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Petrov-Galerkin Finite Volumes

For an elliptic problem with two space dimensions, we propose to formu-
late the finite volume method with the help of Petrov-Galerkin mixed finite
elementsthat are based on the building of a dual Raviart-Thomas basis.

Pour un problème elliptique bidimensionnel, nous proposons de formuler la
méthode des volumes finis avec des éléments finis mixtes de Petrov-Galerkin qui
s’appuient sur la construction d’une base duale de Raviart-Thomas.
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Introduction

• Let Ω be a bidimensional bounded convex domain in IR2 with a polygonal boundary
∂Ω. We consider the homogeneous Dirichlet problem for the Laplace operator in the domain
Ω :

(1) −∆u = f in Ω , u = 0 on the boundary ∂Ω of Ω.

We suppose that the datum f belongs to the space L2(Ω). We introduce the momentum
p defined by

(2) p = ∇u .

Taking the divergence of both terms arising in equation (2), taking into account the relation
(1), we observe that the divergence of momentum p belongs to the space L2(Ω). For this
reason, we introduce the vectorial Sobolev space

H(div, Ω) =
{

q ∈ L2(Ω) × L2(Ω) , div q ∈ L2(Ω)
}

.

• The variational formulation of the problem (1) with the help of the pair ξ = (u, p) is
obtained by testing the definition (2) against a vector valued function q and integrating by
parts. With the help of the boundary condition, it comes :

(p, q) + (u, div q) = 0, ∀ q ∈ H(div, Ω).
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Introduction (ii)

Independently, the relations (1), and (2) are integrated on the domain Ω after multiplying
by a scalar valued function v ∈ L2(Ω) . We obtain :

(div p, v) + (f, v) = 0, ∀ v ∈ L2(Ω).

The “mixed” variational formulation is obtained by introducing the product space V defined
as

V = L2(Ω) × H(div, Ω), ‖ (u, p) ‖2
V ≡‖ u ‖2

0 + ‖ p ‖2
0 + ‖ div p ‖2

0,

the following bilinear form γ(•, •) defined on V × V :

(3) γ
(

(u, p), (v, q)
)

= (p, q) + (u, div q) + (div p, v)

and the linear form σ(•) defined on V according to : < σ, ζ > = −(f, v), ζ = (v, q) ∈ V.
Then the Dirichlet problem (1) takes the form :

(4) ξ ∈ V , γ(ξ, ζ) = < σ, ζ > , ∀ ζ ∈ V .

Due to classical inf-sup conditions introduced by Babuška in 1971, the problem (4) admits
a unique solution ξ ∈ V .



5

Mixed Finite Elements

• We introduce a mesh T that is a bidimensional cellular complex composed in our case
by triangular elements K (K ∈ ET ), straight edges a (a ∈ AT ) and ponctual nodes
S (S ∈ ST ). We conside also classical finite dimensional spaces L2

T (Ω) and HT (div, Ω)
that approximate respectively the spaces L2(Ω) and H(div, Ω). A scalar valued function
v ∈ L2

T (Ω) is constant in each triangle K of the mesh :

L2
T (Ω) =

{

v : Ω −→ IR, ∀K ∈ ET , ∃ vK ∈ IR, ∀x ∈ K, v(x) = vK

}

.

A vector valued function q ∈ HT (div, Ω) is a linear combination of Raviart-Thomas (1977)
basis functions ϕa of lower degree, defined for each edge a ∈ AT as follows.
• Let a ∈ AT be an internal edge of the mesh, denote by S and N the two vertices that
compose its boundary (see Figure 1) : ∂a = {S, N } and by K and L the two elements
that compose its co-boundary ∂ca ≡ {K, L } in such a way that the normal direction n

is oriented from K towards L and that the pair of vectors (n,
−→
SN) is direct, as shown

on Figure 1. We denote by W (respectively by E) the third vertex of the triangle K

(respectively of the triangle L) : K = (S, N, W ), L = (N, S, E).
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Mixed Finite Elements (ii)
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Figure 1. Co-boundary (K, L) of the edge a = (S, N).

The vector valued Raviart-Thomas basis function ϕa is defined by the relations ϕa(x) =
1

2|K| (x−W ) when x ∈ K, ϕa(x) = − 1
2|L| (x−E) when x ∈ L and ϕa(x) = 0 elsewhere.

When the edge a is on the boundary ∂Ω, we suppose that the normal n points towards
the exterior of the domain, so the element L is absent. We have in all cases the H(div, Ω)
conformity : ϕa ∈ H(div, Ω) and the degrees of freedom are the fluxes of vector field ϕa

for all the edges of the mesh :
∫

b
ϕa •n dγ = δa, b, ∀ a, b ∈ AT . A vector valued function

q ∈ HT (div, Ω) is a linear combination of the basis functions ϕa : q =
∑

a∈AT
qa ϕa ∈

HT (div, Ω) = < ϕb , b ∈ AT > .
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Mixed Finite Elements (iii)

• The mixed finite element method consist in choosing as discrete linear space the following
product :

VT = L2
T (Ω) × HT (div, Ω)

and to replace the letter V by VT inside the variational formulation (4) :

ξT ∈ VT , γ(ξT , ζ) = < σ, ζ >, ∀ ζ ∈ VT .

In other terms

(5)







uT ∈ L2
T (Ω) , pT ∈ HT (div, Ω)

(pT , q) + (uT , div q) = 0 , ∀ q ∈ HT (div, Ω)
(div pT , v) + (f , v) = 0 , ∀ v ∈ L2

T (Ω) .

The numerical analysis of the relations between the continuous problem (1) and the discrete
problem (5) as the mesh T is more and more refined is classical [Raviart-Thomas, 1977].
The above method is popular in the context of petroleum and nuclear industries but suffers
from the fact that the associated linear system is quite difficult to solve from a practical
point of view. The introduction of supplementary Lagrange multipliers by Brezzi, Douglas
and Marini (1985) allows a simplification of these algebraic aspects, and their interpretation
by Croisille in the context of box schemes (2000) gives a good mathematical foundation of
a popular numerical method.
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Finite Volumes

• From a theoretical and practical point of view, the resolution of the linear system (5)
can be conducted as follows. We introduce the mass-matrix Ma, b = (ϕa, ϕb), a, b ∈ AT

associated with the Raviart-Thomas vector valued functions. Then the first equation of (5)
determines the momentum pT =

∑

a∈AT
pT,a ϕa as a function of the mean values uT,K

for K ∈ ET :

(6) pT,a = −
∑

b∈AT

(

M−1
)

a, b

∑

K ∈ET

uT,K

∫

K

div ϕb dx .

The representation (6) suffers at our opinion form a major defect : due to the fact that the
matrix M−1 is full, the discrete gradient pT is a global function of the mean values uT,K

and this property contradicts the mathematical foundations of the derivation operator to be
linear and local. An a posteriori correction of this defect has been proposed by Baranger,
Mâıtre and Oudin (1996) : with an appropriate numerical integration of the mass matrix
M, it is possible to lump it and the discrete gradient in the direction n of the edge a is
represented by a formula of the type :

(7) pT,a =
uT,L − uT,K

ha

with the notations of Figure 1.
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Finite Volumes (ii)

• The substitution of the relation (7) inside the second equation of the formulation (5)
conducts to a variant of the so-called finite volume method. In an analogous manner, the
family of finite volume schemes proposed by Herbin (1995) suppose a priori that the discrete
gradient in the normal direction admits a representation of the form (7). Nevertheless, the

intuition is not correctly satisfied by a scheme such that (7). The finite difference
uT,L−uT,K

ha

wish to be a a good approximation of the gradient pT = ∇uT in the direction
−→
KL whereas

the coefficient pT,a is an approximation of
∫

a ∇uT •n dτ in the normal direction (see again
the Figure 1). When the mesh T is composed by general triangles, this approximation is not
completely satisfactory and contains a real limitation of these variants of the finite volume
method at our opinion.



10

Finite Volumes (iii)

• In fact, the finite volume method for the approximation of the diffusion operator has
been first proposed from empirical considerations. Following e.g. Noh (1964) and Patankar
(1980), the idea is to represent the normal interface gradient

∫

a ∇uT •n dτ as a function
of neighbouring values. Given an edge a, a vicinity V(a) is first determined in order to
represent the normal gradient pT,a =

∫

a ∇uT •n dτ with a formula of the type

(8)

∫

a
∇uT •n dτ =

∑

K∈V(a)

ga,K uT,K .

Then the conservation equation div p + f = 0 is integrated inside each cell K ∈ ET is
order to determine an equation for the mean values uT,K for all K ∈ ET . The difficulties
of such approches have been presented by Kershaw (1981) and a variant of such scheme has
been first analysed by Coudière, Vila and Villedieu (1999). The key remark that we have
done with F. Arnoux (see Du89), also observed by Faille, Gallouët and Herbin (1991) is that
the representation (8) must be exact for linear functions uT . We took this remark as a
starting point for our tridimensional finite volume scheme proposed in 1992. It is also an
essential hypothesis for the result proposed by Coudière, Vila and Villedieu.
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Finite volumes as mixed Petrov-Galerkin finite elements

• In this contribution, we propose to discretize the variational problem (4) with the Petrov-
Galerkin mixed finite element method, first introduced by Thomas and Trujillo (1999). In
the way we have proposed in 2000, the idea is to construct a discrete functional space
H?

T (div, Ω) generated by vectorial functions ϕ?
a, a ∈ AT , that are conforming in the space

H(div, Ω) : ϕ?
a ∈ H(div, Ω) and to represent exactly the dual basis of the family {ϕb, b ∈

AT } with the L2 scalar product :

( ϕa , ϕ?
b ) = δa, b, ∀ a, b ∈ AT .

Then H?
T (div, Ω) = < ϕ?

b , b ∈ AT > . The mixed Petrov-Galerkin mixed finite element
method consists just in replacing the space HT (div, Ω) by the dual space H?

T (div, Ω) for
test functions in the first equation of discrete formulation (5). We obtain by doing this
the so-called Petrov-Galerkin finite volume scheme :

(9)







uT ∈ L2
T (Ω) , pT ∈ HT (div, Ω)

(pT , q) + (uT , div q) = 0 , ∀ q ∈ H?
T (div, Ω)

(div pT , v) + (f , v) = 0 , ∀ v ∈ L2
T (Ω) .

We introduce a compact form of the previous mixed Petrov-Galerkin formulation with the
help of the product space V ?

T defined by V ?
T = L2

T (Ω) × H?
T (div, Ω). Then the discrete

variational formulation (9) admits the form :

ξT ∈ VT , γ(ξT , ζ) = < σ, ζ >, ∀ ζ ∈ V ?
T .



12

Stability analysis

• We suppose in the following that the mesh T is a bidimensional cellular complex
composed by triangles as proposed in the previous sections. Following the work of Ciarlet
and Raviart (1972), for any element K ∈ ET we denote by hK the diameter of the triangle
K and by ρK the diameter of the inscripted ball inside K. We suppose that the mesh T
belongs to a family Uθ (θ > 0) of meshes defined by the condition T ∈ Uθ ⇐⇒ ∀K ∈
ET , hK

ρK
≤ θ. We suppose also that the dual space HT (div, Ω) constructed by the previous

conditions satisfies the following hypothesis.
Hypothesis 1. Interpolation operator HT (div, Ω) −→ H?

T (div, Ω) . We suppose
that the mesh T belongs to the family Uθ. Let HT (div, Ω) 3 q 7−→ Π q ∈ HT (div, Ω)

be the mapping defined by the condition Π
(

∑

a∈AT
qa ϕa

)

=
∑

a∈AT
qa ϕ?

a ,
∑

a∈AT
qa ϕa ∈ H?

T (div, Ω). We suppose that the dual basis ϕ?
a is constructed in such

a way that there exists strictly positive constants A, B, D, E that only depends on the
parameter θ such that we have the following estimations :

A ‖ q ‖2
0 ≤ ( q , Π q ) , ∀ q ∈ HT (div, Ω)

‖ Π q ‖0 ≤ B ‖ q ‖0 , ∀ q ∈ HT (div, Ω)
‖ div Π q ‖0 ≤ D ‖ div q ‖0 , ∀ q ∈ HT (div, Ω)
( div q , div Π q ) ≥ E ‖ div q ‖2

0 , ∀ q ∈ HT (div, Ω) .
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Stability analysis (ii)

Proposition 1. Technical lemma about lifting of scalar fields. Let θ be a strictly
positive parameter. We suppose that the dual Raviart-Thomas basis satisfies the Hypothesis
1. Then there exists some strictly positive constant F that only depends on the parameter
θ such that for any mesh T that belongs to the family Uθ and for any scalar field u constant
in each element K ∈ ET (u ∈ L2

T (Ω)), there exists some vector field q ∈ HT (div, Ω)
such that ‖ q ‖H(div, Ω) ≤ F ‖ u ‖0 and ( u , div q ) ≥‖ u ‖2

0 .

Proposition 2 Discrete stability. Let θ be a strictly positive parameter. We suppose
that the dual Raviart-Thomas basis satisfies the Hypothesis 1. Then we have the following
discrete stability for the Petrov-Galerkin mixed formulation (9) :

∃β > 0 , ∀ T ∈ Uθ, ∀ ξ ∈ VT such that ‖ ξ ‖V = 1, ∃ η ∈ V ?
T , ‖ ζ ‖V ≤ 1 , γ(ξ, ζ) ≥ β,

with γ(•, •) defined at the relation (3) and β chosen such that
√

1 −
B + 2D

A
β − β2 ≥

(

1 + F
(

1 +

√

B + 2A

A

)

)

√

β.
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Stability analysis (iii)

Theorem 1 Optimal error estimate. Let Ω be a two-dimensional open convex domain
of IR2 with a polygonal boundary, u ∈ H2(Ω) be the solution of the problem (1) considered
under variational formulation and p = ∇u be the associated momentum. Let θ be a
strictly positive parameter and Uθ a family of meshes T that satisfy the Hypothesis 1. Let
ξ ≡ (uT , pT ) ∈ VT be the solution of the discrete problem (9). Then there exists some
constant C > 0 that only depends on the parameter θ such that

‖ u − uT ‖0 + ‖ p − pT ‖H(div, Ω) ≤ C hT ‖ f ‖0 .
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Towards a first Petrov-Galerkin finite volume scheme
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Figure 2. Support V(SN) of the dual Raviart-Thomas basis function ϕ?
SN.
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Towards a first Petrov-Galerkin finite volume scheme (ii)

Theorem 2 We suppose that the internal edge a links the two vertices S and N (see
the Figure where a = SN, O is the middle of SN and n is the associated normal di-
rection), if the support of the dual Raviart-Thomas basis function ϕ?

SN is the vicinity
V(a) = {K, L, M, P, Q, R} of the edge a composed by six triangles presented on Figure
2 and if the divergence of the dual Raviart-Thomas basis function is equal to a constant
field in each triangle of V(a) (div ϕ?

SN ∈ L2
T (Ω)), then the five mean flux values

η ≡

∫

SN

ϕ?
SN •n dτ, α ≡

∫

EN
ϕ?

SN •nEN dτ , β ≡
∫

WN
ϕ?

SN •nWN dτ ,

γ ≡

∫

WS

ϕ?
SN •nWS dτ and δ ≡

∫

SE
ϕ?

SN •nSE dτ

satisfy the following three scalar constraints :

(10) η
−→
KL + α

−→
LM + β

−→
PK + γ

−→
QK + δ

−→
LR = |

−→
SN | n

(11) α
−→
LM•

−−→
WA + β

−→
PK•

−→
EB + γ

−→
QK•

−→
EC + δ

−→
LR•

−−→
WD = −3 |

−→
SN | n•

(−→
OL +

−→
OK

)

.
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Towards a first Petrov-Galerkin finite volume scheme (iii)

• The finite volume approach is then obtained in the spirit of (8) with a six point scheme
for the mean gradient in the normal direction thanks to the first equation of the mixed
variational formulation (9) :

(12)

∫

SN

∇uT •n dτ = η(uL−uK) + α(uM−uL) + β(uK−uP) + γ(uK−uQ) + δ(uR−uL).

We remark that the constraints (10) express that the relation (12) is exact if the field uT

is an affine function. Taking into account the fact that we have five parameters for the
definition of the finite volume scheme (relation (12)) and only three constraints (relations
(10) and (11)) for these parameters, the stability seems a reasonable goal, even if the problem
remains essentially open for general triangular meshes.

• Début d’implémentation en cours en juin 2002 avec le stage de DEA de Sophie Borel
au CEA de Saclay, en collaboration avec Christophe Lepottier.


