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Abstract

The operational Euler code FLU3C developed at the
Office National d'Etudes et de Recherches Aérospatiales
and at Aerospatiale Tactical Missiles Division has been
extended at Aerospatiale Space and Strategic Systems
Division to take into account viscous effects that are
dominant in hypersonic regimes. Two different
approximations of the compressible Navier-Stokes
equations, namely the unsteady Thin Layer and
Parabolized Navier-Stokes Equations are integrated
numerically in time with the second order accurate
MUSCL upwind scheme for the inviscid fluxes and a
centered scheme for the viscous effects. The algorithm
remains of space-marching type in the PNS case due to
the parabolic nature of the partial differential equation and
a "plane by plane" algorithm. Vigneron's stability
condition for the PNS case is treated in conservative
form. The numerical viscosity has been reduced by using
Osher's approximate Riemann Solver. The computer code
proves its capability to compute classical flows such as
supersonic flat plates and sphere-cones. With the TLNS
version it is also used to predict flows where subsonic
pockets are present such as ramp flows. Three-
dimensional geometries such as delta wing and the
European space shuttle Hermes are also presented.

I Introduction

The design of hypersonic vehicles requires the
development of high level CFD computer codes to
provide reliable prediction of aerodynamic coefficients in
flight conditions. They must include both precise
geometrical representation and appropriate physical
modeling in order to reach a similitude not available with
wind tunnels tests. Compressibility effects are described
by the Euler equations of gas dynamics and are sufficient
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to represent essential phenomena like the detached shock
wave (blunt body body configuration), oblique shock
waves with rotational effects, rarefaction fans, etc...
Secondly, the introduction of viscous effects are essential
for prediction of skin friction and heat flux coefficients.
This can be done in weak interaction regimes from an
Euler solver via coupling with a boundary layer code. But
in the regions of strong interaction (blunt nose, regions
with recirculating flow, base flow), the Complete
Navier-Stokes (CNS) equations have to be solved.
Moreover, complex physical models (turbulence, real
gases including chemistry effects, rarefied flows at high
altitudes) also have to be considered for complete physical
modeling. However the computation of numerical
solutions of the CNS equations remains too expensive
for the prediction of viscous flows in all industrial
configurations. Two approximations of the CNS
equations are studied in this paper : the Thin Layer Navier
Stokes (TLNS) and Parabolized Navier Stokes (PNS)
equations. With these approximations it is possible to
describe complex interaction domains such as streamwise
separating flows (TLNS approximation) and recirculating
flows in the crosswise direction (PNS approximation).

Classically, the PNS equations are associated with a
stationary formulation of the conservation laws of gas
dynamics 1 and are solved numerically with a centered
scheme and a space marching algorithm with a shock
fitting procedure 2+ 3. 4, During the last years, the
stationary approach has been adapted to second order
accurate upwind schemes 3+ 6, 7_ On the other hand, the
introduction of viscous fluxes in a time marching Euler
solver is natural for integrating the TLNS equations 8. 9.
Our computer code is based on this last approach : the
industrial code FLU3C 10.11 pased on an upwind
centered numerical scheme and a time marching algorithm
has been extended to the TLNS and PNS equations in a
way proposed by Chang-Merkle 12 (see also 13. 14y
The PNS equations are considered as unstationary
equations and the space marching results is coupled with
a time marching approach in each plane.

II Finite volume formulation of the
governing equations
We discretize the instationary CNS equations of a
polytropic perfect gas with the finite volume method on a
structured mesh. The conservative variables Uijjk at a




mesh vertex xjjk are considered as mean values in the
associated control volume Vijk. They are incremented
between times n At and (n+1) At thanks to the
conservation laws of mass, momentum and energy
integrated in Vijk :

Zl—{ Uril.}r,lk— Iil,j,k) +

Y

+ 1 j ( (f-.n)inviscxd + (f.n)viscous} dy = 0 .
| Vijicl Javig

The construction of Vjik and the normal vectors n to the

boundaries dVijk are detailed in Ref. 11 and included

references. We point out that the CNS equations are

discretized in the physical space (finite volumes) without

any transformation of coordinates.

TLNS and PNS approximations of the viscous

fluxes.
In the following, we assume that the k-direction

corresponds to the marching direction of the flow. The
main approximation of both TLNS and PNS is of
neglecting the viscous fluxes in this direction :

viscous
En)i, i k12 =0 . @
The other fluxes (fen)iy1/2 ,j.kV1SCOuUs ang
(Een)i j+ 1/2,kVi5°°us are classical 15 functions of the
gradients Vu and VT of velocity and temperature at the
associated interface. We detail the evaluation of the
gradient Vuit1/2 J.k ; the generalization to other cases
is straightforward. Following 16, we introduce a "shifted
cell" Qj+1 /2.,j.,k whose boundary is composed by six
faces that are naturally associated with the following
indices (see Figure 1) :
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Shifted cell Qij+1/2 J.k for the evaluation of
interface gradients.

Figure 1.

The gradient at the interface (i+1/2,j,k) is computed
according to Green's formula :

1

mf uwn dy (4)
|2 inixl o i+1/2,jk

Vua ipjk =

and the viscous scheme is entirely defined by the way we
interpolate u in the right hand side of (4). For each face of
9Qi+1/2,j k defined in (3), we first introduce interpolated
values of the conservative variables as follows -

~

Uijk =Uijk ()

U it1pj+12k = i—( Uijk + Ui+1,j,k +

©)
+ Uit1,j+1.k + Uij+1.k )

For the k-faces, we consider two sub-cases :

TLNS : U jy1pjke12 = }T ( Ugjx + Uitl,jk +

Q)
+ Uis1,j,k+1 + Ui jk+1 )

—~

PNS: U pipjkep = %( Uik + Uiss,jk ). 8

Therefore in the PNS case the viscous fluxes associated
with cells VjjK in the plane k=K are only functions of
the variables UjjK in the same computing plane. Then
we deduce velocity and temperature from these
conservative variables on each face of the shifted cell
0Qj+1/2,j,k and apply relation (4) to compute the
gradients in the viscous fluxes. Note also that the
viscosity is assumed to be only a function of
temperature ; for each interface of the control volume
Vijk , we interpolate the temperature field then compute
viscosity and thermal conductivity (a constant Prandtl
number is assumed).

MUSCL Scheme for the inviscid fluxes

The general principles concerning the second order
accurate MUSCL approximation of the inviscid fluxes
related to the conservation laws have been proposed by
Van Leer 17. We recall the choices made in the FLU3C
computer code. The scheme is second order accurate in
time, of predictor-corrector type. We introduce the so-
called primitive variables

2
W= (p.u,p), (U= (p,pu,p'ﬂz‘_+pe)) ©)

at time (! and node Xjjk- Then nonlinear interpolated
values along mesh directions are defined as follows (we
detail only the evaluation’of Wi, /2,jk~ in the i-
direction) :

> Wigem) (10)

Wijk = %(Wi.j,k +
I, m=-1,0,+1
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Wik = * (Wit jk— Wijk) (11)
Wik = Wijk +
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where
g= 10740 (13)
is the classical parameter of the Van Albada 18 limiter.

Then, after elementary algebra, the gradient of the
conservative variables is computed from the extrapolated

values

_ . B .

Uitz - Virrzgke Ui jeao - Uijoazie
(14)
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Ui ik+172 > Yijk-172 -
The predictor step is non-conservative :
1 n+l/2 _ n )+

At/2 (Ui,j.k -Uijk

15)
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The extrapolated values (14) are incremented in time
according to the predictor step (15). The primitive
variables at the interface are deduced ; for example, we
have :

n+l1/2 , — _
Wik =

n+1/2

Will/z,j,k+( Wil 'Wir,lj,k) (16)

n+1/2

n+l/2 , +
Witl,jk- Wir-li-l,j,k ) an

o= -+ -
Wirizzjx = Wisijk + (

The conservative variables at each interface and time
step (n+1/2)At follow easily from (16)-(17). The result of
the corrector step defines the inviscid flux of relation (0.
It is obtained by an approximate solution of the
monodimensional Riemann problem associated with a
polytropic perfect gas (y= 1.4) at the interface between
two neighboring cells, along the normal direction. For
the (i+1/2,j.,k) interface we have :

.\ inviscid n+1/2, -
En)ivizgk = @ (Uggpix
(18)
n+1/2, +
Nie1/2,5,k Uir1/2,5,k

In the FLU3C computer code, the numerical flux &
is the Van Leer 19 flux vector splitting. Since the work

of Van Leer et al 20, it is well known that this flux is
incompatible with an extension to viscous effects.
Consequently, this flux has been replaced by Osher's

approximate Riemann solver 2! which has the advantage
of capturing all the compressible nonlinear waves (shock
waves are simply replaced by multivalued rarefactions)
and does not need any tuning parameter which is not the

case for Roe's 22 solver used previously in the PNS
codes with upwinding schemes.

Inviscid fluxes for the PNS code.

The algorithm of the previous section is applied
without any modification when we integrate the TLNS
equations. In the PNS case, we have to maintain the k-
direction as a marching one. If the nodal values
Uit1/2,j,k are known for k<K we first define
extrapolated values in the plane k=K+1 according to :

1 -
UiiK+1 = Ui,j,K""E(Ui,j,K'Ui,_j,K_l) . 19)

Then fluxes at interfaces (i+1/2,,K) and (i,j+1/2 K) of
the computing plane k=K are given according to the
relations (11)-(18). In the marching direction, we consider
the predicted states given by (15) and we define :

(f-n) inviscid

' 1
Likilf2 = (fn) Euler (U n+l/2

ijk+1/2) —
(20

172 2
(1- 012 ,) ©.pHpn.0)T

where Pi,j,k+1/2 is the pressure at the interface
(L,j.k+1/2) and w; .j.k+1/2 the Vigneron coefficient. We
emphasize that in the present formulation the coefficient
©j,i,k+1/2 is associated with the interface (1,j,k+1/2) in
order to maintain the conservative nature of the numerical
scheme. The algebraic expression of i,j,k+1/2 is
classical (see Ref. 3) and we have :

oY M%(Ui,j,kﬂ/z)
1+ (¢-1) M2(Us j x172)

) @

®; j k+1/2 = min ( 1,

where My is the ratio between the normal velocity at the
interface and the associated sound velocity, vy the ratio of
specific heats and o a safety factor equal to 0.85.

With this approach, independently proposed by
Chang-Merkle (Ref. 12), the PNS approximation is
embedded into a general unstationary formulation of the
partial differential equations witch gives an important
flexibility concerning the algorithm for the numerical
resolution.

Boundary conditions

We have implemented a classical no-slip boundary
condition on the body in a simple way. We first note that
the nodes Xijk of the mesh that define the center of the
control volumes Vijk are defined on the surface of the
body with our mesh generator (Figure 2). Therefore there
is a priori no control volume well defined in the fluid
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around the nodes located on the boundary ; the
conservative unknowns Uijk for these nodes are not
computed according to the relation (1) but directly with
the Dirichlet boundary condition. We assume that the
velocity and the temperature are given on the body ; we
compute the pressure by an extrapolation from the
neighboring node :

n+l n+l

Pijk =P itl,jk » Xijk on the body 22)

and the field Uijjk is entirely known. At the fluid
boundaries, we neglect the viscous effects and apply the
Euler boundary conditions.

i

boundary riode x ij.k

ol volume V i+1,j k

Figure 2. Boundary conditions.
Temporal scheme

There is no major difference with the Euler code : the
scheme is explicit, second order accurate in time for the
inviscid fluxes (predictor-corrector type) and first order
accurate in time for the viscous fluxes in the present
version (the viscous fluxes are evaluated only at the
corrector step). The time step is limited by a classical
CFL condition as in Ref. 11.

Initialization of the PNS version
The initialization of a PNS flow solver is a general
and relatively difficult problem : we use the self-

consistent "step back™ technique 23 (see also 24 ) or the
TLNS version of the computer code. For blunt body
configurations we initialize FLU3PNS by a complete

Navier-Stokes solver 23,

"Plane by plane" space marching algorithm

The "plane by plane” strategy of the algorithm (i.e.
for marching in space, march in time) is one of the main
points concerning the industrial efficiency of the Euler
solver FLU3C. There is no major adaptation needed for
extending the algorithm to the PNS equations (the TLNS
are integrated globally in time via a classical time
marching algorithm). We recall the main ideas of this
algorithm,

We assume that all the variables Uijk are known in
the "plane” k=K-1. Then we integrate in time the
conservation law (1) in a localized spatial domain
composed of the cells Vijk that satisfy k=K. The
parabolic nature of the PNS equations ensures that the
inviscid flux (20) at the interface K+1/2 is only a
function of the variables Uijjk for k=K-1 and k=K.

Therefore all the fluxes are only functions of the data
Uijjk for k=K-1 and of the unknowns Ujjk for k=K. This
instationary algorithm is integrated until convergence in
time is obtained. Then we march in space and change K
into K+1.

III Applications
The numerical method has been implemented on the
Cray XMP 116 computer located at Aerospatiale, Les
Mureaux. The computer code FLU3PNS is vectorized and
the present performance with the explicit scheme is 40
micro-second per cell and per time step.

Flat plate

The first test case consists of a supersonic laminar
flow over a flat plate. The freestream conditions are the
following ones :

M,.=2, Re /L=16510° , L=1m
- (23)
Pr=0.72, Ty =T, =222K .

The mesh contains 51 nodes in the direction normal to
the plate and 54 in the marching direction. In the first
box region (0<x/L <0.3) we integrate the TLNS
equations. Then in the second box (0.3 < x/L < 0.93)
we solve the PNS equations with a plane by plane space
marching. We observe that FLU3PNS is self-initializing
for this problem thanks to a coupling of the TLNS and
PNS versions. Figures 3 and 4 display the variation of
tangential velocity and temperature along the normal
direction for z=0.93 L, compared with the boundary
layer code BA 99 26 On Figure 5, we present the
normal gradient of the temperature with the help of the
conventional heat fiux. Recall that skin friction Cf and
heat flux Ch coefficients are defined as follows :

) viscous
C.= (fn) impulsion
f""‘_“—,)‘“

’

@9
heat flux on the boundary

1., 2 )
Poo UeeCp oo ( (14 YTM&,) Too~ Towanl )

Ch=

We observe a good agreement with the boundary layer
code and previous results of Refs. 5 and 7.

Slender cone

The second test case simulates a three-dimensional
laminar hypersonic flow over a cone of lengh
L =0.325m with a 10° half angle at a 24° angle of
attack freestream flow. The exact flow conditions are

M, =795 Re,=4.10110m-1, L=0325m,
(25)
0 =24°Pr=0.72, Ty, =309.8K, T_=554K .
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Figure 8.  Slender cone. Iso-Mach contours in plane
z=10.266 (Am = 0.25).
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Figure 9. Pressure on the slender cone surface at

z=0.325 m.

The previous boundary conditions have been considered in

Tracy's experiments 27. The structure of the flow field is
detailed in Ref. 7. The computational grid (Figures 6 and
7) contains 20 planes in the stream direction, 56 nodes
between the leeward and windward sides and 51 nodes
between the body and the external boundary. The
computation has been initialized with the step back
algorithm between planes 1 and 2 until convergence on
these two planes. The iso-Mach contours are presented on
Figure 8 at the location z=0.266 m and are in good
agreement with Figure 12 of Ref. 7. The bow shock is

well captured as well as the crossflow separation. On
Figure 9, we compare the pressure distribution on the
body at x = 0.325 m and Tracy's data (Ref. 2.

Flow over a two-dimensional wedge
The third problem is a purely TLNS case : the
hypersonic laminar flow over a 24° ramp experimentally

studied by Holden and Moselle 28 is presented. A two-
dimensional mesh of 87 nodes along the flow direction
and 51 in the normal direction is used (Figure 10). The
planes are equally spaced on the plate (45 points) and on
the beginning of the ramp (1<x/L <1.5). Then a
streching parameter equal to 1.06 is used for the 18 last
planes. In the direction normal to the boundary a
streching of 1.06 is also used. The freestream conditions
are :

M, =141, Re_/L=10410 , L=0439m,
- (26)
Bramp=24 °, Pr=0.72, Ty =297 K, T..=72.2K .

The run is carried out in two steps : the first box (-0.092
<x/L<0.41) is converged using the thin layer
approximation. Then the same approximate equations are
integrated in a second domain (x/L > 0.41). The total run
requires 11 000 time steps. We emphasize on the
importance of using a sufficiently refined mesh for
capturing correctly the flow field. With the present 87x51
mesh, our results are in good agreement with Holden's
data (see Figure 11 the iso-Mach contours). On Figures
12-14, the wall values of pressure, skin friction and heat

 flux are compared along the wedge. The recirculating zone

is well captured with the TLNS version of the computer
code. The pick of heat flux at the reattachment is
particularily well predicted.

Figure 10. Mesh for the 2D ramp.

Figure 11. Iso-Mach contours for the 2D ramp
(Am = 0.5).
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Delta wing

The fourth test case is a delta wing proposed by the
organiscrs of the Workshop on Hypersonic Flows for
Reentry Problems 29, The three-dimensional geometry
is defined in Figure 15. The freestream and wall
conditions are
M_, =715 Re,_=3910m-1 , L=0150m,

27

a=30°,Pr=0.72, Twan=288K, T_=74K .

Initialization is obtained in the plane z/L = 0.038
(corresponding to the end of the plate region in the
leeward side of the wing) with a step-back algorithm. Due
to the a priori non-conical property of the flow field,
several tests have been undertaken to ensure that the flow
is well initialized by this procedure (different positions
for the first two planes have been tested and the mesh has
been refined). No definitive conclusion can be drawn, and
a complete three-dimensional computation in the nose
region would be necessary. We think that the initial
profile of the boundary layer is fair. Between the nose
region and the final section (x/L =0.5) the
computational domain is divided into 4 boxes (Figure
16) without a priori node coincidence. Two meshes have
been generated and we display in Figure 17 the two-
dimensional meshes in the final section (66x40 for the
coarse mesh, 130x61 for the refined one). The four boxes
of the fine mesh contains a total of 358522 nodes. The
total run requires S hours on Cray XMP, which can be
compared with the 18 hours on Cray 2 associated with a
complete Navier Stokes solution on a 33x97x97 mesh
proposed by Murman in Ref. 29. The iso-Mach contours
in the plane z/L = 0.5 on the coarse and refined meshes
are presented in Figure 18. They are in good agreement
with previous results on the same test case presented by
Rizzi and Chakravarthy in Ref. 29. We note also a
sensible difference with other results of Ref. 29 on a very
fine mesh. In Figure 19, the pressure field on the body is
compared with two CNS results and in Figure 20, a
detailed view shows agreement of the pressure on the
leeward side of the wing with the experiments of Linde
(sec Ref. 29). The heat flux is compared in Figure 21
with Rizzi's results on a fine (33x129x97) mesh. The
comparison is relatively fair but we think that our mesh
has to be refined in cross-flow direction.

Hermes European Space Shuttle

We end this section concerning applications of
FLU3PNS with a first industrial application on the
Hermes 0.0 space plane. This computation, which
includes both the space plane and its wake, has been
achieved by coupling the computer codes HOMARD?3 (a
CNS solver, see Ref. 25) and FLU3PNS. The boundary
conditions of this computation are the following ones :

M,.=20 (z=70km),a=30°, Re_=36000m—1,
(28)
Pr=072 , Tyan=1000K T =220K ,v=14.
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Figure 21. Heat flux on the delta wing in the section
z/L = 0.5.

A complete NS solution obtained on the nose of Hermes
is followed by four boxes of FLU3PNS (90x50 nodes in
each space marching plane), then by a CNS computation
for capturing the base flow of the plane ; this result
initializes a new FLU3PNS domain for computing the
wake. A view of the complete mesh in the meridian plane
is presented on Figure 22. We emphasize on the fact that
we have used a coarse mesh and inapropriate physical
hypothesis of perfect gas ; therefore skin friction and heat
flux are neither well predicted nor presented in the present
paper. Nevertheless, pressure contours in the meridian
plane (Figure 23) show the good compatibility between
CNS and PNS boxes. In Figure 24, we detail the velocity
vector field in a cross section that corresponds to the
winglets of Hermes (it is a FLU3PNS result). The
boundary layer is visible on the windward side but the
complex structure between plane and wing is not fair at
our opinion. In Figure 25 we present isobaric contours in
the wake region and Figure 26 shows a three-dimensional
view of pressure contours on the surface of Hermes.

AN
—

AN

AN
ALV W A A Y
VI W W U N ¥
AN Y

AVAVAVANAVANAY
AVAANAY
AWANATAY
\
X
X

A AVAVAVAY
1D W W V. VWL WO WLV . MO WL N

VR WL WA Y
LMWL W WL Y
AW W WL Y

AV VLAY
LW Y WL WL A

L VA WA VL WA

AVVTVV T
ALV UV

LT

| Y

PRV Y

Figure 22. View in the meridian plane of the mesh for
coupled CNS and PNS computation around

Hermes.

Figure 23. Hermes 0.0 space shuttle. Isobaric lines in
the meridian plane.
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Figure 24. Hermes 0.0 space shuttle. Velocity vector
field in the crossflow direction in the winglet
region.

Figure 25. Hermes 0.0 space shuttle. Isobaric lines in
the wake region.

Figure 26. Hermes 0.0 space shuttle. Isobaric lines on
the surface of the plane.
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Conclusion

We have presented a finite volume discretization of
the TLNS and PNS approximations of the Navier-Stokes
equations. The advantage of our formulation is that it
gives an extension to an existing Euler code associated
with the robust MUSCL upwind scheme and a great
flexibility in the choice of the two approximate equations
and that it maintains computational efficiency in the
PNS case. Several extensions such as real gas effects and
implicit scheme are under investigation.
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