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Introduction

OE’S approximate Riemann solver is very popular and

W\ enables easy upwinding for general computational fluid

dynamics (CFD) problems. The main drawback with this

method is that nonphysical expansion shocks can occur in the

vicinity of sonic points. We recall that Roe’s method! for the
general hyperbolic system of conservation laws

U FU)_ -
at ax )
consists in replacing the exact solution of local Riemann prob-
lems by the solution of the approximate linear hyperbolic

problem whose flux function is defined by
F(Uy, Ugir, UysFU)+ AU, U ) (U= Uy)
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between the grid points U, and Uy, . The matrix 4 (U,, U,) is
called a Roe-type linearization and is required to have the
following properties:

1) FU)-FU)=AWU,, U)-(U,-U)

2) AU, U)=dFU)

3) A(U;,U,) has real eigenvalues and a complete set of
eigenvectors.

In the sequel, we assume that system (1) is hyperbolic and
admits a Roe-type linearization. We also assume that U is an
m-column vector and that the flux function F(U) is a vector-
valued function of m components. Let r;(U/) and \;(U) denote
the eigenvectors and associated eigenvalues of the jacobian
dF(U). Similarly, let R;(U;,U,) and AR denote the eigenvectors
and associated eigenvalues of the matrix 4 (U;,U;).

There are several objections to the spreading devices classi-
cally used?? in order to cope with nonphysical solutions. In
both previous examples, the underlying idea is to give an a
priori representation of the solution. We present a new ap-
proach based on a nonlinear modification of the flux function.

Definition of the Modified Flux Function

Since problems occur at sonic points, we decide to modify
FR only at sonic points. Let w; denote the characteristic vari-

ables
m
U-U =Y wRi(U,U,)
j=1
In particular, we designate by «; the characteristic variables
associated with the jump U,— U,. We define m intermediate
states:

UOZU/’ RN Ijjzljj—l'*'ajRj(UhUl) E I Um:—Ur

Let S be the set of sonic indices
S={j, NU-)<0<N(Up))

We introduce the following modified flux function parameter-
ized by U, and U, :

FPM(U, U, U)=F(Up + f:gi(wi)Ri(Ub U

i=1

where the gis are parameterized by the states (U);-y, .. and

are defined for «; > 0 according to

if i¢gS, vw, gw)= -w

(W), O<w<qw;
it ies, gi(w):{p'( ) o
ANow, w<Oor w>aq;

and where p; is the unique Hermite polynomial of degree 3
defined by the conditions:

g (0=0, g(a)=N"o;, & O)=N(Ui-y), & (e:)=N(U))

Note that N\ (U;_;) and N;(U;) are the true eigenvalues of the
physical flux at the intermediate states U; given by the Roe-
matrix A (U, U,). Away from sonic points, FPM coincides with
the linearized Roe flux FX. If the initial flux F in Eq. (1) is at
least of class C!, and if the matrix 4 (U, U,) is continuous with
respect to U, and U,, then the modified flux FP¥ is a continu-
ous function of all three arguments.

Definition of the Modified Numerical Flux
Let V,, be the unique entropy solution of the Riemann
problem

ﬂ/_'_a FDM(U[, Ur: V) _

0
at ox
0, x <0
Vix, 0)=
. 0) {U,—U,, x>0
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we define the numerical flux by resolution of a Riemann problem associated with a Hermite
interpolation of the physical flux. In the scalar convex case,
DM, DM
eV, U =F>"11,,.(0,0)] we have proved convergence of the method of lines to the
. . R unique entropy solution. Numerical results® for the Euler
Algebraic Expression of the Numerical Flux equations extend the conclusions of the scalar case.

For i € §, the Hermite interpolation polynomial p;(w) intro-
duced previously is defined by
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+ X (0)R; (U, U,)
i€s
where

0¥ — —N(Up-1) oy
a BNF = 2N(Ui— ) = N(UD) +VIBNE = N(U3) = MU )2 = N (Ui~ DN(U))

is the argument of the unique extremum of g; between 0 and
o,

Remark

Note that when o; is positive, g;(6#) is the unique minimum
of the polynomial p; between 0 and ¢; and we have

& (6;)=<0

g0 =N«

It is easy to see that our numerical flux can be written in a
centered form that makes the added numerical viscosity ex-

plicit:
$PM(U, U,) = BR(U, U,)

+ 1 sup [8:6)); &i(6) ~ N a)Ri(Up Uy
i€
where (U, U,) is the classical Roe flux.!

Theorem: Convergence to the Unique eqropy Solutién

Let f be a convex scalar flux and #° initial data in L= (R)N
BV(R). The semidiscrete numerical scheme:

dllj 1

o= 7 B, ) - 2P, u)]
with
G+ 1/2)h8
u;(0) =~ j u®x) dx
h (F~1/2)h

where A is the mesh step, converges to the unique entropy
solution of Eq. (1) with initial data u° (see proof in Ref. 4).

Conclusions
We have proposed a nonparameterizec'i approach to entropy
enforcement for Roe-type schemes. It is based on the exact




