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Abstract

The main drawback with Roe’s approximate Riemann solver is that non-physical ex-
pansion shocks can occur in the vicinity of sonic points. Previous work aimed at enforcing
the entropy condition is based on the representation of sonic rarefaction waves. We propose
a new non-parameterized approach which is based on a nonlinear Hermite interpolation
of an approximate flux function and the exact resolution of non convex scalar Riemann
problems. Convergence and consistency with the entropy condition are proved for scalar
convex conservation laws with arbitrarily large initial data. When considering strictly
hyperbolic systems of conservation laws, consistency of the resulting scheme with the en-
tropy condition is also proved for initial data sufficiently close to a constant. Numerical
results on a one-dimensional shock-tube and a two-dimensional supersonic forward facing
step confirm our theoretical results.
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1 Introduction

In this paper, we consider nurnerical solutions of the initial-value problem for Hyperbolic

systems of conservation laws

v oF(U)

- +—F—=40. 1.1

ot + Oz (1)
Here, U(z,1) is a column vector of m unknowns and F(U), the flux, is a vector-valued
funetion of m components. To allow for discontinuous sclutions we admit weak sclutions

that satisfy (1.1) in the sense of distributions, i.e.,

for all C test functions ¢(z,1) that vanish for {z] + 1 large.

Since weak solutions of (1.1) are not uniquely determined by their initial data, we
select physically relevant solutions, defined as those solutions that are limits as £ — 0 of
solutions U{g) of the viscous equations

8y  8F(UY 8 '
E-’- 3 g53x2 , €>0. (1.2)

In the sequel, we consider systems of conservation laws that possess an entropy function

7(U} (see Friedrichs and Lax [6]}, defined as follows :
e 7 is a convex function of U, i.e., d2p(U) > 0 .

e 7 satisfies

(U} - dF(U) = dq(V),
where ¢ is a function called enfropy fluz. It follows that every smooth solution of (1.1)

ol | B4(V) _

ot 8z

It is well known that limit solutions of (1.2) satisfy, in the weak sense, the following
inequality :

also satisfles
0.

on(U) |, 9¢(U)
at + Az

i.e., for all nonnegative smooth test functions ¢{z,?) of compact support

<0; (1.3)

_]Gm /_Z (1 + ¢zq) dzdt _fo:o $(z, 0)n(Us(z))dz < 0 .

In the following, we shall describe numerical approximations to weak solutions of {1.1}
that are obtained by solving the following system of ordinary differential equations (method

of lines) :
aut 1
ar; + E ((ID(U;L: U_?!l-}-l) - (I)(U]]}—I! U_Th)) =40 3 (14)
with the initial data
E0) = /(H%)h U0 (x)d (15
N = — rjoax -
’ B JG-1ym )

where £ is the mesh step.
The Godunov scheme [7] for the general hyperbolic system of conservation laws (1.1)
consists m replacing the flux @ by the exact flux obtained by sclving the Riernann problem



at each cell interface and at each time step. It is evident that, due to averaging, all of the
information contained in the exact solution of each problem is not retained. Therefore, the
exact solution of local Riemann problems is replaced by an approximation (see Harten,
Lax and Van Leer [11}]).

Roe [23] initially proposed a purely algebralic approximate Riemann solver for the
Euler system of equations governing the flow of a thermally perfect inviscid fluid. A
similar course of reasoning may be followed for any system of conservation laws. The
main drawback with this method is that nonphysical expansion shocks can occur in the
vicinity of sonic points. Nevertheless, Roe’s flux is very popular (see Yee [31], Hollanders
and Marmignon {12},and Chakravarthy {2] amongst others). In the following we restrict
ourselves to this particular choice for the numerical flux & of (1.4).

In the next section, we briefly recall Roe’s method in general and introduce some
notations which will be useful. In Section 3, we will review two entropy corrections due to
Harten [9] and Roe [24] which have been used in order to cope with non-physical solutions.
Both approaches consist in modeling the approximate solution in situations where the
linearized Roe flux violates the entropy condition. These corrections appear more as
“spreading devices” which act upon the approximate solution rather than a remedy to
the fact that the approximate flux is linear in situations where a linear description is
not relevant. Our approach will be described in Section 4. It is based on a nonlinear
modification of the flux in the vicinity of sonic points. The exact solution of the
Riemann problem assoclated with this modified flux function is determined algebraically.
In Sections 5 and 6, we will prove that, in the scalar case, this modified Roe scheme
converges to the unique entropy solution of (1.1) and that for general hyperbolic systems,
limit solutions of (1.4) (1.5) satisfy the entropy inequality (1.3). In the last section,
numerical results are presented.

2 Roe’s Method

Roe’s method consists in replacing the solution of (1.1), at each cell interface by the
exact solution of the following linear probiem :

o OTO)
Gt Oz o

- (2.6)
U(:c,O):{ AN

Uj+1 s :c>:rj_§_% s

where z;,1 = (7 + 13h is the point at the cell interface. The linearized flux function Fﬁ_l
2 Zz

is defined by _
FEL(U) = FU;) + AUz, Ussa) - (U — Uy) (27)

where A(U;,U;41) is an approximation of the jacobian A(U) = dF(U) .
The matrix A(U;,U;) is called a Roe-fype linearizalion and is required to have the
following properties [23]:

F(Uy) = F(U) = AU Us) - (Us — U) (28)
AU, U) = dF(U) (2.9)
AU, U,y has real eigenvalues and a complete sel of eigenvectors. (2.10)

Let r;(I7) and A;(U7) denote the eigenvectors and associated eigenvalues of the jacobian
dF(U). Sumilarly, let R;(U;,U;) and A;(U;,U;) denote the eigenvectors and associated
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eigenvalues of the matrix A(T7, U,). Then, if

Ur=Ur = ) o Rj(ULUy), (2.11)
=1

it is easy to verify that Roe’s numerical flux has the following expression :

B, U:) = FU) + Y AU, Us) e Ri(Ui, Uy)

i=1
= F(U:) =3 (U1, Uy o Ri (U1, Uy)
=1

where

A =t maz(0;£1).

With obvious notations, we have
(0, U,) = F(U) + A~(UL U,) - (Ur — Uiy = F(U.) — AT (UL, U) - (U, — UD) .

For general hyperbolic systems, the existence of a mathematical entropy ensures the
existence of a Roe-type linearization (see Harten, Lax, Van Leer [11]). It is a well known
fact that such a linearization is not unique and that Roe’s scheme does not satisfy the
entropy inequality. This is one of the serious drawbacks of Roe’s method.

Indeed, let us consider a scalar conservation law. We assume that the flux function F
is strictly convex. If we consider two states U/; and U, such that

UI<UT:

FU) = F(U,),

then, it is obvious that

(U, Uy = F(Uh) = F(U),

and that the jump between U; and U, will not spread into a rarefaction fan as it should.

3 Coping with Non-Physical Solutions

We review in this section two entropy corrections for Roe’s method. The first one has
been proposed by Harten and Hyman [10] and the other by Roe himself [24].

Harten’s Entropy Correction

By rewriting the Roe flux in a centered manner, the numerical viscosity associated
with this scheme appears

(0, U = (F(U:) +F() 3 QRO (U ) 3 R0 U,))

where

QR =13



The previous analysis shows that Roe’s scheme is not viscous enough in the vicinity of sonic
points. A very popular correction due to Harten [9] consists in modifying the numerical
viscosity by replacing, for |A| < §, @F(}) by

122482
QH(A)=§( 5 ) (3.12)

‘The parameter § measures the amount of artificial viscosity which is added. The actual
tuning of é crucially affects convergence towards the correct solution and depends very
much on the problem considered {see the numerical experience of Yee [31] or Hollanders
and Marmignon [12]). Moreover, when considering the Euler equations, extensions to
viscous flows are quite delicate.

In fact, a more rigorous form of Harten’s correction (see [10]) gives clear indications
on how to modify Q. Denote by W = (w;}j=1,_m the characteristic variables of the
increment state U7 — U; :

U—-Ur=> wiR;{U,U,) . (3.13)

=1
The linearized Riemann problem (2.6} decouples inio m scalar Riemann problems for the
characteristic variables

Jw; ) Ow;
e + X;(U, Uy - £ =0
0, zz<0,

w;(z,0) = {

o, I)O,

the solution to which is

0, % < X(UL Ty
wi(z,t) = r (3.14)
o, 7 > M0, U) .

Thus, each j-wave in the Riemann problem is approximated by a jump discontinuity
that propagates with a speed A;(U;,U;). This is a reasonable approximation when the
J-wave is a shock or a contact discontinuity. When the j-wave is a rarefaction, Harten
modifies approximation (3.14) by introducing an intermediate state a7 :

z l
0, <X
. * ’\! z A"
wj(:z,t) = o, J—<;< 7

z
QJ', ;\;(?,

where

Writing conservation out in full for this approximate Riemann solver yields the expres-
sion of the numerical flux :

=1

1 m
T UL Ur) = 5 (F(m) +F(U:) = 3 Q7 (3(Un, Un)) s Ry (UL, U,)) ,
with the numerical viscosity :

210 { L, 1AL> 6,

&, A< 6;.



In the scalar case, the theoretical choice

& = 01‘21932(1 (0; A(U[, Ur) —_ A(UI, UI + B(Ur — UI)); A(UI + B(U'r - UI)': Ur) - )‘(UIJ Ur))

ensures entropy consistency of the approximate Riemann solver (see {10]). Consistency
of the modified Roe-scheme follows from the Harten-Lax theorem [8]. This choice of
& gives left and right wave speeds in (3.15) that are exactly those given by Oleinik’s
entropy condition [19]. Note that §; is to vanish if and only if the j-wave is a shock. The
modification of the flux is only active in rarefaction waves.

This scheme, which reduces to Harten’s “one state solver” [11] when the wave con-
sidered is a rarefaction, appears to be quite viscous. According to Roe [24], Harfen has
abandoned this more rigorous approach to entropy enforcement in favor of the empirical
device mentioned previously which gives better resolution for the Euler equations.

Roe’s Entropy Correction

In [24], Roe proposes a more selective correction which is only active when a sonic
rarefaction is detected. Consider a scalar conservation law and assume that the flux
function F is strictly convex. Then, Roe’s scheme reduces to

R, U = % (F(U) + F(T;) - [A| (U- = Th))

where

_F{U)—F(t)

A
U, — U

Sonic rarefactions are characterized by
Uy < 0 < FU)-

Roe’s correction is based on a modelization of sonic rarefaction waves : these waves are
assumed to be not centered but distributed. A modified flux based on a model of
sonic expansion waves has also been recently proposed by Van Leer, Lee and Powelil [26].
Both the solution and the characteristic field are assumed to vary linearly through the
rarefaction. By introducing the concept - which is not very familiar to the authors of the
present paper - of fluctuation functions (see [24]), Roe finds the following modified flux
function :

SM(ULT,) = (FU) + F(U2)) — = (F/(U) - F{(U)) (Ur —U)
2 4 (3.16)

N
S
|-

= (R (U} + F(T,)) -

where

§ = F'(U.)— F'(li)

and
¢ = FU)—F(U).

As suggested by Roe [24], this numerical flux can be determined through purely geometrical
1
arguments (see figure 1). In fact, the coeflicient 1 in the right hand side of (3.16) is

sufficient to ensure that, when considering convex flux functions,

sign (U, — Up) (8™ (Ui, U2) - F(U)) <0,

6

-10-



Ul’ UI+ Ur Ur
2

Figure 1: Geometric interpretation of the modified fluxes (3.16) and (3.17).

for all 7 between /1 aud U/,. Roe thus proves that the resulting scheme is an E-scheme
(see Osher {20]). In the litterature and in practice, it appears that this procedure gives
satisfactory results for one-dimensional numerical experiments (see Chakravarthy {2).

If we actually explicit the assumptions of a linearly distributed sonic rarefaction wave
in the following manner :

U _ AU _ ¢
Bz Az AAz
F&y=FU)+¢£+E(0 -6 A,

where
P

Ax

€:

we find that
dF _dF dU _OF ¢
d¢ — dU dt AU X
This leads to JF s .
_ o ¢
d—g(ﬂ)—¢+A—F(Uz),\,

dfFf = o &
d—é(l)—¢—A—F(Ur);:
and é
_94 = §5 .
A 5/\
Finally, we obtain a different modified numerical flux
1 1 ¢
(U, U = §(F(U1) + F{(U)) — géx (3.17)

which does not define an E-scheme for a general convex flux function (see figurel).

The main drawback with Roe’s approach is that the “switching” from Roe’s fiux to
the modified Roe flux 1s not regular. The numerical flux is not a continuous function
of its arguments 1n the vicinity of sonic points. From a theoretical point of view, it is
often essential for the numerical flux to be at least Lipschitz-continuous. In particular,
the scheme (1.4) (1.5) which defines the method of lines is ill-posed if the numerical flux
is not continuous. Nevertheless, there seems to be no evidence to support the fact that
this loss of continuity may hinder numerical performance.



4 A New Modified Roe-Scheme

There are several objections to the “spreading devices” mentionned in the_previous
section. In both examples, the underlying idea is fo give an a priori representation of the
solution. We present below a new approach [4] based on a nonlinear modification of the
flux function. Since problems occur at sonic points, we decide to modify F® of (2.7) in
problem (2.6) only at sonic points. We recall that the linearized flux function has the
expression :

FRUL U, U) = FU) + A(ULU,) - (U = U)) .

Definition 4.1 (Modified Flux}
We define m intermediate states :

Up = UI
U; = Ujoy + o B (U, Uy)

Un =Ur.
Let S be the set of sonic indices
S={i, M{UVi1) <0 < A(Us)} -

We introduce the following modified flux function parameterized by U; and U, :

FPM (0, U, Uy = F(U) + Y, ¢i(w;) Ry (U1, Uy)

j=1

where the w;s are the characteristic variables defined in (3.13). The g;s are param-
eterized by the states (I/;)j=1 .. m and are defined according to :

ifj¢5,
Vw, g;(w)=2(U,0,) w,
ifjes,
o witw) Vw € (0,05)
gj(w) - { A_—;(Ul, Ur) - , Yw Q (O;O’j)!

where p; 1s the unique Hermite polynomial of degree 3 defined by the conditions :

pi(0) =0, pie;) = X(UnUrey,  25(0) = X(Us1) > Pi(e) = A;(05) -

Note that A;(U;—1) and X;{U;} are the true eigenvalues of the physical flux at the in-
termediate states U; given by the Roe-matrix A({7;,I/;). Away from sonic points, FPM
coincides with the linearized Roe flux Ff. If the initial flux F in (1.1) is at least of class
C1, and if the matrix A(U;, U;) is continuous with respect to U and U, then the modified

flux FPM is a continuous function of all three arguments.

-12-
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Proposition 4.2 {Solution of the Modified Riemann Problem)
The Riemann problem

=0

v 8 FPM(1,, Uy, V)
ot 0z

Vi, z<0,
V(:,O):{Vr >0

has a unique entropy solution.

(4.18)

Proof : By considering the family of mathematical entropies
m
7= n;(w;)
=1

where 7; is any scalar convex function, it is clear that the solution of (4.18) is the super-
position

V1) = Y Z(5) - R0, Ur)

where Z; (;) is the unique entropy solution (see Oleinik {19], Ballou {1}, and Leroux [15])

of the scalar Riemann problem

9z | 94i(2) _

0
gt Oz (4.19)
I‘ -
2z,0)={ Y0 TS
UJj , T > 0.
[
Following [11], 2 Godunov-type scheme associated with this modified flux can naturally

be defined :

Definition 4.3 (Modified Numerical Flux)
Let Vi, be the exact solution of (4.18} associated with the initial data

{VI:O)
T/‘;‘:UT_UI)

we define the numerical flux (which is classically Well—déﬁned independently of ¢)

@DM(UJ: Ur) = FDM(U1: U, VI,”(O’t))

We now show that 7 can be derived in a straightforward manner.
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Fw) & z
shock centered rarefaction
speed ¢
woa )
pilw) 04 '- w
: > AU, Ur}
slope o -~
\fPDM(Uz,Ur) l I

Figure 2: Exact solution of the scalar Riemann problem (4.19).

5

Proposition 4.4 (Expression of the Numerical Flux)

Ifi €S, the Hermite polynomial p;(w) in ({.1) is defined by

pi(w) = aw® + bu? + cw

with '
Ai(Ui) + Ai(Uia) — 2X0:(UL, Uy)
a= 5 )
5
p — 320 Ur) — 22:(Uiq) — M:(U)
- - ;
c= )\i(Ug_I) .

The modified numerical fluz has the expression

VM, Uy = PO + > (U, Urye Ri(Un, Up ) + Y giw?) Re(Uh, Uy)
g5, M (ULUR) <0 . i€s

where

*

. “Xi(Tiy) -
AL — 24U} — AU5) + /BT Ur) — M (T2) — M0en)) — (s )]

is the argument of the unique exfremum of g; between 0 and o; (see figure 2).

Proof :  The conditions ¢{(0) < 0, g/(es) > 0, and the fact that g; is a third order
polynomial ensure that there is a unique extremum between 0 and «;. The exact solution
of Riemann problem (4.19) is obtained by considering the lower convex hull of g; on [0, ]
if & > 0, or the upper convex hull on [az, 0] if oy < 0 (see [19], {1], and [15]). The solution
of scalar problem (4.19) contains 2 unique centered rarefaction wave and at most one shock

{see figure 2}. The point “? = 07 lies inside the rarefaction wave for which the integral

squation is :

#(z) =2

The exact expressions of the polynomial p; and of w; are obtained through elementary

algebra. |

10
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Remark 4.5
Since g;(w}) is the unigue extremnum of the polynomial p; on the interval (0, ), we

have N
gi(w}) <0,

&g

-gz(i)_ S A;(UI,U,-) -

o

It is easy to see that our numerical flux can be written in the centered form :

PM(U,U,) = SRULU)+ 3 sup (@ 9—&”—) - (W, Ur)) o Ri(U, U,
iES i ]
= &R, Uy + 3 (g:(w}) — XU, Uy)~aa) Ri(Uh, U,)
iesS

which makes the added numerical viscosity explicit.

53 Study of the Scalar Case

For convex scalar conservation laws, we show that the method of lines associated with
our modification of the Roe scheme converges to the unique entropy solution

(see Kruzkov [13]).

Theorem 5.1 {Convergence)
Let F' be a conver scalar fluz and U? initial date in L®(R) 0 BV(R) . The
semi-discrele numericel scheme (1.4} (1.5} converges {o the unigue entropy solu-
tion of (1.1) with initial data U°.

Proof :

The proof foliows the ideas developed by Osher [22]. We first establish the TVD prop-
erty which garanties convergence to a weak solution by compactness, then the following
weak entropy inequality

./zJUj+1 7" (w) (‘I)DM(Uja Uiy1) — F(w)) dw<0. (5.20)

7

. 1 . . . .
for the single entropy n(I/) = §U2. This ensures that the limii solution satisfies the weak

entropy inequality (1.3) for any strictly convex entropy 7 (see Di Perna 31} In order to
simplify the notations, we assume F'{0) =0 .

TVD property : If we write the scheme under the form

F(U;) — @PM(U;_y, U5)

R 305  _ F(U5) — @PM(U;, Ujia)
U; — Uiy

dt Usyr — U5
= Cj+%(Uj+1 = U;) — DJ;%(UJ- -U; 1),

(Uirn = U5) — (U; = Uj-1)

it is sufficient (see Sanders [25]) to prove

C.

it 20, DIEO

J+'§

(S

11



Since Roe’s scheme satisfies this property, only the case
U ;<0< lUin
must be examined. By proposition (4.4),
"M (U;, Uj1) = F(U;) + g(w*)(Usx — Uy)
which 1mplies
Cipz = =9}, Djs =2 (Uja = Uj) — g(w")
From Remark 4.5, and the fact that « = Uj 1 — U;, we deduce Cit

1= £

>OandD-+%20.

Entropy inequality : Away from the sonic point, the scheme reduces to the stan-
dard uwpwind scheme. Ounce again, the only case to be taken under consideration is the
“sonic” case :

U; <0< Uy -

In fact, we will prove inequality (5.20) by establishing (see figure 3)

Ui+

1
P Fluwydw | 5.21
Ujs1 — Uj jU,— () dw (5.21)

SPM(y. U )<——J;——f%“1%F Yw <
-’ 7 — 7 w w g
7 7+ Uj+1 - U_;a Uj

where P is the piecewise linear function defined by

P(F,w} = sup {F(U;} + F'(Ui(w — Us); F(Uj41) + F' (Ui (w — Uss1)} -

P(F,w)

: : Dpu{U:t,Ur)
Ui N Us w

Figure 3: Geometric interpretation of condition (5.21)

The inequality on the right hand side of (5.21) is obvious since F is convex. Since
@DM(UJ-, U;y1) 1s the minimum value of the Hermite polynomial, it is sufficient to show
that for any polynomial ¢ of degree less than 3, and for any two points a and b such that

a<0<b and ¢'(a) <0< @'(d),

we have 1 5
min, (9(6)) < — f P, €)d .

a<E<h

By change of variables, we can assume that

(0} = ¢'(0) =0 and qb”(O) >0.

12
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Hence, we will consider ¢ of the form
$(€) = o + pE*

where

g>0.

We now prove that .
1
— [ P >0
—a Ja

Since P(¢,£) is plecewise linear, one easily obtains after multiplication by the positive
quantity ¢'(b) — ¢'(a) :

¢'(b) — &'(a) [P
——BTL P(¢,£)d¢

= $(@)¢/(B) - $()6(0) + g ((‘“”,’J —2@) ¢'(a)¢'(b))

= (3&&52 +20fab(a + b) + (afa® + ab+ 6% + Bla+ b))z) (b 3 a)

(30207 4 0*(a? + b+ B+ 208(a 4 87+ B2Ga+ 07) (252)

b
2(&fﬁﬁ%ﬂf@2+ab+ﬁf—a%a+bf)( 2&)

= (—ab)e?(a® + b*){(b—a)
>0,

This last inequality ends our proof of the entropy inequality (5.20).

Remark 5.2 ,
The above theorem is nol trivial In fact our modified flux does nof define an E-

scheme. We think that we have added ¢ “minimal numerical viscosity”. Enlightened
by the previous analysis, one could define an even less viscous flux by choosing :

1 Ujta
@(UJ) Uj+1) = m /U P(F, w)dw .
J

This flur also satisfies the entropy inequality (5.20). But then, the sufficient condi-
tions of Sanders for the TVD} property are no longer true. Moreover, we prefer the
Godunov-type scheme approach.

Remark 5.3
The idea of solving a Riemann problem associafed with a modified flur function has

been independently proposed by LeVeque [16]. The modified fluz is chosen to be the
function P(F,.) which is not of class C*. The solution of the corresponding Riemann
problem is a version of Harfen’s one-intermediaie-state approrimale Kiemann solver
(see [11]}) for a particular and non-parameterized choice of the wave speeds. Since
the numerical flur is in this case equal {0 infy,cu, v, |(P{F, w)), i is clear from
figure 3 that this scheme 1s an E-scheme as observed by LeVegque. Nevertheless, this
approzimale Kiemann solver is gquife viscous and our approach guaraniees, without
any additional information on the physical fluz and at a comparable computational

cost, convergence to the eniropy solufion through weaker enfropy requirements.

13



6 An Entropy Inequality for Hyperbolic Systems

In the sequel, we show that our modified Roe approximate Riemann solver satisfies
an eniropy inequality. The first order Godunov scheme satisfies such an inequality in
the discrete case (see, e.g. [11]). In the semi-discrete case {1.4)(1.5), Osher and Solomon
{21] have proved that the O-version of the Osher scheme satisfies a semi-discrete entropy
inequality. We now prove an analogous result for our modified Roe scheme.

Theorem 6.1 (Entropy Inequality)

Let us assume that (1.1) is a strictly hyperbolic system of conservation laws whick
admits a mathematical entropy 7. We assume that all the fields are genuinely non-
linear. We consider {wo sates Uy and U, that are sufficiently close. Then we have
the following inequality :

U, -
/U Eo(U)dU, @"M Uy, U,) — F(T)) < 0. (6.22)
i

Corollary 6.2

We consider the method of lines (1.4)(1.5) associated with ®°M . We suppose that
the sequence (UF())jez, e»0 has sufficiently small oscillation in the (z,t) space and
that 1t converges boundedly almost everywhere to u(z,t) as h — 0. Then, the limit
solution satifies the weak enfropy inequality (1.3).

This corollary is a direct consequence of the previous theorem and the general results of

Osher [20].

Proof of Theorem 6.1 :

We assume that the states {/; and U, are in the neighborhood V of some given state
Ug. Either all of the eigenvalues A;(Up) are non null, and in this case we assume that the
neighborhood V of Uy 1s sufficiently small in order that

Vie{l,...,m}, VUV, [NU}=8>0,
or, by strict hyperbolicity, there exists a single index i such-that A;{Up) = 0. In this case,
Yi#, YUV, N> 8> 0,

and A;{U} is arbitrarily small. We divide the proof into four parts. First we decompose
the left hand side of (6.22} along the characteristic directions associated with the Roe-
matrix. Secondly, we consider the eigenvalues bounded away from 0. Then we focus on
the eigenvalue A; close to 0. Finally, we establish the estimate (6.22).

o The left hand side of (6.22) does not depend on the path between Uy and U,. There-
fore we choose the following path T :

U(g):Uj—lqi'g(Uj_Ujfl): GSBS 1: j = 1:"'1m (6'23)
which in fact consists in m different segments joining Up = U} to Uy, = U,. We recall that
U; = Ui = o R; (00, U,)

The eigenvectors R;{(U;, U, ) of the Roe-matrix are continuously oriented in order to main-
tain the classical normalization :

grad X (U)-r; (U =1,

14
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where j is a genuinely nonlinear field of dF (/). We introduce the dual basis associated
with the R;(U;; U, ) :

Li{U;U) - Re(U,Ur) = 655, Vi, k€ {l,...,m}.
By definition of 77, we have under intrinsic form :
YU, V¢, dg(U)-£ = dng(U)-(dF(U)-£) .
By differentiating along the direction ¢, we have :
VU, VE, V¢, do(U)(E,C) = dn(U) - (FUNE,Q)) + d*(U) (dF () -£,) -

Taking £ = rx{U) and { = r(U) with I # &, we obtain by strict hyperbolicity the classical
result :

Er(re(U)m(U)) =0, kE#1.
Let 77 denote the strictly positive constant defined by :

7 = dn{r;(Us), m5(Us)) -

By continuity of the eigenvectors of the Roe-matrix with respect to the left and right
arguments, we have :

(U (0)) (Ri(U,U7), - ) = (1 + C35(0) 1} Li(OLUs) + 3 Cis(8) Le(Ui, U7
P

AC >0, Vaen;1], [Cr(8)] < Cilef,

m
where the constant C, 1s independent of k, I, U}, U,., and § and where |af denctes Z |-
=1

We deduce :

/Fd?n(U)(dU, ePM (U, U;) — F(U))

< i ;o fl(l + Ci(0) LU, U-@PM (U, U,y — F(U(8))d6
i=1 0

5=1 k#y

+ i > iaji/; {Cr3 (8)Li(Ur, U )(@PM (U1, U, ) — F(U(8))]d9

Since we have :

SO, Ur) = F(U) + A7 (U, Un)U; = U0 + D (i) = 2(Us, U ) ") el U1, Ur)
€S (624)
and

|F(U(8)) = F(Un) — AQUL U )T (0 — U] < Colef?, (6.25)

we deduce

| L (U1, U Y @PM (UL, Un) — F(U(8)))] < Csla] + Celal® .

15
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Therefore, we have

i > [ajif; [Ci; (6) L (Un, U (@PM (U0, U,) — F(U(6))|d6

F=1k#j

<35 ol Cilal (Cslo] + Calal?)
=1 ki

<G8y Y logllelled +mCiCe Y Jojllaf®

=1 k#j =1

< CrCs ) ) legllarllel + mCiCe Y (las] + lok)egllaf?

J=1k#; i=1 k£

< (C10s + mCiCalal) 3 3 fsflonlled + mCiCo S el

J=1k#j =t

<(C1Cs +mCiCalel) 33 lasllarllal + mCiCy Y alal(lagl+ D fagl)
=1kt i=1 py

< (C1C3 + 2mCiOolel) 33 lesllonlla + mCi Gy Y fadlog P -

=1 k#j i=1

Finally, by combining the previous inequalities, we obtain the following upper bound for
the integral in the left hand side of (6.22) :

/F E(UYdU, 8PM (00, U,) — F(U))

m 1
< Zﬂf%‘/o (1+ Ci(8)) L (U, U N@PM (U1, U ) — F(U(8))do (6.26)
7=1

+Ci 3 S laslianllal + Cs 3 ladlas P

J=1k#£7 i=1
where the constants C4 and Cs can be chosen equal to :

{ Cy = C1(2mCy + Cs)
Cs =CiCam

when the oy satisfy foy| <1, I=1,...,m.

+ We consider an index j which is associated with an eigenvalue of dF(Uy) bounded
away from 0. By continuity of the Roe-matrix A(U;,U,) and Property 1.5, the neighbor-
hood V' can be chosen so that A;(U1, U,) also satisfies -

VU, U eV, |NULU) >8>0.

Let I; denote the quantity :
1
5= a5 [ (14 CoO) L (U U)(@PM (01, U,) - FU(0))ds (6.27)
which appears in the right hand side of inequality (6.26). By writing

LU0, U 8PM (U, U7) = 5Ly (00, V) [F(UD) + F(U,) — LA UI(T- - U] |

16
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one easily obtains

lA (UI, Ur){

I; = —C‘f}_/ (1 + Cj;(8))e; do

(F(Uz) + F(U)
2

+ oy [ 04 CO)L(0 ) ~ F(U(0))) s

The inequality

/01(1 +C3(0))L; (U1, Uy) [ F sy - £ 42— F(Ur)] "

= [ [0+ oo, [ - Py + FE T 4y

< | [+ ) L0, T PO - 0~ AU, U0 () - U] de

1
+ o [ 0+ CoN6 - )

< [ 1 G50 1250 U [ O)) ~ FW) — AU, U)W (e) ~ Uil a0

+ 1%’1/: [C55(0)116 — %ldﬁ

1
< (1+ CilaDCelaf® + 7lailCilel,

implies
4+ BTN oa ¢ G pago2 PO 4 o 4 GrloCrta + 2a2Cyt.
We finally obtain for || small enough
Lo L (6.28)

iy 4 7

which is valid for all indices j associlated with eigenvalues bounded away from 0. This
estimate remains valid even 1f the j-field is linearly degenerated, as noticed by Osher [20].

+ We assume now that A;(l/g) = 0 ( 7 is the only index which satisfies this property by
strict hyperbolicity). We emphasize on the fact that only two cases or possible :

S ={i} or S=0.
In order to simplify the notations, we define the quantity (; :

g:(w})
X,

z

if §={i}, &=
«if S=0, G=10.

— A {ULU),

From Remark 4.5, {; is always negative .
We now estimate the quantity 7; defined in (6.23). For U(0) defined in (6.23) by

1—1
G(8) = U1 +6(Us = Vi) = U+ 3 o Ry(Un, Up) + 6o Ri(U, Ury, 0<H<T,

1=1

17



we estimate
FU@0))= FU)+AULT) - (U(6) - U))
+ [F(U) — AU, U.)] (U (8) — U) (6.29)

n %dz F(U)U6) — U1, UB) — Th) + O(jaP) .

We now estimate the third term in the right hand side of (6.29). From property (1.4),
which is one of the generic properties of Roe matrices, we have after two differentiations
with respect to U; :

dF(Ur) = A(U1,Ur) — CM—f,;z,ﬂ(lif:, U:) - (U - Uh) (6.30)
2
d*F(U;) =2 %(Ub U:)— 8—%%—”(0:, U YU — U, ) (6.31)

which imply :
dFE(Uyy — AU, U,)

182A(0,V (6.32)
5%((]1: Ur)(Ur - UI; Ur bt UI) -

By inserting (6.32) in (6.29), we have :

1
= —§d2F(U1)(Ur—U1,‘) -

FU(8)) = FU) + AULU2) - (U(8) ~ V) + s F(U)(U(6) — Ui, U(8) = Ty) + O(laf®)
From (6.24) and the previous expansion we have

Li(Uy, U )(@PM(U), Uny = F(U(0))) = Xi(Us, Ur) ™0 + Gioi — Ai(Th, Uy Bex;

Li(UI, Ur)
2
Since LU, Ur) = I:(U;) + O(le|) where (I;};=1, _m is the dual basis associated with the

(ri)i=1,...,m, we have :

Li(Ur, U Y(@PM(UL U2) = F(U(8))) = X(Us, Ur) ™o + Giovs — Xs(U, U Yo

& F(UNU(9) = UL U(8) — U,) + O(laf?) .

+%a§9(1 —8)
1
+§I;(U;) - d*F(OYUr - U, U 1 — 1))
1
+§Ii(U1) . sz(U])(Uf — U{, U(B) — U{_l)
1
+5 () - & F(U)U; — U(8), Uiy — U7)
+0(lef’) .
After integration along the segment [U;_;,;], we have :
, 1 1
I= af/O (1 CalE) (U Ur)™ = AT U0 + G+ 5ond(1 —0)de + RE (6.33)
where
[Ri < Colea] 3 lajflon] + Crlog]jaf® .
ik

18



The constant (g 1s chosen so that
eV, V&, g, L{U)-d&FU)En) < Cs €l

and (7 is associated with the O([af?) .
We now estimate the eigenvalue A;{U;, U;) by differentiating the relation

A{Us, Ur) Bi(Us, Ur) = XU, Uy) Ra(U, Uy )
with respect to Uy and by taking U; = U in relation (6.31). We obtain :

ax(U, V)
au

from which we deduce the following estimate :

V¢, (UnLU1)-¢ = % L(U1) - @ F(U){E, :(Th))
XU U) = X0 + 5 (00) - PO (s — Uiy reU) + O(le)
Also, by using the fact that
VU, dN(U) € = {U) - 2EU)E (D))
we can derive the following Taylor expansions :
Ai(Ui1) = X(U) + L(TY) - d2F(Ug)(U;;1 — U, r(T)) + O(lef?)

and
Xi(Us) = X (Un) + L(U) - EFO)(U; = U, ri(U1)) + O(l2) -
From the estimates of A;(U;, U;) and A;(Ui~1), we deduce :

AdUn, Ur) = Xi(Uina) = % L(Uh) - EFUNU; — U — 2Uiy — U3), el U2)) + O(|od?)

= 2 L (U3) - PEUN(Ur ~ Usr) + (Ui = Usen), 100 + Ol )

% p2
- 2 + Rz 3
{6.34)
where a
[RF < 5 3 leil + Calaf” .
i
With similar arguments we obtain
oy
MU = AU Uy = 5+ R?, (6.35)

where |R7| is bounded above by the same quantity as |[R?] .

I'rom now on, we assume that ja] < CTen which implies

<1+ Cu(f) <

|\l R R

Ve elo,1},

[N

The integral f; can be split into
L= of ]01(1 + Ca(O))((1 — OA(UL T2)™ — 6M(UL U + %Q;G(l ~ 6))ds
va? (U4 Culo))Geas + L
Three cases must now be ditinguished in order to estimate I; -

19
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Admissible shocks in the sense of Lax : o; <0

Since (; is negative, we have the following inequalities :
1 . 1
Lo<al ] (L+ Ca(O)(1 = B)N(ULUr)™ = OX:(T, Up)+ + S a1 — 6))dd + R
]
ad i1
<2 / (1+ C:(8)) 6(1 — 8)d8 + R
o

a—?]lfi(l—ﬂ)d9+R}

iﬂfz P

+ R} .

Non-centered rarefactions : o; > 0 and either 2;(U;—1) > 0 or X(U;) <0

In either of these two cases {; = 0. Therefore,
1
1
L= a? [ (L4 CalB)(1 = (00, Uy = 0A(U, T} + G ost(1 — 0))d + R}
it

Let us assume that a; > 0 and A;(U;_1) > 0. Then, by introducing estimate {6.34) in
the previous relation for [« small enough, we obtain

L =o? [0 L Ca@) (UL T ) — (UL T) + -21~a;9(1 — 8))d6 + R!
o f01(1 + Ca(BN(—8X:(U,, Uy) + %a;ﬂ(l — 6))d6é + R}
<a? [[04 Ca@)(-00u() + %) + Laso(1 008+ 12 + SRR
<o? [(14 Calo)( 0gos+ ped(1— 0o 1 RE+ Sa |2

< — 1""!3/ (14 Cu(6))6°d6 + R! + cz ZIR2| .

Through simtlar arguments, we obtain the same estimate if we assume that a; > 0 and
A:{U:) € 0. Indeed, by using estimate {6.35) we obtain

L o= o / (14 C@))(=A:(Un, U+ + (1 = )0 {UL T ) = 1&,3(1 ~ 0))d6 + R}
< o? ]O (1+ Cal8)){(1 = O)\:(U1, Uy) + ﬁaie(l — 60))dé + R}
< o? /01(1 + Ca(0)((1 — 8)(M\:{T;) — —) + azaa — 8))d8 + R} + ~af|RY
<a? [[(14 Calb)(—go(1 ~ )+ hoio(1 — o)+ 1) + Lo )
losf? 1
< _T/o (1 + Ca(8))(1 — 6)%d6 + R + a2|R3§ .
Finally, in both cases, for || small enough we have :
o
- 12
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where R} is estimated as follows :

RE <IN+ 2e2(E S oyl + Galal?)

J?ﬁt
< Colesl Y- lasllex] + Crlasllaf + 3Cs0? 3 lag| + SCaalof?
JFk J#E
< 2Colo] 30 laslles + Crlaf?las) 3 oy + (Cr + SClesPlof?
7=1 k#§ i

< ( Ce +(2C7 + Cs)lal)lal Z > lesller] + (Cr + -Cs)laliaz P
i=1k#j5

<( Co +m(2C7 + Cs))lalzzla;fl&kl+(c7+ C‘s)lallorzl
J=1 k5

forjoyi<1, i=1,...,m.
Sonic points : A;(Ui—1) < 0 < X(U5)

In this case, ;= _Qz_(_“_’_z_) — X(U1,Ur)™ and
"

1 1
= o [ (1+ Cie()) () — Xe(Us, Uy Yo + 5o?6(1 = 0))d6 + R
0

Moreover, we can assume that oy is positive since the case o; < 0 has already been
studied. We now estimate the quantity g;(1]) by using the classical Hermite interpolation
polynocmials :

Ai(Uispyw(a; — w)z — A;(U;)wz(a’; — w) + A (T, U,-)w2(3a; — 2w} .

gi{w) = o2
1

By substituting the expansions (6.34) and (6.35) in the previous formula, one finds :

gi(tay)

T

Ve e [0,1] = MU}t + %t? + 12— )R? ~£2(1 - O)R? .

Since w; is the argument of the unique minimum of g; on the interval [0, a;], we have :

vi e [0,1],

i{Toeg 1
I < o} / (1 + CH(Q }(g ( il ) —_ (Ag(Uifl) -+ %— -+ R;Z)Q + %&ig(i - 5))d9 + R}

< a,?/ (14 CalO) Al Us-1)t + 22— X (Ui )0 %92)0{9 4R
0
where R? is bounded above as follows (see previous estimate of I2}) -
5 1 33, 2, p2), 3,2 2
B s+ gt (2= ez R+ St(1 — tyo? | R

<R+ 3a 2( > log] + Cslaf?)
J;ﬁ:

< (gcs +m(2C7 + 3Gl 3 D lajllon] + (Cr + 3C8) oo
7=V k#s

21



for la;| <1, i=1,...,m

Consider a small positive parameter € (0 < ¢ < 1) and assume that [o] < By

£
. . . Cr
applying the following uniform bounds

Yéell 1], 1-e<14+C3(0) <1 4¢.
to the integral in I; and by using the fact that A;(T/;_1) < 0 and o; > 0, we obtain the

inequality :

(1+€)

e n<at(0-9- D@+ S (aror - C2D) as

. . 1
Finally, by choosing ¢ = — and t = we obtain the upper bound

50 24

1
L<—— 3
800:= + 1.

e From the previous points, we have for |af small enough the following upper bound
for the entropy production, i.e. the left hand side of (6.22) :

U
[ Enwyen et LUy - rey < -2 5
U 742 {Us )0
1
& 2 P Y IR
i.2;(Uo)=0 7, 2{Us)=0
+C4 ZZ lecjlleller| + Cs Z lorf|es
7=1k#j
which yields, after elementary algebra :
U o DM B 2
/U Ea(U)U, OPM (U, U) - FU) < ~5 T o
! 3. 2j(Uo)#0
: > P
803 Ai{tp)=0

+Cs Z Z feoj ||k |l + Cho Z loxflers P -

I=1k#j 7=1

where the constants Cy and Cig can be chosen equal to :

D
Co=(Cy+ §C6 + m(2C; + 3CsY,
Cio=Cs+C7+3Cs .

By writing

Cro ) ledlegP < Ciola Y, o} + Colal 3 o8,

J=1 7. 25{Us)#0 7+ A{Us)=0

22

-26-



-97-

and by choosing |a| small enough, we finally obtain

U,
fU P (U)dU, 8P (U}, U,) — F(U))
I

S o@- s 2 PG Y lasliellal
I+ A5 (Up)#0

74 A5 (Ue)=0 F=1k#j

(6.36)
S _

oo |

Define z and y by

z= > |al,

3+ 2;(To)=0

y= Y. |al.

j! A_‘]"(‘,--]'ﬂ)¢0
Since there exists, by strict hyperbolicity, at most one index j such that Ai(Up) =0, we
have
3
2= 3 P
i, )‘J'(UO):C’

By splitting into two parts the Co term in the right hand side of (6.36) according to

Coy > lajllollal < Colal(zy + (z + y)y) < 2Cs|alzy + Colaly?

J=1k#j

we obtain the following upper bound for the entropy production :

v 1
/ " Po(UYdU, P (UL T,) - F(U) € — ——f(2.1) .

U 160

with
flz,y) = == — ay® + b(z%y + 247)
and where a and b can be chosen as two positive constants for |a| small enough.
We now show that, for « and y positive and small enough, f < 0 . We can rewrite bi

in the form :

(&, y) = 2(—2% + bzy + by?) — ay? .

The polynomial
P(z) = —2% + bry + by?

. } b
reaches its maximurm value at —g :

by b2 9
Pl=y=(—4+1b .
(F)=(7+0vy
Hence,

b2
Vl:zy > Os f(I,y) g ((Z—{_b)zia)y?

Therefore, for all positive = and 3 in the ball of center (0,0) and of radius 73 4 <0
1 + b
This last inequality ends our proof of theorem 6.1.
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7 Numerical Results

In this section, numerical results obtained with our entropy correction are presented
for two classical gas dynamics problems. The first problem is 2 1D shock-tube problem
with a strong sonic expansion and the second one is the classical 2D supersonic forward
facing step popularized by Woodward and Colella [30].

The Euler equations governing the flow of an inviscid compressible thermally per-
fect gas with a constant specific heat ratio of 1.4 are solved by a finite volume MUSCL
appproach [27]. Finite volume methods are based on the resolution of an approximate
Riemann problem at each cell interface {7] {11]. For the shock-tube problem, Roe’s origi-
nal linearization [23] has been used. A Roe-type approximate Riemann solver in the sense
of properties (2.8)-(2.10) which is based on a shock curve decomposition [17] has been
used for the second problem. In both test cases, computations have been performed with
and without the entropy correction. Second order accuracy is achieved spatially through
a multidirnensionnal MUSCL interpolation of the density, momentum and pressure (see
details in [5]). The limitation procedure is a 2D version of the minmod limiter [18]. The
time discretization is a second order Runge-Kutta scheme (Heun’s scheme}.

We have selected the following shock-tube problem

Pr M,

Pr
— =10.03, — =0.008, =2.46,
pi P M;

because a strong sonic rarefaction is present in the exact solution (p denotes the density,
p the pressure, and M the Mach number). First order solutions have been computed on
different grids (from 100 to 1600 cells). A non-physical expansion shock is present when
Roe’s method is used without any correction. In comparison with the exact solution,
computations with the entropy correction show a small discrepancy in the vicinity of the
sonic point. This phenomenon is also present when using the Godunov or Osher schemes
(see [29] and [2]) and tends to disappear when the mesh is refined and when the entropy
correction is applied (see the density plots on figure 4). The evolution of the LY, L2, and
L= residuzal norms of the density is plotted in figure 5. The L! and L? error norms behave
approximately like O(h) while solutions computed with Roe’s unmodified scheme exhibit
an expansion shock which behaves like O(1) (see figure 4).

DENSITY DENSITY
199 1. 50
1. e _ 1. 20
2. 50 _| 2.5 _
2. 28 a. 93
T I T I Y [ T T ] T I I I T
7. 09 @ 25 2. 50 B.75 129 2. 00 3. 25 2. 52 Q.75 189
ABSLCISSA ABSCISSA |

Figure 4: Density profiles obtained for different meshes with and without entropy cor-
rection compared with the exact sclution for the shock-fube problem.
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Figure 5: Logarithm of the L', L2, and L* residual norms of the density.

The second problem considered is a supersonic flow at Mach 3 arriving on a step of
height 0.2 in a channel of total height 1 (see the survey paper [3G]). A cartesian grid of
step Az = Ay = 1/40 was used (see figure 6). At time £ = 0 the step is-introduced in

T
k| 1|

[ T

Figure 6: Grid used for the supersonic forward facing step (Az = Ay = 1/40).

the upstream flow. The interaction of the flow with the step creates a detached shock
wave ahead of the step which reflects on the upper walil of the channel and then again
downstream on the lower wall. The flow behind the detached shock wave expands around
the corner of the step and is transonic in this region (see figure 39). The sonic line which is
attached to the corner is a good test for our entropy correction (see also [24]). In contrast
with the approach in [30], no special treatment based on the physical phenomenology has
been applied to the cells near the corner. Al of the results for this problem have been
computed with the second order accurate scheme. The density and pressure distributions
(figures 7 to 38) from times t = 0 to { = 4 every half time unit, the timescale being defined
as the ratio of the unit length to the upsirearn sound velocity, ilustrate the main features of
the unstationnary phase of the flow described previously. Thirty equaliy spaced contours
from one extreme contour level to another are shown in each plot. When no correction is
applied, the sonic line attached to the corner of the step appears clearly like a discontinuity
(see e.g., figures 7, 18, 23, 34). On the other hand, the plots obtained with the eniropy
correction give a better description of the transonic expansion fan in this region.
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Figure 10: Density contours at time t = 2.0 without entropy correction.
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Figure 11: Density contours at time t = 0.5 with entropy correction.

[igure 14: Density contours at time t = 2.0 with entropy correction.
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Figure 15: Density contours at fime t = 2.5 without entropy correction.
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g B RN

Figure 18

: Density contours at time t = 4.0 without entropy correction.
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Figure 22: Density contours at time t = 4.0 with entropy correction.
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Figure 23: Pressure contours at time t = 0.5 without entropy correction.

E

Figure 24: Pressure contours at time t = 1.0 without entropy correction.

Figure 26: Pressure contours at time t = 2.0 without entropy correction.
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Figure 30: Pressure contours at time t = 2.0 with entropy correction.
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Figure 34: Pressure contours at time t = 4.0 without entropy correction.
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Figure 38: Pressure contours at time t = 4.0 with entropy correction.
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Figure 39: Mach 1 1so-values {(bold lines) at time ¢ = 4 for the supersonic step problem.

8 Conclusion

We have proposed a non-parameterized approach to entropy-enforcement for Roe-
type schemes. It 1s based on the exact resolution of a Riemann problem associated with
a Hermite interpolation of the physical flux rather than an a priori representation of
the solution as propesed in previous work. In the scalar convex case, we have proved
convergence of the method of lines to the unique entropy solution. We have also proved
that this method is consistent in the small with the entropy inequality for hyperbolic
systems of conservation laws. Numerical results for the Euler equations show that on a
given mesh non-physical expansion shocks disappear. Moreover, the implementation of
this entropy correction is easy and inexpensive in existing computer codes.

Aknowledgments : We thank Professor Pierre-Arnaud Raviart for encouraging us

to study the system case.
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