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Abstract : Thermal Protection System is a key el@nfier atmospheric re-entry missions of
aerospace vehicles. The high level of heat fluxesentered in such missions has a direct
effect on mass balance of the heat shield. Consélgu¢he identification of heat fluxes is of
great industrial interest but is in flight only dehle by indirect methods based on temperature
measurements. This paper is concerned with invamatyses of highly evolutive heat fluxes.
An inverse problem is used to estimate transierfase heat fluxes (convection coefficient),
for degradable thermal material (ablation and pgis), by using time domain temperature
measurements on thermal protection. The inverselgmo is formulated as a minimization
problem involving an objective functional, through optimization loop. An optimal control
formulation (Lagrangian, adjoint and gradient sestplescent method combined with quasi-
Newton method computations) is then developed gplieal, using Monopyro, a transient
one-dimensional thermal model with one moving bamdablative surface) that has been
developed since many years by ASTRIUM-ST. To compotimerically the adjoint and
gradient quantities, for the inverse problem inttemvection coefficient, we have used both
an analytical manual differentiation and an AutamdDifferentiation (AD) engine tool,
Tapenade, developed at INRIA Sophia-Antipolis by TIROPICS team. Several validation test
cases, using synthetic temperature measurementaiied out, by applying the results of the
inverse method with minimization algorithm. Accwatsults of identification on high fluxes
test cases, and good agreement for temperaturetsitiess, are obtained, without and with
ablation and pyrolysis, using bad fluxes initialegses. First encouraging results with an
automatic differentiation procedure are also presem this paper.
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1. Introduction

The success of atmospheric re-entry missions is bound to then ddsilje Thermal Protection
System (TPS) of the aerospace vehicles involved. The high déwheat fluxes encountered in such
missions has a direct effect on mass balance of the tielt. Consequently, the identification of heat
fluxes is of great industrial interest but is in flight ordyailable by indirect methods based on
temperature measurements. A more detailed description @roldéem can be found for instance in
some publications on the Atmospheric Reentry Demonstrator (AROR]. The difficulty with flight
data is that the uncertainty on the heat flux is coupled withurecertainty coming also from the
material (thermal properties for instance). In this contridmjtive restrict ourselves to a supposed well
known complex degradable material (with ablation and pyrolysis)samty in details the modeling
and identification of thermal fluxes. A lot of studies on degradatdgerials can be found for
pyrolysis and ablation processes and the corresponding applicéitensn-ground validations with
arc plasma torch, or various work on Thermal Protection Sgséad reentry vehicles design. Many
authors have already adressed the so-called Inverse Heat Gomgwoblem, and the estimation of
fluxes from temperature measurements [3],[4],[5].

The inverse problem in this paper is concerned with the egiimat time domain surface heat
fluxes convection coefficient, for thermally degradable migtéablation and pyrolysis processes), on
a one-dimensional slab of thickness e, by using time domain tenm@eraeasurements on thermal

protection, taken below the boundary surface, at thermocouple pggifidaring the time interval
O<t<t,, Wheretf denotes the final time. This inverse problem is formulated asinimization

problem involving a least square problem through an optimization loop.ofimal control
formulation (Lagrangian, adjoint and gradient computations, [6)ea applied and implemented for
the optimal control theory on some industrial applicationswdrse problems at EADS (European
Aeronautics Defense and Space Company) [7].

2. Direct problem

For the direct problem, the Monopyro direct and inverse codehwhis developed at EADS
Astrium-ST Les Mureauy, is used. It is a transient one-diroeakthermal software with one moving
boundary (ablative surface) to model complex chemical proce$ssultaneous heating, ablation,
pyrolysis, thermal degradation of materials [8][9][10]. Theciin&l energy balance is a transient
conduction equation with additional pyrolysis terms :
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with x the abscissa, t the timg,(x,t) the temperaturep (x,t) the specific massC,, the heat
capacity,A the thermal conductivityF, the pyrolysis gas formation heah, the pyrolysis gas mass

flow rate, h, the pyrolysis gas enthalpyQ\ a function of temperature T. The rate of storage of

sensible energy is balanced by the net rate of thermal coveldat flux, the pyrolysis energy-
consumption rate and the net rate of energy convected by pyrolysis gasolthierwf specific mass
is given by a first-order rate process based on the Arrhenius equation :
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L. and g, are the charred and virgin material densitieshe frequency factor in pyrolysis, the
fictitious temperature in pyrolysisip the order of the reaction. The pyrolysis gas mass flowisate
related to the decomposition by the simple mass balance:
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Let s be the abscissa of the moving interface (ablation valua), $hes the recession rate. The

physical process can be splitted in three kinds of ablaggp; the mechanical recession rat,,,

the chemical recession rate (most of the time a tabulatetidop and$, the hydroerosion recession
rate. The surface energy balance on the moving boundary takes the folloming

a,(h —h,)-eo(Tl-T") +mg[HC - (h, —hw)]mec[Hv =1,(h, _hw)] =/1% 4)

with a, (t) the convection coefficient (unknown for the inverse problelphe athermanous
enthalpy, h, the surface enthalpye the total emissivity,0 the Stefan-Boltzmann constarf, the
surface temperaturel, the equivalent temperature), the pyrolysis gas blocking factot the
pyrolysis gas heat combustion). the ablation mass flow rate, the ablation gas blocking factor,

H,the ablation heat. The first term of equation (4) is the cdiveedeat flux, the second one

represents the heat loss by re-radiation of the surfacehirleahd fourth terms are the contributions
of pyrolysis and ablation gas respectively. The right hand)afef@resents the rate of conduction into

the TPS. LeuU = (Tsj be the vector of temperaturésand ablatiors, functions of time and position

X. The direct problem can be represented in condensed vectabydim following system of coupled
nonlinear time domain evolution differential equations:

‘]('TL: =FU) Tx0)=T, sx0=0 toot,] x0[s(t)e (5)
whereF (U) is a non linear operator anly the reference initial temperature. The other physical

quantities and variables described above are hidden in the faonuétF. Space partial derivatives
are computed with a centered finite difference type schemeafigmssax belongs to the interval

[s(t) e]. It is parameterized by a reduced scaled space vaa‘eib[é),l] X= (1—£)s(t) +ée
The system (5) is rewritten relatively to the variab(esf) with implicit Euler scheme and a

constant time stefpt . Let K denote the number of one-dimensional grid poiathe space index\
the number of time iterations, the time index in the numerical scherme;(ul,...,u“‘) the discrete

direct state variables with the discrete vectof = (Tl”,Tz”,---,TQ,S”) of dimension K+1), T the

discrete computed temperature at timat grid point m,s"the discrete computed ablation, at time n.
The equation (5) is written at tinfe+1) :
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We make a linearization of the equation (6) at tm#and after some calculations, we finally obtain
a forward time discrete linearized Euler scheme, withainithnishing condition. To solve the discrete
matrix problem, we use an adapted sparse solver.

3. Inverse problem

The aim of the inverse problem in this paper is to estimate tomain surface heat fluxes
(convection coefficient), for degradable material (ablation and pyrilysisa one-dimensional slab of
thicknes, by using time domain temperature measuremg(tison thermal protection, taken below

the boundary surface, at thermocouple positj@‘o)m during the time intervat)gtstf , with t, the

final time. The inverse problem is formulated as a mininomaproblem involving a cost objective
functional, through an optimization loop, requiring the computatiorderivatives or gradients
gquantities and adjoint variables (optimal control formulation).

For a good accurate approximation of the gradient, the key strategy is to edhgekact gradient
of the discretized problem, instead of applying a discretizatbeme to the above systems of PDE-s.
Let us consider that the time domain heat flux convection caaificis represented by a
vectorp = (pl,...,pN), where the subscripts refer to the sampled time. These esAwplues are the

control parameter variables for the optimization process. The quadratic error or cost fungfion
which measures the difference between model predicfighsof temperature, given a heat flux

parameterp value, and measurements temperatfesdepending on the source parameters (p), is
defined by :
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To minimize this quantity, by optimization algorithm, we needdmjpute the derivatives of this
least squares objective function J(p), with respect to the pararpete

We introduce the adjoint state matriu* :(u*”2 --~;u*N+1’2) adjoint of the direct state,
u*""2peing a vector (K+1)*1, for all n=0,N. A Lagrangian formalisrused in the minimization of
the functionald(p) because the estimated dependent variabp appearing in such functiona{p)

needs to satisfy a constraint, which is the solution of the edéesairect problem. The governing
equation of the direct problem, is therefore multiplied bylthgrange multiplier, integrated in the
space and time domains and added to the original cost funcliphalhe Lagrangiaih is :
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Differentiating the Lagrangiah with first order variationgp, du,du*, the variations ofd. with
respect todu are cancelled with an adequate choice of the adjoint gtatésaddle point condition). It
leads to the discrete adjoint systeruih™ 2 unknown,n going backward from N to 0,

u %*n-1/2 -u % N+1/2

A S ISTERY (120 ) T W T DY

uM2=0  N=n20
With this particular choice ofi* , the gradient of the cost function is simply obtained by :
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Gradient expression is a combination of direct and adjointedesquantities. Once the gradient of
cost function is computed, we can apply an iterative inversgmzing procedure td(p) to obtain an

estimation of the optimal parametgy,, . We use a combination of a gradient steepest descent method
at the beginning of minimization and a Quasi Newton method [11] at the end.

4. | nver se problem computation using automatic differentiation

To compute numerically the adjoint and gradient discretetdigs for the inverse problem in heat
convection coefficient, we have also used the Automatic Diffextest (AD) engine tool, Tapenade,
developed at INRIA Sophia-Antipolis by the Tropics tdag]. Automatic differentiation is a family
of techniques for computing the derivatives of a function defiogda computer program, for
sensitivity and gradient analysis applicatifi®]. The derivatives of the instructions of a program are
combined with chain rules of differential calculus, leading toomajodes of computing derivatives
with AD, the forward (tangent-linear) mode and reverse (cotangent-bn@aijoint) mode.

* The forward mode uses derivatives on a given vector in the $ppee (tangent approach.
It is appropriate to derive functions with small numbers of independent hesri@put).

« The reverse mode uses derivatives starting with the deperddgables (output) and
proceeding toward the independent variables (input), and it is comiputieel reverse of
the original program's order. It is appropriate for functiorith vémall numbers of
dependent variables (output) and lots of input independent varidbleseverse mode of
automatic differentiation is functionally equivalent to hand writtescrdite adjoint codes.

The implementation of robust automatic differentiation tadfers advantages to be accurate and
to reduce software costs: automatic differentiation eliminatesmieespent developing and debugging
derivative code by hand, or with experimenting step sizes for finitaaliife approximations.

These techniques have been applied to our inverse thermal pratdasidering the flow of
instructions in the direct program (Monopyro direct code). Thal foutput of the program is the
discrete cost functiord (p) = J(u(p)) = I((u*,....u" [ p))- The adjoint code inu* variables is built by
automatic backward differentiation of the outplit versusu direct state variables, following and
analyzing the flow of instructions in the direct program, anddiygendences im. The gradient
computation ofJ(p) versusp parameter is built by automatic backward differentiation obtitput

J(p) versus p parameter, also following the flow of instructions in the direct and agoagrams.

5. Numerical results

We now present some applications of this inverse problem iofisggin of time domain surface
heat convection coefficient for a thermally degradable material ome-@limensional slab of thickness
e, by using time domain temperature measurements taken below the fyosudace, at a given

thermocouple position, during a time inter‘{l.:-ultf J The final time is denoted by, .Theses tests have

been carried out for the problem of fluxes identification onraardresin material. We first tried to
examine the effects of pyrolysis (test 1), ablation (tesegamately, then we applied the new method
to operationnal cases, such as the ARD (Atmospheric Reentnpiidrator, test 3 with a different
material: alestrasil). For test 1 and test 2, we used synthetic datée@s measurements).



Test 1: Identification of Virgin material flux : without ablation , pyrolysis,, Xx0=1.3 mm

We start (INI) with a bad initial guess, half the valuehaf tonvection coefficient used to generate
the synthetic data, with sharp discontinuity. Figure 1 showsod ggreement for the reconstruction
(NUM) of the convection coefficient, compared to the refereme/@ction coefficient (OBS). This
good result (except near the final time) is obtained withitiverse code developed in section 4
(Automatic Differentiation tool was used). The RMS errartbe flux is 0.04. Near final time, the
value of the estimated flux has very little influence ontémperature in the material, at x0 and is all
the more difficult to compute accurately.
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Figure 1.Flux Identification ; Temperature RM Serror Automatic Differentiation tool
Testl: Virgin material : without ablation , pyrolysis, x0=1.3 mm

Figure 1 shows also that the RMS error on temperature obtaittesl etd of optimization process
is very low (0.01), and we can observe the change in optimieeat(dn 25), switching from gradient
steepest descent at the beginning, to Quasi Newton after. Fhim ganvergence is promising, after
60 optimizer iterations.

Test 2 : Identification of High Flux with ablation, Carbon/Resin material , x0=2.6 mm

It is a quite difficult test case, with high fluxes. Inudig 2, a good agreement in the reconstructed
convection coefficient value is observed, except at final, timid an initial guess of half the expected
value and using synthetic data (errorless measurementsRNMBeerror on the flux is 0.06 and RMS
error on measured temperature obtained at the end of optimipatioess is very low (0.7), after 70
optimizer iterations.

10"

CONVECTION COEFFICIENT

200 200 500 a0 To00 10 % T g
20 0 50

TIME ITERATION OPTIMIZER ITERATION

Figure 2. Flux Identification ; Temperature RMSerror
Test 2: Identification of High Flux with ablation, x0=2.6 mm



Test 3: ARD Test case

We examine the inverse analysis approach for the ARJDtftiest case. The Atmospheric Reentry
Demonstrator (ARD) was a suborbital reentry test flown ontllirel Ariane 5 flight. ARD was
launched in october 1998 from Kourou, French Guyana, by an Ariane 5.sliregavered and
transported in EADS Astrium Aquitaine plant for expertisggyfe 3). More than 200 different
parameters were recorded during flight. After ARD recovarpreliminary analysis of recorded data
was performed. Successful results are obtained in the recoedtflict (Figure 4), which are very
similar to those obtained before.
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Figure 3. ARD heat shield Figure 4. ARD heat flux restitution

6. Conclusion

Motivated by atmospheric re-entry of aerospace vehicles aretmbh Protection System
dimensioning problems, this article is concerned with inverseyseslof highly dynamical heat
fluxes. It addresses the inverse problem of using tempenmatasurements to estimate the heat flux
(convection coefficient), at the surface of ablating mdterieveral validation test cases, using
synthetic, noisy on-ground and in-flight data temperature measurei@ntarried out, by applying
the results of the minimization algorithm. Main results are:

» Validity of the inverse formulation for the temperature and allatariables evolution

* Improvement by using a combined gradient steepest descent mettibd beginning of

minimization process and Quasi Newton method to finish the minimization,

« Convection coefficient restitution has been improved for hardsc@sith great ablation) for

fluxes functions containing sharp corners and discontinuities,

e Successful test case on carbon/resin material with high fheats and large magnitudes,

ablation and pyrolysis effects, and on operational data,

» Encouraging results with an automatic differentiation tool are also otain&out ablation

Future works have to be done on the:

* Robustness to initial guess, sensitivity to measurements, numdgyoaition of sensors, and
application of regularization methods to stabilize noise errors orunezasnts,

» Validation of the automatic differentiation tool used to geteetiae inverse code, especially for
ablation test cases,

« Thermal model uncertainties influences on the accuracy of igehtilight heat flux,
athermanous enthalpy identification,

» Validations on aerothermal flight measurements.
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