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Introduction

Quasi-1D and 2D axisymmetric results concerning test case VIIL.2 are presented.

The 2D Euler equations for a mixture of fluids in thermochemical nonequilibrium
are solved by a time stepping procedure, which is described in Section 1. The
unknowns considered are the complete set of conservative variables p;, pu, pv, pe,
and p;e?® which denote respectively the partial densities, the momentum in the
z and y directions, the total energy and the vibrational eneigies of each species.
Solutions are computed with a fully coupled approach : the source term due to
chemical and vibrational relaxation is dicretized with a linearized backward Euler
scheme during the same time interval as the flux terms which are treated with an
approximate Riemann solver for multicomponent flows [1].

In Section 2, the physical modelization and its implementation are presented. In
particular, a thorough vibrational relaxation model is outlined.

In Section 3, we will focus on our approach to the quasi-1D problem. The
originality of this approach lies in the geometrical modelization, which allows us to
obtain the solution by using the same 2D code as for the axisymmetric problem.

Numerical results are presented in Section 4

*Tel. 47 02 70 56, Fax. 47 02 80 35




1 Presentation of the Solver

An Unstructured Approach

The code is based on the MUSCL scheme proposed initially by Van Leer [2]
and the use of finite element type unstructured meshes. The computational domain
is divided into finite volumes K (non regular quadrangles) which satisly the usual
restrictions associated with finite element meshes. The finite volume formulation
requires the evaluation of a numerical flux at each cell interface. These numerical
fluxes are computed according to the second order accurate MUSCL approach (Van
Leer [2]). Since the mesh is unstructured, the evaluation of the gradients of the
conservative variables is carried out In a centered manner through a finite element
approach which is exact for quadratic polynomials in z and y. The nonlinear ex-
trapolation of the field ¢ towards the edges of the cell K generalizes the procedure
introduced by Van Leer {3]. The field ¢(K, f) at the cell edge f is extrapolated
between the centers z{K) of the cell K and z(f)} of the interface according to :

S(K, ) = $(K) + ol K, 8) - VH(K) - (a(f) — 2(K)) ,

where ¢(K) is the value of the field ¢ at the center of the cell and a(K, ¢) is a
parameter (Dubois and Michaux [4]) chosen as close to 1 as possible in order to
satisfy the following monotonicity condition :

max (¢(L) —¢(K)) < 2(4(K,f)—#(K)) < min (¢(L)—$(K)) ,VfeK
Lnetghboring K Lneighboring K
(L) < ¢(K) ¢(L) = ¢(K)

This limitation, which is a truly multidimensional version of the minmod limiter, is
applied in such a way that the local proportions of atoms are preserved.

The Approximate Riemann Solver

At each interface f, the exact solution of the Riemann problem between the
two adjacent states is replaced by an approximate solution. The rarefaction waves
present in the exact solution are replaced by shock waves, so that the problem now
consists in solving the intersection of the entire shock curves. Since only the shock
curves are required, this approach is more efficient than Godunov’s scheme [5]. This
idea was initially proposed by Collela and Glaz {6] for real gases.

This approximate Riemann solver preserves the positivity of the mass fractions
as well as the local proportions of atoms. Moreover, this approach defines a Roe-
type linearization [7] and its numerical complexity does not depend on the number
of species considered (see [1] for details concerning these properties).

Boundary Conditions

The different boundary conditions present in the numerical problem have been
derived by Dubois [8] for Osher’s scheme. They have been adapted to our approx-
imate Riemann solver which is based on a shock curve decomposition [1]. These
conditions are treated weakly by introducing an adequate external state in a Rie-
mann problem at the boundary.
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e At the wall, the external state consists in the mirror state (same thermody-
namical state, opposite normal velocity).

o At the inlet, the external state consists in the unique state which can be
connected by a shock and a contact surface to the internal state and whose
entropy and enthalpy are equal to those in the reservoir.

o At the outlet (which is supersonic when convergence is reached in this prob-
lem), two cases must be distinguished. If the internal state is subsonic, the
external state is the unique sonic point which can be connected by a shock
wave. Otherwise, a simple extrapolation is performed.

Implicit Scheme

This scheme is made implicit by evaluating only the first order terms in the
fluxes defined previously at the following time-step. This evaluation is obtained by
linearizing around the current time-step an extension of Roe’s approximate Riemann
solver for multicomponent flows [9]. The implicit step is solved by Jacobi iterations
applied to the block pentadiagonal matrix resulting from the unstructured quadran-
gular mesh.

2 Physical Aspects of the Problem
Vibrational Non-Equilibrium Model

Since chemical relaxation is prescribed, only the vibrational model is described
here. Kinetic theory is applied to a mixture of monoatomic and diatomic molecules
in order to derive a rigorous macroscopic equation corresponding to the relaxation
of vibrational energy :
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The first term on the right hand side of the relaxation equation is the classical
Landau-Teller term. The second term describes the Vibration-Vibration exchanges
between diatomic molecules in the mixture. In these expressions 7/} and 777 denote
respectively the relaxation times for Vibration-Translation and Vibration-Vibration
exchanges between molecules M; and M. These elementary times are determined
through an extension of the SSH theory [10] {11] to high temperatures.

The last texm of the relaxation equation accounts for the influence of chemustry
on vibrational relaxation. The quantities el and g}* 1epresent respectively the
average vibrational energy lost by dissociation or gained by recombination [12],

Finally, in a mixture in vibrational non-equilibrium, the chemical reaction rate
constants are in turn affected. These constants are related to their values at thermal
equilibrium by the relations :

K =V(T,TP")KITHT) and K35 = K57(T)
for the dissociation of molecule M; . A detailed expression of the vibrational fac-
tor V(T,T{™) as well as equivalent relations for exchange reactions may be found

in [13] [11)-

Implementation of Real Gas Effects

The thermodynamic properties of the species and the source terms which appear
in the governing equations are computed in a separate package [14] in such a way
that the computer code is completely independent of the physical and chemical
modeling. This package has been extended to take into account the vibrational
nonequilibrium and its coupling with the chemical kinetics. It can be used for any
reaction mechanism describing a gaseous mixture and in particular Park’s model [15]
for air.

Since the chemical and vibrational source terms are discretized with a linearized
backward Euler temporal scheme, their jacobians are required at each time step and
are evaluated numerically. This makes the treatment of the source terms compatible
with different modelizations and becomes necessary when considering sophisticated
models of vibrational nonequilibrium where these jacobians can no longer be deter-
mined algebraically.

'3 Geometrical Modelization of the Nozzle

A Quasi-1D Approach with a 2D Solver

The exact geometry of test case VIIL.2 is a conical axisymmetric convergent and
divergent nozzle of respective half-cone angles ¢ = 45° and © = 10°. The throat is
simply defined as the intersection of these cones. Its radius is of #, = 0.003 m and
the length of the divergent part is L = 1.13 m (Fig.1).

In the quasi-1D approach, the flow field depends only on the variation of the
nozzle’s section along the x-axis. Consequently, the previously defined nozzle and
any nozzle of rectangular section verifying the same section law admit the same
quasi-1D solution. In particular, we consider rectangular sections of dimensions

2y(x) and [ such that :
2y(z) I = 7r(z)?, (1)

where [ is a constant and r{z) = r, + z - tan © (Fig.1).
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Figure 1: Axisymmetric Nozzle.

In agreement with the quasi-1D approximation, this domain is discretized by
cells whose interfaces are perpendicular to the x-axis and cover the entire section
(Fig.2). Since the fluxes on the transverse walls parallel to the x-axis cancel out, the
quasi-1D solution can be obtained by a 2D computation in the z —y plane. This
domain will be 1eferred to as the computational domain '

Figure 2: Equivalent Nozzle in the Quasi-1D Approximation.

In order to maintain the quasi-1D flow assumption, the normal Mach number
M, at the walls of the computational domain must be limited to ensure that no cav-
itation occurs in the Riemann problem along this boundary. A perfect gas estimate
yields M,, = 1.5 . Let o(z) denote the angle of the walls with the x-axis. Since
we expect a maximum Mach number of M,,; == 11 at the outlef [16], the following
sufficient condition is required (Fig 3) :

M,
(L) € @max , Where @y, = arcsin ( ) .
jM_mtt

Furthermore, consistency with the quasi-1D approximation requires that cpmax
verify the small angle hypothesis.
From Eq.1 we deduce

d
tan a(z) = é = ? tan @ (r, + - tan ©),
which implies
t
I > lain, whete lpin = 7 L@ (ro+ L tan @) .
tan ooz
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Figure 3: Constraint on a(z).

Since {,,;, = 0.81 m , the value ! = 1.00 m has been chosen. :

The divergent part of the nozzle is discretized by 300 cells whose interfaces are
exponentially distributed along the x-axis in such a way that the step is of 5. 107" m
at the throat and of 1.25 1072 m at the outlet. Similarly, the convergent part is
discretized by 20 cells such that the step is of 5.4 107* m at the throat and of 4.
107 m at the inlet.

Meshes for the Axisymmetric Approach

The computational domain consits in this case of half of a symmetry plane of
the nozzle. In contrast with the geometry used for the quasi-1D problem, a smooth
throat shape has been adopted according to the later technical appendix. Solutions
have been obtained on two different meshes :

e a crude mesh with 60 cells in the axial direction and 10 cells m the radial
direction.

e a fine mesh with twice as many cells in each direction (120 x 20).

For both meshes, the cell interfaces are exponentially distributed along the x-
axis in such a way that the step is of respectively 2.6 107 m and 6.6 107" m at the
throat and of 6.0107% m and 4.6 107 m at the outlet. The convergent part of the
nozzle is discretized similarly. The curved part of the throat region is discretized
uniformly in the axial direction with respectively 2 and 8 cells.

4 Results

Test case VIIL2 has been considered with Park’s model [15] for chemical relax-
ation and the vibrational nonequilibrium model described previously for the diatomic
species O, and N,. Since the relaxation times of NO are very small [17], this species
has been assumed to be at thermodynamic equilibrium. Moreover, since the chemi-
cal kinetics model is not valid at low temperatures, chemistry has been frozen below

1000 K.



Numerical performances. The 1atio of the cells for the quasi-1D mesh de-
scribed above is of 2315, which is relatively severe. From the start, second order
accuracy was maintained for all computations A frozen solution, initialized with
the reservoir conditions at rest, was first computed. The supersonic outlet bound-
ary condition in this case acted as if the reservoir were emptying. The CFL during
this approach phase was typically of the order of 50 . At this point, the outlet
temperature of 154 K was to low to trigger vibrational non-equilibrium with our
model. Therefore, during 4000 iterations at a CFL of 5.0 , only chemical relaxation
was activated. This brought the outlet temperature up to 400 K. The complete
non-equilibrium model was then introduced and 3000 iterations at a CFL of 5.0, fol-
lowed by 5000 iterations at a CFL of 50.0 were performed. There was no noticeable
change in the solution during the last 2000 iterations. If we consider the logarithm
of the normalized L, residual norm starting from the frozen solution, more than four
orders of magnitude were lost (Fig.18).

This solution serves as an initial flowficld for the axisymmetric computation.
Again, on both the crude and the fine meshes, the spatially second order accurate
scheme is used from the start. Vibrational equilibrium is imposed during the early
stages of the computations. On the crude mesh, the L, residual norm drops by
almost five orders after 3000 iterations at a CFL of 3.0. Convergence was reached
on the fine mesh after 1200 iterations starting {rom the crude mesh solution. The
CPU performance is of aproximately 10 ms per iteration and per mesh cell on an
IBM 3090 scalar computer.

Comparison of the quasi-1D and 2D solutions. Iso-value contours of the
2D solution on the refined grid are presented in Figures 1 to 8. The quasi-1D plots
are compared to the profiles along the nozzle axis of the axisymmetric solutions for
both meshes in Figures 9 to 16. It appears clearly that the crude mesh is not fine
enough to obtain a satisfactory solution. Important discrepancies are particularly
visible on the entropy and mass flow rate curves (Fig.15,16). On the other hand, the
tefinement of the 2D grid leads to profiles along the x-axis which are very close to the
quasi-1D results. In fact, the iso-value contours show that the flow is almost conical.
The angular geometry of the throat in the quasi-1D case induces perturbations of
the mass flow rate only.

Physical features of the flowfield. The frozen Mach number reaches the
value of 11.93 at the outlet. The mass fractions of diatomic molecules freeze within
a distance of 10 cm from the throat. The mass flow rate is of respectively 1.920
Kg/s + 0.1 % and 1.940 Kg/s 4 0.05 % in the quasi-1D and 2D solutions.

The vibrational temperature of N, freezes at the relatively low level of 2070 K.
Oxygen, which has a smaller relaxation time than does Nitrogen, freezes further
downstream and drops to 827 K at the outlet while the transrotational temperature
is of 334 K at this point. Note that in our model, collisions between diatomic
molecules and open shell atoms are taken into account. These collisions are much
more efficient than the collisions between diatomic molecules. In the 1egion of the
throat vibrational equilibrium is then maintained thanks to the relatively high mass
fractions of monoatomic species (Fig.12,13)
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Figure 1: Frozen Mach Number. Min =4.197 107% ; Max = 11.93 .

-/

Figure 2: Trans-rotational Temperature. Min = 325.7 K; Max = 6494 K.

Figure 3: O Vibrafional Temperature. Min = 820.7 K; Max = 6494 K.

Figure 4: N, Vibrational Temperature. Min = 2063 K; Max = 6494 K.



Figure 5: Mass Fraction of Oy. Min = 0.0481; Max = 0.1827.

Figure 6: Mass Fraction of N, Min = 0.6803; Max = 0.7341.

Figure 7: Mass Fraction of NO. Min = 0.07041; Max = 0.1509.

Figure 8: Specific Entropy. As = 20 J/K/Kg. Min = 1693; Max = 2135,
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