M, Z) → H2(M, Z)/R is the natural projection.

We finally define

dγa = ma

∑

b̄

na,b̄γb1 . . . γbs

where ma is the multiplicity of γa. The product γb1 . . . γbs
is understood to be the unit 1 ∈ A if

s = 0.

Note that the above expression is well-defined : if we permute bi and bi+1, we pick a sign

(−1)|γbi
||γbi+1

| due to the supercommutativity of A, but the coefficient na,b̄ is multiplied by the

same sign, due to the change in the coherent orientation of M.

By the dimension formula for the moduli spaces, the grading of the differential is again −1.

Cylindrical contact homology

Eliashberg-Hofer : If C0
k = 0 for k = −1, 0, 1, then for every free homotopy class ā in M ,

(i) d2 = 0,

(ii) H∗(C
ā
∗ , d) is independent of the contact form α for ξ, the complex structure J and the

perturbation ν for the moduli spaces.

Definition 10. The cylindrical contact homology HC ā
∗ (M, ξ) in the free homotopy class ā is the

homology H∗(C
ā
∗ , d) of the chain complex (C ā

∗ , d).

Contact homology

Eliashberg-Hofer :

(i) d2 = 0, so that (A, d) is a differential graded algebra (DGA),

(ii) H∗(A, d) is independent of the contact form α for ξ, the complex structure J and the

perturbation ν for the moduli spaces.

Definition 11. The contact homology HC∗(M, ξ) is the homology H∗(A, d) of the DGA (A, d).
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Idea of the proof for cylindrical contact homology

Since cylindrical contact homology is analogous to the symplectic Floer homology [7], it is not

surprising that the proof for invariance is very similar to the Floer case (see for example [25]).

There are, however, a few additional features in the contact case.

(i) d2 counts “broken” J -holomorphic cylinders with 2 levels. These are in the boundary of

the moduli spaces M/R of dimension 1. But we have
∑

p∈∂M/R

weight(p) = 0.

These weights are the products of the weights of the rigid J -holomorphic cylinders in each

level and of the number of ways such J -holomorphic cylinders can be glued to each other.

The latter is precisely the multiplicity of the closed Reeb orbit where we glue; this is why

we need the factor ma in the expression of dγa.

Therefore, we just need to check that nothing else sits in the boundary of these moduli

spaces. However, a J -holomorphic cylinder of index 2 might also degenerate into a pair

of pants of index 1 and a plane of index 1, see Figure 2.3. Since the closed Reeb orbit at

+∞ for the plane has degree 1 and is contractible, such a configuration is impossible if we

assume that C0
1 = 0.

(ii) Given different choices (α0, J0) and (α1, J1), we can find a homotopy (αs, Js), s ∈ [0, 1],

joining them. Let f : [0, 1] → R be a smooth increasing function such that f(t) = 0 is t

is sufficiently small and f(t) = 1 if t is sufficiently large. If f increases slowly enough, we

can use these data to construct a symplectic cobordism (R×M,d(etαf(t))), equipped with

an almost complex structure J such that J |{t}×M = Jf(t), t ∈ R.

Counting rigid J -holomorphic cylinders in this symplectic cobordism, we get a map Φ :

C ā
1,∗ → C ā

0,∗ of degree 0 (and not −1), since the symplectic cobordism is not invariant

under translations t → t + ∆t.

The boundary of moduli spaces of dimension 1 contains “broken” J -holomorphic cylinders

with 2 levels : one in the symplectic cobordism, one in the symplectization with contact

form α0 or α1. If nothing else sits in the boundary of these moduli spaces, we obtain an

algebraic relation Φ ◦ d1 = d0 ◦ Φ. However, a J -holomorphic cylinder of index 1 might

also degenerate into a pair of pants of index 1 in the symplectization for α1 and a plane of

index 0 in the symplectic cobordism. This time, such a configuration is impossible if we

assume that C0
0 = 0.

Hence, the map Φ : (C ā
1,∗, d1) → (C ā

0,∗, d0) is a chain map and induces a map Φ̃ :

H∗(C
ā
1,∗, d1) → H∗(C

ā
0,∗, d0). We want to show that Φ̃ is an isomorphism. In order to

do this, we need to construct an inverse for Φ̃.

13
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A natural candidate is the map Ψ̃ : H∗(C
ā
0,∗, d0) → H∗(C

ā
1,∗, d1) that is obtained using the

same construction as above, after switching (α0, J0) and (α1, J1). The composition Ψ ◦ Φ

counts rigid J -holomorphic cylinders in the symplectic cobordism obtained after gluing

the above 2 symplectic cobordisms along (M,α0). This glued symplectic cobordism can

clearly be deformed into the symplectization (R×M,d(etα1)). But the only J -holomorphic

cylinders of index 0 in a symplectization must be invariant under translations t → t + ∆t,

so these are just the vertical cylinders over the closed Reeb orbits. Hence, counting such

holomorphic cylinders in the symplectization gives the identity.

In order to understand the relationship between Ψ ◦ Φ and the identity, we have to study

Jλ-holomorphic cylinders in a 1-parameter family of symplectic cobordisms (R × M,ωλ),

λ ∈ [0, 1]. For λ = 0, the symplectic cobordism is the symplectization for α1, and for

λ = 1, the symplectic cobordism is the glued symplectic cobordism. Counting rigid Jλ-

holomorphic cylinders in such a 1-parameter family of symplectic cobordisms, we obtain

a map h : C ā
1,∗ → C ā

1,∗+1 of degree 1, because for a finite number of values of λ ∈ [0, 1], the

almost complex structure Jλ is not generic and admits Jλ-holomorphic cylinders of index

−1.

The boundary of the moduli space Mλ∈[0,1] of Jλ-holomorphic cylinders of index 0 con-

tains :

• holomorphic cylinders of index 0 for λ = 0,

• holomorphic cylinders of index 0 for λ = 1,

• “broken” J -holomorphic cylinders with 2 levels, consisting of a Jλ-holomorphic cylin-

der of index −1 and a J -holomorphic cylinder of index 1 in the symplectization above

or below.

If nothing else sits in the boundary of these moduli spaces, we obtain an algebraic relation

Ψ ◦ Φ − id = d1 ◦ h + h ◦ d1. However, a J -holomorphic cylinder of index 0 might also

degenerate into a pair of pants of index 1 in the symplectization for α1 and a plane of

index −1 in the symplectic cobordism for a fixed value of λ ∈ [0, 1]. This time, such a

configuration is impossible if we assume that C 0
−1 = 0.

The above algebraic relation means that the map Ψ◦Φ is chain homotopic to the identity,

so that the map induced by Ψ ◦Φ on H∗(C
ā
1,∗, d1) is the identity. Similarly, Φ ◦ Ψ induces

the identity on H∗(C
ā
0,∗, d0). Hence, Φ : H∗(C

ā
1,∗, d1) → H∗(C

ā
0,∗, d0) is an isomorphism.
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Lecture 3

Morse-Bott techniques

It is generally very difficult to compute contact homology using the definition from the previous

lectures. The main reason for these difficulties is that we have to choose the contact form α

generically, so that all the closed Reeb orbits are non-degenerate. This implies that the Reeb

dynamics will be rather chaotic, and the almost complex structure J satisfying J ∂
∂t = Rα will

be very complicated, so that the Cauchy-Riemann equation is extremely hard to solve.

Thinking of contact homology as a variant of Morse theory for the action functional A, the

contact form α must be generic so that A is a Morse functional. We can relax this assumption

by just requiring that A be a Morse-Bott functional. The appropriate conditions on the contact

form α can be expressed as follows.

Definition 12. A contact form α for (M, ξ) is of Morse-Bott type if :

(i) the action spectrum σ(α) = {
∫
γ α | γ closed Reeb orbit} is discrete,

(ii) the sets NT = {p ∈ M | ϕT (p) = p} are closed submanifolds of M , such that rank dα|NT

is locally constant and TpNT = ker(dϕT (p) − I).

In that case, the Reeb flow induces a circle action on NT and we denote the quotient NT /S1 by

ST . These are orbifolds with singularity groups Zm; the singular loci consist of closed orbits of

period T
m covered m times, see Figure 3.1. We will denote the connected components of these

orbifolds by Si.

Example 3. Consider the lens space Lp,q = S3/Zp where Zp acts on S3 ⊂ C2 by (z1, z2) →

(e
i 2π

p z1, e
i 2πq

p z2). The 1-form i
2

∑2
j=1(zjdz̄j − z̄jdzj) on C2 descends to a contact form α on Lp,q.

The corresponding Reeb flow is given by (z1, z2) → (eitz1, e
itz2). It follows that all Reeb orbits

are closed. Let m be the smallest positive integer such that p divides m(q − 1). The orbit

spaces are then S 2π
p

k, for k = 1, 2, . . . If m does not divide k, the orbit space consists of a pair

of points, corresponding to the orbits {z1 = 0} and {z2 = 0}. If m divides k, the orbit space is

topologically a 2-sphere, but with 2 orbifold singularities with group Zk.
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Figure 3.1: Orbit spaces ST ⊂ SmT .

We can extend the definition of the Conley-Zehnder index to the closed Reeb orbits in ST .

This time, with a trivialization of ξ along the orbit γ, we obtain a path of symplectic matrices

Ψγ(t), t ∈ [0, T ], such that Ψγ(0) = I but Ψγ(T ) may have 1 as an eigenvalue. Actually, the

corresponding eigenspace is the tangent space of ST at γ. Following Robbin and Salamon [24],

we define

µ(Ψγ) =
1

2
sign Γ(Ψ̃, 0) +

∑

t crossing 6=0

sign Γ(Ψ̃, t) +
1

2
sign Γ(Ψ̃, T )

for a small pertubation Ψ̃ of Ψγ with fixed ends, having regular crossings. In other words, we

simply add the contribution of the last crossing at t = T . We will call this generalized index

µ(Ψγ) the Maslov index, in order to distinguish it from the Conley-Zehnder index. Note that

the Maslov index is a half integer : µ(Ψγ) ∈ 1
2Z. However, the combination µ(Ψγ)± 1

2 dimST is

always an integer. Since the Maslov index is continuous, its value does not depend on the choice

of γ ∈ ST ; we will therefore denote it by µ(ST ).

Moduli spaces

From now on, we assume that J is an almost complex structure on (R × M,d(etα)) that is

S1-invariant along the submanifolds NT .

The moduli spaces of J -holomorphic curves will be decorated with connected components Si of

the orbit spaces, instead of individual orbits γi.

The moduli space M(S+;S−
1 , . . . , S−

s ) is equipped with evaluation maps ev+ : M → S+ and

ev−i : M → S−
i , i = 1, . . . , s.

Proposition 2. M(S+;S−
1 , . . . , S−

s )/R is a compact branched labeled manifold with corners, i.e.

the union of manifolds with corners along a codimension 1 branching locus, with each manifold

having a rational weight, so that near each branching point, the sum of all entering weights

17



equals the sum of all exiting weights. Each manifold with corner has dimension

(n − 3)(1 − s) + µ(S+) +
1

2
dimS+ −

s∑

i=1

µ(S−
i ) +

1

2

s∑

i=1

dimS−
i + 2crel

1 (ξ,Σ) − 1

where crel
1 (ξ,Σ) is the relative first Chern class of ξ on Σ, relative to the fixed trivializations of

ξ along the closed Reeb orbits at the punctures.

As in the previous lecture, we want to associate a homology class in H2(M, Z) to a holomorphic

curve in M(S+;S−
1 , . . . , S−

s ). In order to do this, we fix a base point in each orbit space Si

and make the same choices of spanning surfaces and trivializations of ξ along the correspond-

ing orbits. Then, given a holomorphic curve F ∈ M(S+;S−
1 , . . . , S−

s ), we connect the orbits

ev+(F ) ∈ S+ and ev−i (F ) ∈ S−
i , i = 1, . . . , s, to the corresponding base points using curves in

the orbit spaces. We glue the cylinders in M lying above these curves in the orbit spaces Si to

the holomorphic curve F , then we glue the appropriate spanning surfaces at the base points of

the orbit spaces Si. We obtain a surface in M representing a homology class in H2(M, Z).

However, the obtained homology class depends on the choice of the connecting curves in the

orbit spaces. The homology class is well-defined in the quotient space H2(M, Z)/R, where R is

generated by the homology classes of tori in M above non-contractible loops in the orbit spaces

Si. Note that R ⊂ ker c1(ξ), so that the grading is well-defined.

The boundary of the moduli spaces M(S+;S−
1 , . . . , S−

s )/R consists, as before, of “broken” J -

holomorphic curves. Recall that, given continuous maps f : A → C and g : B → C, the fibered

product A ×C B is defined as {(a, b) ∈ A × B | f(a) = g(b)}. Therefore, the codimension

1 boundary of M/R consists of the union of fibered products M(S+;S−
i1

, . . . , S−
ir

, S)/R ×S

M(S;S−
ir+1

, . . . , S−
is

)/R, where i1, . . . , is is a permutation of 1, . . . , s and 0 ≤ r ≤ s.

The perturbation of the moduli spaces is performed in such a way that the evaluation maps are

transverse to each other. This is necessary in order to make sure that the boundary of M/R is

regular and has the predicted dimension.

Relation to the generic case

We can perturb a contact form of Morse-Bott type α using the formula

αε = (1 + εf)α for small ε > 0,

where the function f is chosen so that the closed Rαε-orbits are non-degenerate if their period

is less than T (ε). This bound T (ε) → ∞ as ε → 0. Since the Reeb field is modified, so is the

almost complex structure J : we obtain a 1-parameter family Jε.

We can define contact homology for ε > 0 using the previous lectures. We then study the

degeneration of the Reeb flow and of the Jε-holomorphic curves as ε → 0. We can then write

the chain complex of contact homology using only the geometric data at ε = 0.

18



Computation of contact homology

1. Choose a set of admissible Morse functions fT : ST → R, forming Morse-Smale pairs with

the metric induced by dα(·, J ·). In other words, if ST ⊂ SkT , the function fkT extends the

function fT with a positive definite Hessian in the normal directions to ST in SkT .

2. The chain complex C∗ or A is generated by the “good” critical points of the functions fT ,

for all orbit spaces ST , T ∈ σ(α). The grading of a critical point p ∈ Crit(fT ) is given by

|p| = µ(ST ) −
1

2
dimST + indexp(fT ) + n − 3.

The notion of a good critical point coincides with the notion of a good orbit, using the above

grading. Since the Morse function fT are admissible, we have indexp(fT ) = indexp(fkT )

for all k ≥ 1. Hence, the even multiples of all orbits in a connected component of ST are

either good or bad, depending on the parities of µ(ST )− 1
2 dimST and µ(S2T )− 1

2 dimS2T .

The coefficient ring of the chain complex is Q[H2(M, Z)/R′], where R ⊂ R′ ⊂ ker c1(ξ).

3. The differential counts “generalized” holomorphic curves, consisting of a finite collection

of J -holomorphic maps Cj = {F1,j , . . . , Fl,j}, j = 1, . . . , k, and tj ∈ R+, j = 1, . . . , k − 1,

such that

(i) The gradient flow of the functions fT after time tj−1, applied to the closed orbits at

+∞ in Cj , gives exactly the orbits at −∞ for Cj−1, j = 2, . . . , k,

(ii) the closed orbit at +∞ for C1 is in the stable manifold W s(p+),

(iii) the closed orbits at −∞ for Ck are in the unstable manifolds W u(p−1 ), . . . ,W u(p−s ).

This is illustrated by Figure 3.2.

Note that, in many cases, the only rigid “generalized” holomorphic curves satisfy k = 1.

In that case, the differential simply counts elements in the fibered product

W u(p+) ×S+ M(S+;S−
1 , . . . , S−

s )/R ×S−

1
×...×S−

s
W s(p−1 ) × . . . × W s(p−s ).

The above steps can be used to compute contact homology [2].

Proposition 3. Assume that α is a contact form of Morse-Bott type for (M, ξ), and that J is

an almost complex structure on (R×M,d(etα)) that is S1-invariant along the submanifolds NT .

Then the homology of the above chain complex is isomorphic to the contact homology HC∗(M, ξ)

with coefficient ring Q[H2(M, Z)/R′].
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Figure 3.2: Generalized holomorphic map with k = 2.
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Lecture 4

Examples and applications

4.1 Standard contact sphere

Consider S2n−1 ⊂ Cn and let ξstd = TS2n−1 ∩ iTS2n−1 be the hyperplane field of complex

tangencies. This is a contact structure, that admits the natural contact form

α =
i

2

n∑

j=1

(zjdz̄j − z̄jdzj)|S2n−1.

The corresponding Reeb flow is given by

(z1, . . . , zn) → (eitz1, . . . , e
itzn)

and hence is completely periodic.

4.1.1 Computation without Morse-Bott

We first need to perturb the contact form α. The simplest way is to use contact form

α̃ =
i

2

n∑

j=1

aj(zjdz̄j − z̄jdzj)|S2n−1,

where the coefficients aj , j = 1, . . . , n, are rationally independent. The corresponding Reeb flow

is given by

(z1, . . . , zn) → (e
i t

a1 z1, . . . , e
i t

an zn).

There are n simple closed Reeb orbits, contained in the complex coordinate lines : γj ⊂ {zi =

0, i 6= j}. We denote the closed orbit covering m times the orbit γj by γj,m.

Let us compute the Conley-Zehnder index of the orbits γj,m. The crossings occur at t = 2πkaj ,

for j = 1, . . . , n and k = 1, 2, . . . The crossing form is the identity on a 2-dimensional eigenspace,
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so each crossing brings contribution 2. We obtain

µCZ(γj,m) = n − 1 + 2
∑

i6=j

b
maj

ai
c + 2m.

This is a rather complicated formula. To get around this, we choose a1 << a2, . . . an. In that

case,

µCZ(γ1,m) = n − 1 + 2m,

µCZ(γj,m) >> µCZ(γ1,m),

if m is sufficiently small. If we reduce the value of a1 > 0, these formulas are valid for a larger

range for m.The lowest degree generators have grading |γ1,m| = 2n − 4 + 2m, m = 1, 2, . . .

Since the grading is purely even and |d| = −1, we see that the differential d vanishes. Hence,

the above generators actually generate contact homology HC 0
∗ (S

3, ξstd).

Using the invariance of contact homology, we can reduce a1 at will and proceed as if the grading

formulas were valid for all m ∈ Z+. Hence, we see that HC0
∗ (S

3, ξstd) has one generator in each

even degree that is ≥ 2n − 2.

Note that, without knowing a priori that d = 0, it would be virtually impossible to compute

d since J 6= i on R × S2n−1. For example, the symplectic cobordism interpolating between

the contact forms with weights a1 < . . . < an very close to 1 and with weights satisfying

a1 << a2, . . . , an must contain, according to the proof of invariance, J -holomorphic cylinders

asymptotic to the orbits γk,1 and γ1,k respectively, for k = 1, . . . , n. For k = 1, the cylinder is

vertical, but for k 6= 1, these cylinders have a rather complicated behavior in R×S 2n−1 and are

litterally impossible to find explicitly.

4.1.2 Computation using Morse-Bott

In this case, we can choose J = i, so that (R × S2n−1, J) ' (Cn \ {0}, i). Moreover, all Reeb

orbits are closed and the orbit spaces are S2πm = CP n−1.

The Maslov index of S2πm is µ(S2πm) = 2nm, because the linearized Reeb flow consists of n

blocks (
cos t − sin t

sin t cos t

)
.

The crossings t = 2πk, k ∈ Z, give a contribution 2 for each block.

Since the Reeb flow induces a global S1-action on the symplectization, preserving i, there are no

rigid holomorphic curves other than vertical cylinders over closed Reeb orbits. Therefore, the

differential d counts only generalized holomorphic curves with k = 0, i.e. gradient trajectories

on the orbit spaces. Contact homology will therefore contain a copy of H∗(CP n−1, Q) for each

orbit space.
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Hence, we obtain one generator of HC0
∗ (S

3, ξstd) in each degree 2nk − (n − 1) + (n − 3) + d,

where d = 0, 2, . . . , 2(n − 1). If we write hk for rank HC0
k(S3, ξstd), we have

k 2n − 2 2n − 1 2n · · · 4n − 4 4n − 3 4n − 2 4n − 1 4n · · · 6n − 4 · · ·

hk 1 0 1 · · · 1 0 1 0 1 · · · 1 · · ·

︸ ︷︷ ︸
H∗(CP n−1,Q)

︸ ︷︷ ︸
H∗(CP n−1,Q)

4.2 Tight contact structures on T 3

Let us consider again the contact structures ξn, n ≥ 1 on T 3, defined as ξn = kerαn, where

αn = cos(nθ)dx + sin(nθ)dy.

4.2.1 Contact homology over Q

The corresponding Reeb vector field is given by

Rαn = cos(nθ)
∂

∂x
+ sin(nθ)

∂

∂y
.

Hence, the orbits are straight lines foliating the 2-tori {θ = const}. Pick any nontrivial homo-

topy class ā in this family of 2-tori. There are n values of θ corresponding to the slope of ā, so

we obtain n circles of closed Reeb orbits in class ā.

We choose the basis e1 = ∂
∂θ , e2 = − sin(nθ) ∂

∂x + cos(nθ) ∂
∂y for ξ. In this basis, the linearized

Reeb flow is given by the path of matrices
(

1 0

t 1

)
.

Hence, the Maslov index for a closed Reeb orbit γ is µ(γ) = 1
2 . Note that it is independent of

the choice of ā.

The symplectization (R× T 3, d(etαn)) does not contain J -holomorphic cylinders other than the

vertical ones. Indeed, for any J -holomorphic cylinder C,
∫
C dγ ≥ 0, since dα is nonnegative

on complex lines. Moreover, this integral vanishes if and only if C is vertical. On the other

hand, by Stokes theorem,
∫
C dγ = A(γ+)−A(γ−), if C is asymptotic to the closed orbit γ+ for

t → +∞ and to γ− for t → −∞. But all the closed Reeb orbits in class ā have the same action,

so the conclusion follows.

Hence, the differential d coincides with the Morse-Witten differential of S 1, and the contact

homology HC ā
∗ (T 3, ξn) will contain a copy of H∗(S

1, Q) for each orbit space. Taking the grading

into account, we obtain

HC ā
k (T 3, ξn) = ⊕n

j=1Hk+1(S
1, Q) for all k ∈ Z.
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In particular, we see that contact homology distinguishes the contact structures ξn, n = 1, 2, . . .

4.2.2 Contact homology over Q[H2(T
3, Z)]

If we choose instead the coefficient ring Q[H2(T
3, Z)], we must pay attention to the homology

classes of the generalized holomorphic cylinders. On each orbit space S 1, there are 2 such cylin-

ders lying over the 2 gradient trajectories l1 and l2 joining the maximum M and the minimum

m of a perfect Morse function.

PSfrag replacements
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Figure 4.1: Morse function on the orbit space S1.

In order to associate a homology class to a J -holomorphic cylinder, we need to make some

choices. We choose the representative for class ā to be the closed Reeb orbit at m. Then, the

spanning surface from this representative to m can be chosen to be trivial. Finally, we choose

the spanning surface from the representative to M to be the cylinder lying above the gradient

trajectory l1.

Then, the generalized holomorphic cylinder lying above l1 has a zero homology class, and the

generalized holomorphic cylinder lying above l2 has the homology class of the 2-torus Tx,y span-

ning the x and y directions. Hence, the differential d of contact homology is given by

dM = (1 − eTx,y)m,

dm = 0,

on each orbit space S1. Therefore,

HC ā
k (T 3, ξn) = 0 if k 6= −1,

HC ā
−1(T

3, ξn) = ⊕n
j=1Q[H2(T

3, Z)/〈Tx,y〉]

over the coefficient ring Q[H2(T
3, Z)].

This example shows that contact homology strongly depends on the choice of the coefficient

ring. It is therefore important to specify the coefficient ring that was used to carry out the

computation.
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4.3 Applications of contact homology

The first application of contact homology is of course to distinguish contact structures on a

given manifold M .

Theorem 1. There are infinitely many pairwise non-isomorphic contact structures, with the

same classical invariants, on the following manifolds :

(i) S4k+1, for k ≥ 1 (Ustilovsky [27]) ,

(ii) T 5, T 2 × S2k+1, for k ≥ 1 (Bourgeois [1]).

We now turn to other applications of contact homology. We first need a few definitions; let

(V, J) be a complex manifold.

Definition 13. A function f : V → R is strictly plurisubharmonic if the 2-form ωf = ddcf ,

where dcf = df ◦ J , satisfies ωf (v, Jv) > 0 for all v 6= 0.

Definition 14. A complex manifold (V, J) is Stein if it admits a proper, positive, stricly plurisub-

harmonic function f such that ∂V is a regular level set of f .

The boundary M = ∂V of a Stein manifold admits a contact structure ξ, which is the maximal

complex subspace of TM . Moreover, a Stein manifold of dimension 2n has the homotopy type

of a CW complex of dimension n.

Definition 15. A Stein manifold of dimension n is called subcritical if it has the homotopy type

of a CW complex of dimension n − 1.

If these conditions are satisfied, we say that M = ∂V with ξ as above, is a subcritical Stein-

fillable contact manifold. Contact homology was computed for some manifolds of this type

[28].

Theorem 2. (M.L. Yau) Let (M, ξ) be a (2n− 1)-dimensional subritical Stein-fillable contact

manifold with n > 2, c1(ξ) = 0, and (V, J) a subcritical Stein domain such that ∂V = M and ξ

is the maximal complex subbundle of TM . Let bi = rk(Hi(V,M)) and denote by hi the rank of

the ith contact homology group HC0
i (M, ξ) of (M, ξ). Then hi = 0 for i < n−1, hi−2−hi−4 = bi

for i ∈ Z.

Contact homology can also be used to study contact embeddings. The following result [18] is

similar to the non-squeezing theorem in symplectic geometry.

Theorem 3. (S.S. Kim) If r < R, there is no contact embedding Ψ ∈ Diff 0
ξ(R

2n × S1) such

that Ψ(BR × S1) ⊂ Br × S1.
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Contact homology can also be used to study the space Ξ(M) of contact structures on M . By

Gray stability, it is natural to first look at the connected components of Ξ(M), i.e. π0(Ξ(M)).

But it is also interesting to consider the topology of the connected components, and in particular

πk(Ξ(M), ξ0), for k > 0. The first result in this direction was obtained by Geiges and Gonzalo

[11], and can be reproved using contact homology [3].

Proposition 4. (Geiges-Gonzalo, Bourgeois) π1(Ξ(T 3), ξn) contains an infinite cyclic sub-

group.

Sketch of proof. We want to show that the loop of contact structures ξn,s = ker αn,s, for s ∈ R/Z,

where

αn,s = cos(nθ + 2πs)dx + sin(nθ + 2πs)dy,

generates an infinite cyclic subroup of π1(Ξ(T 3), ξn).

Using this loop, we can construct a symplectic cobordism (R × T 3, d(etαn,f(t))), where f : R →

[0, 1] is a smooth increasing function, such that f(t) = 0 for t small and f(t) = 1 for t large.

Counting J -holomorphic curves in this symplectic cobordism, we obtain a chain map Φ :

(C ā
∗ , d) → (C ā

∗ , d) inducing an automorphism of HC ā
∗ (T 3, ξn).

This chain map Φ is easily computed, because it can be shown that the J -holomorphic cylinders

have to closely follow the closed Reeb orbits in their motion along the θ coordinate as s ∈ R/Z.

Hence, Φγ = γeTθ,x for every closed Reeb orbit γ, where Tθ,x is the homology class of the

2-torus spanned by the coordinates θ and x. This chain map induces multiplication by eTθ,x

on HC ā
∗ (T 3, ξn). Looking back on our computation with coefficient ring Q[H2(T

3, Z)], this

automorphism is distinct from the identity.

Assume by contradiction that the loop ξn,s, s ∈ R/Z, is contractible. Using a contraction, we

can construct a 1-parameter family of symplectic cobordisms, interpolating between the original

cobordism (R × T 3, d(etαn,f(t))) and the symplectization (R × T 3, d(etαn)). According to the

proof of invariance for contact homology, the automorphism of contact homology obtained from

the original cobordism coincides with the automorphism induced by the symplectization, i.e.

the identity. But this contradicts the above computation of Φ.

Similarly, iterating the loop ξn,s, s ∈ R/Z, we obtain various powers of the automorphism Φ,

and these are also distinct from the identity.

Uing similar techniques, we can obtain the following results [3].

Proposition 5. There are infinitely many contact structures ξ on T 5 such that π1(Ξ(T 5), ξ)

contains the subgroup Z3.

The contact structures on T 5 in this proposition are the ones constructed in Theorem 1.

Proposition 6. Let ξstd be the canonical contact structure on the unit cotangent bundle of T 4.

Then π3(Ξ(T 4 × S3), ξstd) contains an infinite cyclic subgroup.
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The 3-sphere of contact structures is obtained by acting with S3 on itself in T 4 × S3.
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