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Abstract Nomenclature

Thermal Protection System is a key element for A
atmospheric re-entry missions of aerospace vehicles B
Consequently, the identification of heat fluxeoigreat C
industrial interest and is usually based on tentpeza
measurements. This contribution is concerned with Of
inverse analyses of highly evolutive heat fluxesn A d2f
inverse problem is used to estimate transient serfeeat

fluxes (or convection coefficient), for thermally d, Descent direction in optimization iteration r
degradable material (with ablation and pyrolysis e Thickness of the one-dimensional slab
phenomena), by using time domain temperature F Operator of direct evolution problem
measurements on thermal prot_ec_tlo_n. _The inverse Pyrolysis gas formation heat (J/kg)
problem is formulated as a minimization problem : .
involving an objective functional, through an = Discrete operator of evolution problem
optimization loop. An optimal control formulation H, = Pyrolysis gas combustion heat (J/kg)
(Lagrangian, adjoint and gradient steepest desuettiod
combined with quasi-Newton method computations) is r . .
then developed and applied. Accurate results of iteration
identification on high fluxes test cases, and good H, = Ablation heat (J/kg)
agreement for temperatures restitutions, are oddain h
using synthetic, noisy, on-ground and in-flight aat g

Frequency factor in pyrolysists
Activation temperature in pyrolysis (K)

Heat capacity (J/kg/K)

First derivative of function

Second derivative dffunction

v

= Hessian approximation at optimization

= Pyrolysis gas enthalpy (J/kg)

measurements, without and with ablation and pyrslys  h = Athermanous enthalpy (J/kg)
First encouraging results with an automatic diffitiietion _
procedure are also presented in this paper. h, = Surface enthalpy (J/kg)
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Space index
Number of time iterations

Number of optimizer iterations
Time index

Mechanical erosion coefficient

Normal constraint coefficient
Parameter

Parameter value at time n

Optimal parameter

Parameter at optimizer iteration r

Optimizer iteration indice
Ablation variable

Ablation variable computed at time n
Mechanical Recession rate (m/s)

Chemical Recession rate (m/s)

Hydroerosion Recession rate (m/s)

Temperature
Optimal Temperature (at optimal p)

Reference initial temperature (K)
Temperature computed at time n, point m
Mechanical erosion fictitious temperature
Equivalent temperature (K)

Surface temperature (K)

time

Final time

Continuous Direct state variable:
temperature & ablation

Discrete Direct state variable: temperature
& ablation

Direct state variable at time iteration n
Sensor position

Sensor position

Hessian intermediate function
Unblocked convective heat transfer
coefficient (kg-s/m2)

Gear coefficient at time iteration n

Time step
Total Emissivity

Pyrolysis gas blocking factor

Ablation gas blocking factor

Measured temperature

Measured temperature at time n, point m

Thermal conductivity (W/m/K)

2

U = Descent coefficient for optimizer

M, = Descent coefficient at optimizer iteration r

£ = Reduced scaled abscissa

Jo, = Specific Mass (kg/f)

Jor = Charred material densities (kgjm

P, = Virgin material densities (kg/fn

g = Stefan-Boltzmann constant

T = Mechanical erosion fictitious constraint

@ = Discrete Adjoint state variable: temperature
& ablation

¢”+1/2 = Adjoint state variableat time n+1/2

I. Introduction

The success of atmospheric re-entry missions iadbou
to the design of the Thermal Protection System JTé{S
the aerospace vehicles involved. The high levehest
fluxes encountered in such missions has a diréettedn
mass balance of the heat shield. Consequently, the
identification of heat fluxes is of great industriaterest
but is in flight only available by indirect methotissed
on temperature measurements. For a more detailed
description of the problem, we refer to some puatians
on the Atmospheric Reentry Demonstrator (ARD)
suborbital reentry test flowr. The difficulty with flight
data is that the uncertainty on the heat flux ispbed
with an uncertainty coming also from the material
(thermal properties for instance). In this conttibo, we
restrict ourselves to a supposed well known complex
degradable material (with ablation and pyrolysisd a
study in details the modeling and identificatiorttodérmal
fluxes.

A lot of studies on degradable materials can badbu
for pyrolysis and ablation procesdfs and the
corresponding applications, like on-ground validas
with arc plasma torc¢h or various work on Thermal
Protection Systems and reentry vehicles dé&3fgn

Many authors have already adressed the so-called
Inverse Heat Conduction problem, and the estimadion
fluxes from temperature measureméhté Recently, 3D
inverse thermal methods for non-ablative and non-
pyrolysable materials have been successfully aghflie

The inverse problem in this paper is concerned with
the estimation of time domain surface heat fluxes (

convection coefficiengr, (t)), for thermally degradable
material (ablation and pyrolysis processes), onna- 0
dimensional slab of thickness by using time domain
temperature measuremeng(t) on thermal protection,
taken below the boundary surface, at thermocouple
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This inverse problem is formulated as a minimizatio with x the abscissa, t the time, (x,{) the temperature,

problem involving a least square problem through an @ (X.t) the specific massC, the heat capacity/ the
optimization loop. An optimal control formulation iharmal conductivity, M
(Lagrangian, adjoint and gradient computationsjhisn e
applied and developé&tfor the optimal control theof§y** rate, h, the pyrolysis gas enthalpy a constant~, the
on some industrial applications of inverse probleshs
EADS (European Aeronautics Defense and Space
Company).

We use the Monopyro direct and inverse ébde
which was developed at EADS Astrium-ST Les Mureaux.
It is a transient one-dimensional thermal tool withe
moving boundary (ablative surface) and has beed tse
model complex chemical processes of simultaneous
heating, pyrolysis, ablation, thermal degradation The evolution of specific mass is given by (2):
behaviour of ablative materials. 0 5

The paper is structured as follows: in sectioré iﬁ - ‘Pca AR T 2
describe our physical model associated to the H#edca p, Ot o,
direct problem. In section 1ll, we explain our imse
methodology for estimation and identification oé theat
flux, using optimal control method, and analysis of
optimization tools. In section IV, we emphasize tbe
possible use of automatic differentiation tédlsto
generate the inverse code, for this highly nondine
problem. In section V, we present some numericallte
on test cases with carbon/resin material for sytitttend
noisy temperatures measurements and assimilation of
high fluxes without and with ablation and pyrolysis
Some comparisons with experimental on-ground (3P te

position Xg during the time intervaD<t <t,. where

t, denotes the final time.

the pyrolysis gas mass flow

pyrolysis gas formation heat. The rate of storage o
sensible energy is balanced by the net rate ofrialer
conductive heat flux, the pyrolysis energy-consuampt
rate and the net rate of energy convected by psiobas.

Pyrolysis with internal decomposition modelled &ia
first-order rate process based on the Arrheniustému

P and g, are the charred and virgin material densities, A
the frequency factor in pyrolysis, B the fictitious
temperature in pyrolysis, np the order of the rieact
More complex pyrolysis models can be used, foraimse

as proposed in literatute

Internal decomposition converts some of the satitb i
pyrolysis gas. The pyrolysis gas mass flaxrelated to
the decomposition by the simple mass balance:

case) and in-flight (ARD) aerothermal measurements aﬁ:amg (3)
data, with some uncertainties on the material, ase ot o0X
presented.

The surface recessiorwe denote by the abscissa of

1. Direct problem the moving interface (ablation value), the® is the
recession rate. This physical process can be explitt
three kinds of ablation:

Continuous equations

. . : i S= Smeca+ schem+ S1y (4)
A transient one-dimensional thermal problem withe on
moving boundary (ablative surface) has been deeglop . . .
and used at EADS Astrium-&F° to model complex The mechanical recession rate |Ts modeled by
chemical processes of simultaneous heating, pyslys . _ T
ablation and thermal degradation behaviour of alat $peca= PAT+P, PB)e ™
materials. We briefly present the direct model used

®)

with T the mechanical erosion fictitious temperatufe,

Internal energy balance (for pyrolysable ablative _ _ - o
material) : the mechanical erosion fictitious constraintn, the

pyrolysis gas mass flow rat€A the mechanical
The internal energy balance is a transient thermal grosion coefficient, PB  the normal constraint
conduction equation with additional pyrolysis terms coefficient. The chemical recession raig. = I} /p

is most of the time a tabulated value function of
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m, la,, of temperature T and of pressure P on the Discrete scheme

material with @, (t) the convection coefficient, or
unblocked convective heat transfer coefficient funkn
for inverse problem), and, the ablation mass flow rate.

The hydroerosion recession res?ﬁy variable is also most
of the time a tabulated value.

Surface energy balance on the moving boundary:

The conditions at the hot surface are determined by

convective heating and by thermochemical interastiof
the surface with the boundary-layer gas. The sarfac
energy balance takes the following form:

a,(h,

-h,)-eo(T} -T*) +m[H, -n,(h —h,)]
(6)

e fH, -ma(h -] =22

with /7, the pyrolysis gas blocking factorHCthe

pyrolysis gas heat combustiofi), the ablation mass flow

rate, h the athermanous enthalpyh,the surface

enthalpy, /7, the ablation gas blocking factorHvthe
ablation heat,& the total emissivity,0 the Stefan-
Boltzmann constant]T the surface temperaturd, the

equivalent temperature. The first term of equat{6h
represents the convective heat flux. The seconch ter
represents the heat loss by re-radiation of thiaser The
third and fourth terms represent the contributioh o
pyrolysis and ablation gas respectively. The temthe
right hand of (6) represents the rate of condudtitm the
TPS.

We introducew = Hr che vector of temperature and
(0

ablation, functions of timeand positiorx. Therefore, the
direct problem can be represented in condensedect
form by the following system of coupled nonlineane
domain evolution differential equations:

dw
dt
TX0 =T, s(x0) =0

tD[O,tf],XD[S(t),e]

whereF(W) is a non linear operator and, the

reference initial temperature. The other physical
guantities and variables described above are higddre
formulation of F, and in the linear system coeéitis
than will result from (7) after spatial and temgora
discretization.

= Fw)
)

4

Space partial derivatives are computed with a cedte
finite difference type scherffe The absciss& belongs

to the interval[s(t),e]. It is parameterized by a reduced
scaled space variabig[] [0,1] :

=(1-&)s(t) + &

Then the system (7) is rewritten relatively to the
variables(t,f) . The variableé is discretizedwith the

help of K grid points. This complete set of equasidnas
been solved numerically, for non constant time step
using a one-dimensional two time steps Gear Scheme,
which is second order accurate implicit integration
scheme, with the approximation of the time deriatn

(8)

two contiguous time stepAt" 2 and At™"?, with the
B, Gear coefficierf:
n+1 n Wn _ Wn—l
E[LH 0B, — a7~ ( _an) n-1/2
gdt O At At (9)
n+1/2 + n-1/2
B, = 20t At 0<n<N

At n+1/2 + At n-1/2

For simplicity, we explain our method on the imjtlic

Euler scheme with a constant time sip We define K
the number of one-dimensional grid points, N thenbar
of time iterations, k the space index, n the timeei in

the numerical schemay = (wl,,,,,wN) the discrete direct
state variables matrix of dimension (K+1)*N, withet
discrete vector w" = (Tln,TZ",---,T}?,S”) of dimension
(K+1), TnT the discrete computed temperature at time n, at

grid point m, for the K different points on the dyris" the
discrete computed ablation, at time n. The equdfiris
written at time(n+1) :

n+1 n

w A;w = tw)

w’ =0

(10)
0<n<N

We make a linearization of the equation (10) attim
and after some calculations, we finally obtain ewfrd
time discrete linearized Euler scheme, with initial
condition vanishing:

n+l _ N

w

df )(W” )(W"+1 -

w) (11)
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Note thatf (vv”) is a vector (K+1)*1,(df )(W”) is the
linearized square matrix (K+1)*(K+1). To solve the

discrete matrix problem, we use an adapted sparse

solvef®. In order to focus on the inverse procedure, we
won't develop more in details the expressions & th
discrete schemes, as the direct scheme is verylegmp
due to non linearities (complex chemical physical
processes, ablation, pyrolysis), tabulated vargfide the
physical ablation process, and complex lineariratiand
discretizations

I11.  Inverseproblem

Inverse problems are concerned with the identificat
of unknowns and the improvement of the understandin
of physical processes quantities which appear & th
mathematical formulation of physical problems, lsyng
measurements of the system response.

The inverse problem in this paper is used to eséma
time domain surface heat fluxes (convection coiffit),
for degradable material (ablation and pyrolysis) acone-
dimensional slab of thickness by using time domain

temperature measuremeng(t) on thermal protection,
taken below the boundary surface, at thermocouple
position Xo during the time interva[‘)gtgtf , where

t, denotes the final time. The inverse problem is

reformulated as a minimization problem involvingast
objective functional, through an optimization loop,
requiring the computation of derivatives or gratien
quantities and adjoint variables (optimal control
formulation).

Discrete problem and cost function

To obtain an accurate numerical approximation ef th
gradient, the key strategy is to compute the egeadient
of the discretized problem, instead of applying a
discretization scheme to the above systems of PBE-s
Therefore the best way is to proceed to the deoinat
of the direct schemes. Let us consider that thee tim
domain content of the unknown heat flux convection

coefficient is represented by a vecp)t(pl,...,pN)

which is sampled over time, where the subscriffisr e
the sampled time. N is the number of unknowns and t
iterations. These sampled values will be tbantrol
parameter variable$or the optimization process.

Let us define a discrete scalar inner product af tw
discrete vectors" =(a1”,---,a2) and b" (bl"bl’g)

5
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, K being the number of one-dimensional grid pgibtsa
discrete summation over the time and space domains

K
nxn n,N
<a'\b'>=§ albl (12)
k=1

To simplify our presentation, we present the ingers
problem with measurements data with only one
thermocouple sensor, point m in the grid. Therefére
first step in establishing a procedure for the sofu of
either inverse is thus the definition of an objeet{cost)
function: it is in our case a least squares peréoe
index J(p) that measures the difference between model

predictions Tn: of temperature, given a heat flux

parametep value, and measurements temperatéfgsat

point m on the grid, time (n). The quadratic emorcost
function j(p), depending on the source parameters p
defined by :

3(p) = IW(p)....w" (p)) = i(TnT —grfar (13)

variablesw n=

with @] the discrete measured temperature, at time n,

point m, and Tnf the discrete computed temperature

vector, at time n, point m.

To minimize this quantity, by optimization algorith
we need the derivatives of this least squares tigec
function J(p), with respect to the parameters p.

Adjoint and gradients computations

We introduce the adjoint state matgx (¢2...;"*2)

adjoint of the direct state matriw, ¢™"?being a vector

(K+1)*1, for all n=0,N. A Lagrangian formalism issed
in the minimization of the functional(p) because the
estimated dependent variablg(p) appearing in such

functional J(p) needs to satisfy a constraint, which is the
solution of the discrete direct problem. In ordeiderive
the adjoint problem, the governing equation of direct
problem, is therefore multiplied by the Lagrange
multiplier, integrated in the space and time dormaf
interest and added to the original cost functickp). The
following LagrangiarlL on these discrete quantities is:
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L(pw,g)=Lpt,...pN Wi, W 9Y2 .. N2
R e —
ﬁparameterp variablesw adjoint variablesg E
N

= Z(Tr: ~o"f
+ z<¢n+u2,"vm_Wn - f(w”)— (af )(Wﬂ )(Wn+1 W )>

At
(14)

Differentiating the LagrangiarL with first order
sensitivity variations, computingd. as function of
dp,dw, 3¢, the variations ofd with respect todw are

cancelled with an adequate choice of the adjoatesp .

It leads to the discrete adjoint sysfémin @" 2

unknown,n going backward from N to O,

g — g2 = dft (Wn—1)¢n—1/2

At
+ [(d f )(W” )(W”+1 -w" )]¢ Mz g 2(T,Q -an )2 At (15)

wh2 =0 N>n=0

With this particular choice off , the gradient of the cost
function is simply obtained by :

_d)_aL

=—=—
op 0p

(16)

Note that that(dzf)(w") is a tensor of dimension
(K+1)*(K+1)*(K+1), and [[d®f fw" Jw™ -w")| is a
square matrix (K+1)*(K+1). We note also that th¢oau
problem involves final conditions given instead tbk
initial conditions (direct problem): it has to be
numerically solved by integrating backward in tiae a
terminal value problem. The final condition, notalkd
here, simply results from the differentiation ofiJ1

The variations of A function of Jp leads to the
expression of the discrete gradients:

0 '\ arz _OF (N _0df (Y
ap-;<¢ 2 -3 )2 fr o w)>
@an

Note that(;i(wn) is a tensor (K+1)*N,aaﬂ (w“) is a
p Y

0J
tensor (K+1)*(K+1)*N, 6_ is a vector 1*N. It can be
p

and adjoint discrete quantities. We won’t get intore
detailed expressions, because the exact devel@pets t
are quite complex and too big to be described hbiee,
point being the method main principles and the
corresponding applications.

Optimization Minimization algorithm

Once the gradient of cost function is computed, we
can now apply an iterative inverse procedure migiimgj
J(p) to obtain an estimation of the unknown parameter

optimal function p,, . We will use the combination of a

gradient steepest descent method at the beginning o
minimization and a Quasi Newton method to finisk th
minimization.

The basic idea of the gradient Steepest Descent
Method? is to move downwards on the objective function
J(p) along the direction of highest variation, in order
locate its minimum value. Therefore, the directioh
descent is given by the gradient direction, sirids the
one that gives the fastest increase of the obgctiv
function. Usually the steepest-descent methodssteith
large variations in the objective function and gaaitial
exploration steps, but, as the minimum value iched,
the convergence rate becomes very low. The algorih
(18):

* P =q, isthe initial guess parameter, andhe

number of the optimizer iteration has the value iap
being the maximum number of optimizer iteration.

aJ
e dp = 6_ gives the descent direction
Qr

¢ p:qr+1:qr +/’[rdr
updating with the descent coefficient/, chosen to

satisfy the steepest descent of the J(q) cost ifumct
:ur = Inf,u ‘](qr _ﬂdr)'

When steepest gradient method does not converge any
more, the idea is to pursue the optimization preedth a
second order Quasi Newton metfibi which has a
strong local convergence. In these types of methibas
Hessian second derivative matrix is approximateslich
a way that it does not involve the computation a$tty
second derivatives. Usually, the approximations tfo
Hessian are based on first derivatives (gradieguts) it
accelerates the convergence locally.

Starting with an initial guess for the estimated

parametep = (|,, and with an initial matrixH 51 which

is an approximation for the inverse of the Hessian,
Quasi-Newton Broyden Fletcher Goldfarb Shanno
(BFGS) optimizer is used to update the parametkreva

- - 4
p=q, atthe optimizer step, and the value ofH ",

leads to p parameter

showr?® that gradients appeared as combination of direct until the number of total stepsop of the optimizer is

6

40th AIAA Thermophysics Conference, Seattle, USA
23 - 26 June 2008



V.

reached. We stops the process before if an optipggll

parameter is found, which causes the gradientsanist

(at least a local minimum of J(p)). The BFGS althoni is

the following (19):

* p=q,H, =H,, are the initial guess parameter and
Hessian, r is again the current step of optimizer
andNopthe total number of optimizer iterations.

-1 4
« dy = —Hrla— gives the descent direction
Qr

_ AN
* Hr=Hiq+2 %25,
r-1

updates the Hessian approximated matrix, with z a
function not explicited here
P=0,, =ar - 4 dy allows the parameter updating

'Hr—l

with the descent coefficienf chosen to satisfy the
steepest descent of theJ(g) cost function

Y, = Inf, (g, -4, ).

I nver se problem computation using automatic
differentiation

To compute numerically the adjoint and gradient
discrete quantities for the inverse problem in heat
convection coefficient, we have also used the Auattien
Differentiation (AD) engine tool, Tapenade, develdmat
INRIA Sophia-Antipolis by the Tropics tedf
Automatic differentiation is a family of techniquésr
computing the derivatives of a function defined &y
computer program (interpreted as computing
mathematical function, including arbitrarily comple
simulation codes), for sensitivity and gradient lgsia
applicationd®®’. The new program obtained is called the
differentiated program. Automatic differentiationitkv
adjoint models and gradients computations are uised
many fields of science such as pioneering work in
meteorology’“°

The derivatives of the instructions of a program
(elemental operations) are combined according ® th
chain rule of differential calculus, leading to th&o
major modes of computing derivatives with AD, tle s
called forward (tangent-linear) mode and reverse
(cotangent-linear or adjoint) mode.

e The forward mode uses directional derivatives on
a given direction vector in the input space (tatgen
approach. It is appropriate to derive functionshvatmall
numbers of independent variables (input).

¢« The reverse mode uses derivatives starting with
the dependent variables (output) and proceedingriw
the independent variables (input), and it is coragun

7

a

the reverse of the original program's order. It is
appropriate for functions with small numbers of
dependent variables (output) and lots of input

independent variables. The reverse mode of automati
differentiation is functionally equivalent to hamditten
discrete adjoint codes.

The implementation of robust and effective automati
differentiation tools requires advances in compiler
technology, graph algorithms, and automatic
differentiation theory, and compared with other noels
to compute adjoint and gradients, automatic
differentiation offers a number of advantages:

« Accuracy: unlike finite difference approximations
derivatives computed via automatic differentiatetibit
no truncation error.

¢ Reduced software costs: automatic differentiation
eliminates the time spent developing and debugging
derivative code by hand, or experimenting with sizes
for finite difference approximations.

We have applied these techniques to our inverse
thermal problem, considering that the flow of instions
in the direct program (Monopyro direct code), cam b
schematically represented as sequential instruction
(Inst)”+1to compute the direct state variableS™ given

the parametep

w™? = (Inst)™ [w” W
(20)
(Inst)n+1are discrete functions (that could be non

linear functions, recursive functions or interpetht
tabulated functions) of discrete temperature anétiain
variables. The final output of the program is thecikte

cost function J(p) = J(W(p)):J((\AIl,...,WN)(p))- The
adjoint code in ¢ variables is built by automatic
backward differentiation of the outpu versus W

direct state variables, following and analyzing fllogv of
instructions in the direct program, and the depaodg in

W. The gradient computation ofJ(p) versus p
parameter is built by automatic backward differatidin

of the outputJ(p) versus p parameter, also following
the flow of instructions in the direct program and
analyzing the flow dependences . It can be shown
again that the gradient result depends on Whdirect
state variable and th@ adjoint state variable.

V. Numerical results

We now present some applications of inverse problem
of the estimation of time domain surface heat cotiva
coefficient for thermally degradable material, ororze-
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dimensional slab of thickness e, by using time dama

temperature measurements taken below the boundary

surface, at a given thermocouple position, durirtgre
interval. As mentionned before, the inverse probiem
formulated as a minimization problem involving an
objective functional, through an optimization looye
start the minimization loop by an initial guess on
convection coefficient and try to restitute the
measurements. In all the following curve resulgelals,
INI stands for initial guess of the convection dméént,
NUM for reconstruction obtained at the end of
optimization process, and OBS for the referencatswi

of the convection coefficient (when this targettedult is
known) or for the corresponding measurements, ioput

inverse method. The final time is denotedtl?y

We first
measurements:

define two test configurations on

Theses tests have been realised to address tHermrob
of fluxes identification on a carbon/resin materidb
ensure the method, we first tried to examine tifieced of
pyrolysis (test 1) and ablation (test 2) separatbign we
worked on the real ablating and pyrolysing mate(tiest
3), then we applied the new method to operationasés,
such as the quite well known ARD (Atmospheric Reent
Demonstrator, test 4 with a different material:saiasil),
or the more relevant arc plasma torch test on the
considered carbon/resin material, where the fluaes
very high and the flow conditions better known and
where some fluxmeters measurements are also akeailab
(test 5).

Test 1 : Identification of virgin_material : without

+ Synthetic measurements: the estimated temperaturesablation , x0=1.3 mm

are obtained from the solution of the direct prahldy
using a given well known convection coefficiea()(t).
We want to restitute by inversion this coefficient.

We use synthetic data (errorless measurements). We
start (INl) with a bad initial guess half value of
convection coefficient, with sharp discontinuityigF1

* Noise measurements : the measurements may contairshows a good agreement for the reconstruction (NoiM)

random errors, which are assumed here to be
o additive, uncorrelated, normally distributed, with
zero mean and known standard deviation (2%)
o additive, uncorrelated, uniformally distributed,
with zero mean and known standard deviation (5%)

Here, we want to see the effect of adding thisentis
synthetic measurements on the reconstruction of

convection coefficientr, (t) in order to test the stability
and robustness of the inverse method.

Moreover, we define now two similar
estimators for inverse problem :

quality

e A good estimator for the quality of restitution of
temperature measurements is the RMBor: Root Mean

Square error between ttﬁf] measured temperature and
the reconstructed temperatufeopt,, at sensor m, for

the optimal inverse solutiof,, :

5 o e
) N

RMS = EQM = (21)

« A good estimator for the quality of
restitution/identification of convection coefficiems the

RMS, error between the referenc&, convection

coefficient and the reconstructed optinfaj :

8
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the convection coefficient, compared to the refeeen
convection coefficient (OBS), with the inverse code
developed in section Il (“hand computed” gradieatsl
adjoints), except near the final time. The RMS eop
the flux is 0.04.

25~

NUM
- - — - 0BS
NI

CONVECTION COEFFICIENT

s L | - |
400 600 800 1000

TIME ITERATION

0 200

Figurel. Test 1: Flux Identification of virgin
material : without ablation , x0=1.3 mm

The results shown in Fig. 2 were obtained with the
inverse code developed in section IV (Automatic
Differentiation tool was used) and are very correxi.
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Near final time, the value of the estimated fluxs vary
little influence on the temperature in the materéal x0.
Even if the flux is worse evaluated at the end,itheact
on the corresponding solution is not visible.

25

NUM
- - — - OBS
INI

CONVECTION COEFFICIENT

L n | I | - |
400 600 800 1000

TIME ITERATION

0 200

Figure2. Test 1: Flux Identification of virgin
material : without ablation, x0=1.3 mm
Automatic Differentiation tool

Fig. 3 shows that the RMS error on temperature
obtained at the end of optimization process (atSoguthe
Automatic Differentiation tool), is very low (0.01and
we can observe the change in optimizer (iteratiép 2
switching from gradient steepest descent at thinhet,
to Quasi Newton after. The gain in convergence is
promising, after 60 optimizer iterations.

. . . 1 . . 1 . . 1
0 20 40 60

OPTIMIZER ITERATION

9

Figure3. Test 1: Temperature RMSerror
Virgin material : without ablation , x0=1.3 mm
Automatic Differentiation tool

Test 2 : ldentification of High Flux with ablation,
Carbon/Resin material , x0=2.6 mm

It is a quite difficult test case, with high fluxda Fig.
4, a good agreement in the reconstructed convection
coefficient value is obtained, except at final tjnvgth
initial half guess and using synthetic data (eessl
measurements). The RMS error on the flux is 0.06.

NUM
— - — - OBS
NI

CONVECTION COEFFICIENT

| - |
800 1000

-
600
TIME ITERATION

0 200 400

Figured4. Test 2: Identification of High Flux with
ablation, x0=2.6 mm

Fig. 5 shows that the RMS error on measured
temperature obtained at the end of optimizatiorcgss is
very low (0.7), after 70 optimizer iterations.

40th AIAA Thermophysics Conference, Seattle, USA
23 - 26 June 2008



10° =

20 40

OPTIMIZER ITERATION

60

NUM
— - — - OBS
NI

CONVECTION COEFFICIENT

- | - n | - |
0 200 400 600 800 1000
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Figureb. Test 2: RMSerror on temperature:

with ablation , x0=2.6 mm

Figure7. Test 2: Identification of High Flux with
ablation, 5% uniform noise, x0=2.6 mm

Fig. 6 shows results in the convection coefficient Test 3 : Identification of High Flux with ablation and
initial half of the value, additive, pyrolysis, Carbon/Resin material x0=4.2 mm
uncorrelated, normally distributed, zero mean amavkn

standard deviation (2%) noise.

obtained, with

flux is 0.105, which is satisfactory.

The RMS error om th

We now examine the present inverse analysis
approach for a difficult test case, with high flaxe

— n )
U‘ N o @ o
™ T T T ™

CONVECTION COEFFICIENT
T

05

- - — - 0BS

NUM

L L L L
400 600
TIME ITERATION

L
800

1
1000

ablation, pyrolysis, and deep thermocouples lonatind
synthetic measurements on a “real” material.

Successful results are obtained in the reconsttucte
convection coefficient and displayed on Fig. 8,hwé
RMS error on the flux of 0.07.

25~
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- - — - 0BS
NI

Figure 6. Test 2: Identification of High Flux with:
with ablation 2% normal noise, x0=2.6 mm

Fig. 7 shows results in the convection coefficient
initial half of the value, additive,

obtained, with

CONVECTION COEFFICIENT

L L 1 L L 1 L L 1
0 200 400 600 800 1000
TIME ITERATION

uncorrelated, uniformally distributed, zero meand an
known standard deviation (5%) noise. The RMS eoror Figure8. Test 3: Identification of High Flux with

the flux is 0.125.

ablation and pyrolysis, x0=4.2 mm
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Fig. 9 shows that the RMS error on temperaturéat t
sensors obtained at the end of optimization prodgss
very low (0.9), after 75 optimizer iterations.

L n 1 n n 1 n n n 1 n L n 1
0 20 40 60 80

OPTIMIZER ITERATION

Figure9. Test 3: Temperature RMSerror
High Flux with ablation and pyrolysis, x0=4.2 mm

Test 4: ARD Test case

We now examine the present inverse analysis

approach for the ARD flight test case. The Atmosjghe
Reentry Demonstrator (ARD) was a suborbital reentry
test flown on the third Ariane 5 flight. ARD wasuleched
in october 1998 from Kourou, French Guyana, by an
Ariane 5 and splashed down 1 hour 41 min. afteffifit
was recovered and transported in EADS Astrium
Aquitaine plant for expertise. More than 200 diéfierr
parameters were recorded during flight. After ARD
recovery, a preliminary analysis of recorded data leen
performed.

A picture of the recuperation of the capsule isegiv
on Fig. 10. The heat shield (Fig. 11) has been rtispe
(Fig. 12) after the flight.

Figure 10. ARD Ianding

11

Figre 12. AD thermooil

Successful results are obtained in the reconsiuct
flux (Fig. 13), which are very similar to those aioted
before (see Fig. 14 ard).
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Figure 13.

ARD heat flux restitution
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Thermocoil TO : Heat Flux restitution
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Figure14. ARD post flight analysis: heat fluxes,

courtesy of %

Test 5: Operational test case (Plasma Jet case)

This case has been investigated to improve the
robustness on an industrial problem where many
experimental data were available. The industrial
applications are straight forward. The plasma geility
of the Astrium’s Aquitaine plant is shown on Figh,1
with the schematic principal of a plasma torch. The
experimental test facility uses four coupled plasarahs.

NG CHAMBER

COOLED
TLECTROMAGNETIC

SWIRLING AIR INJECTION

TLECTRICAL POWER CHAUBTR STARTER ELECTROCE FLASMA

UPSTREAM
COOLNG

DOWNSTREAN
UFSTREAM INSULATOR  COOLNG

RECTRCOR

DOWNSTREAN
ELECTRODE

Figure 15. Plasma jet facility

o ELECTRICAL
POWER
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We show Fig. 16 the sensibility to the inverse
convection coefficient problem, for two differenmtitial
guess on the flux. The temperature restitutionshasvn
Fig. 17, are very similar at the sensors, for thige
different solutions.
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Figure16. Test 5Fluxidentification
Plasma Jet test case - Two different initial guess

2000

NUM1
NUM2
— — — - OBS

1500

T(K)

1000

500

-
1000
TIME ITERATION

Figurel7. Test 5 Temperature Restitution
Plasma Jet test case - Two different initial guess
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V1. Conclusion

Motivated by atmospheric re-entry of aerospace
vehicles and Thermal Protection System dimensioning
problems, this article is concerned with inversalgses
of highly dynamical heat fluxes. It addresses thesise
problem of using temperature measurements to egtima
the heat flux convection coefficient, at the suefaaf
ablating materials.

The inverse problem is formulated as a minimization
problem involving a least square problem functipnal
through an optimization loop. An optimal control
formulation  (Lagrangian, adjoint and gradient
computations) is then applied and developed, usimg
inverse software Monopyro which was developed at
EADS Astrium-ST Les Mureaux, and which is a transie
one-dimensional thermal code, with ablative surfand
Gear integration scheme.

Several validation test cases, using syntheticsynoi
on-ground and in-flight data temperatures measunéne
are carried out, by applying the results of the
minimization algorithm. Main results are:

Validity of the inverse formulation for the
description of the temperature and ablation
variables evolution

Improvement by using a combined gradient
steepest descent method at the beginning of
minimization process and Quasi Newton method
to finish the minimization,

Convection coefficient restitution has been
improved for hard cases (with great ablation) for
fluxes functions containing sharp corners and
discontinuities,

Successful test case on carbon/resin material with
high heat fluxes and large magnitudes, ablation
including pyrolysis effects, and opartional data,
Encouraging results with an  automatic
differentiation tool are also obtained, without

ablation
Future works have to be done on the:
¢ Robustness to initial guess, sensitivity to

measurements, number and position of sensors,
and application of regularization methods to
stabilize noise errors on measurements,
Implementation of the automatic differentiation
tool to generate the inverse code,

Thermal model uncertainties influences on the
accuracy of extracted flight heat flux, athermanous
enthalpy identification,

Validations on aerothermal flight measurements.
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