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A variation on the “infsup” condition 

Scope of the lecture

1) One field study

2) Two fields analysis

3) Three fields formulation

4) Answer to an old question put by J. F. Mâıtre
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One field study 

A real Hilbert space H

SH = unity sphere in H : {h ∈ H, ‖ h ‖= 1}

BH = unity ball in H : {h ∈ H, ‖ h ‖≤ 1}

H’ : topological dual of Hilbert space H

If ζ ∈ H ′, then < ζ, h >∈ IR and ‖ ζ ‖= sup {< ζ, h >, h ∈ BH} .

Following I. Babuška (1971) :

consider two Hilbert spaces Y and Z

a continuous bilinear form k : Y × Z −→ IR

introduce two associated linear operators

K : Y −→ Z ′ , < Ky, z >= k(y, z), y ∈ Y, z ∈ Z

K ′ : Z −→ Y ′ , < y, K ′z >= k(y, z), y ∈ Y, z ∈ Z .

What are necessary and sufficient conditions to get K ∈ Isom (Y, Z ′) ?
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One field study 

On one hand, K−1 must be continuous :

∃ γ > 0,∀ y ∈ Y, ‖ Ky ‖ ≥ γ ‖ y ‖

equivalently ∃ γ > 0, ∀ y ∈ SY , ∃ z ∈ BZ , k(y, z) ≥ γ

equivalently ∃ γ > 0, inf
y∈Y

sup
z∈Z

k(y, z)

‖ y ‖ ‖ z ‖
≥ γ

the famous “infsup” condition !

On the other hand,

if z is given in SZ , ∃ ζ ∈ Z ′ such that < ζ, z >6= 0

the range of K is equal to Z ′ then ∃ y0 ∈ Y, Ky0 = ζ

then k(y0, z) =< Ky0, z >=< ζ, z >6= 0

and ∀ z ∈ SZ , sup
y∈Y

k(y, z) = +∞

the not so famous “infinity” condition.
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One field study 

Babuška’s theorem (1971) :

the infsup condition ∃ γ > 0, ∀ y ∈ SY , ∃ z ∈ BZ , k(y, z) ≥ γ

and the infinity condition ∀ z ∈ SZ , sup
y∈Y

k(y, z) = +∞

are necessary and sufficient conditions to get K ∈ Isom (Y, Z ′) .

Second fundamental result

we have the equivalence K ∈ Isom (Y, Z ′) ⇐⇒ K ′ ∈ Isom (Z, Y ′)

We deduce from these two theorems that

if K is an isomorphism from Y onto Z ′, we have the

second infsup condition ∃ γ′ > 0, ∀ z ∈ SZ , ∃ y ∈ BY , k(y, z) ≥ γ′

second infinity condition ∀ y ∈ SY , sup
z∈Z

k(y, z) = +∞ .
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Two fields analysis 

Classical references : O. Ladyzhenskaya (1963)
F. Brezzi (1974)

V. Girault and P.A. Raviart (1979, 1986)

Consider two Hilbert spaces X and M and

two continuous bilinear forms a : X × X −→ IR

b : X × M −→ IR

the associated linear operators

A : X −→ X ′ , < Au, v >= a(u, v), u ∈ X, v ∈ X

B : X −→ M ′ , < Bu, q >= b(u, q), u ∈ X, q ∈ M

B′ : M −→ X ′ , < u, B′q >= b(u, q), u ∈ X, q ∈ M .

In the framework of the first section : Y = Z = X × M

and k((u, p), (v, q)) = a(u, v) + b(u, q) + b(v, p) .
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Two fields analysis 

Operator Φ : X × M −→ X ′ × M ′

associated with the bilinear form k(•, •) is defined by blocs :

Φ =

(

A B′

B 0

)

.

In order to study if Φ is an isomorphism, consider f ∈ X ′, g ∈ Z ′

and try to solve the system : (1) Au + B′p = f
(2) Bu = g .

Of course the kernel V of operator B has a crucial role ;

define V = kerB = {v ∈ X, ∀ q ∈ M, b(v, q) = 0},

use the orthogonality decomposition in Hilbert spaces :

if u ∈ X, consider u0 ∈ V and u1 ∈ V ⊥ such that u = u0 + u1 .

Observe that the polar set V 0 ≡ {ζ ∈ X ′, ∀ v ∈ V, < ζ, v >= 0 }

can be identified with the dual space (V ⊥)′ of its orthogonal.
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Two fields analysis 

(1) Au + B′p = f
(2) Bu = g .

the equation (2) takes the form : (3) u1 ∈ V ⊥, Bu1 = g .

natural hypothesis (i) to solve (3) : B ∈ Isom (V ⊥, M ′)

then report u1 inside equation (1) and test this equation

against v ∈ V to eliminate the so-called pressure p :

(4) u0 ∈ V, ∀ v ∈ V, < Au0, v >=< f − Au1, v >

natural hypothesis (ii) to solve (4) : A ∈ Isom (V, V ′)

observe that equation (4) can also be written as f − Au ∈ V 0

then equation (1) takes the form : (5) p ∈ M, B′p = f − Au

and has a unique solution

due to the hypothesis (i) : B′ ∈ Isom (M, V 0)

and the fact that the right hand side in (5) belongs to polar space V 0.
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Two fields analysis 

“my version” of the Girault and Raviart’s theorem (1986) :

Φ =

(

A B′

B 0

)

is an isomorphism from X × M onto its dual

if and only if the hypotheses (i) B ∈ Isom (V ⊥, M ′)
and (ii) A ∈ Isom (V, V ′) are satisfied.

Other expression of hypothesis (i) : B′ ∈ Isom (M, (V ⊥)′ ≡ V 0))

Infsup condition associated with this formulation of hypothesis (i) :

∃β′ > 0, ∀ p ∈ SM , ∃ v ∈ BV ⊥ , b(v, p) ≥ β′

equivalently : ∃β′ > 0, ∀ p ∈ SM , ∃ v ∈ BX , b(v, p) ≥ β′

equivalently : ∃β′ > 0, inf
p∈M

sup
v∈X

b(v, p)

‖ v ‖ ‖ p ‖
≥ β′ classical !

Observe that the infinity condition

∀ v ∈ BV ⊥ , sup
p∈M

b(v, p) = +∞ is trivial !
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Two fields analysis 

Girault and Raviart’s theorem (1986), formulated by the authors :

Φ =

(

A B′

B 0

)

is an isomorphism from X × M onto its dual

if and only if the hypotheses

(i) ∃β′ > 0, inf
p∈M

sup
v∈X

b(v, p)

‖ v ‖ ‖ p ‖
≥ β′

and (ii) A ∈ Isom (V, V ′) are satisfied.

The infinity hypothesis for B′ operator is lost in this formulation

due to the particularity of the situation !
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Three fields formulation 

Motivation :
vorticity-velocity-pressure formulation of the Stokes problem

FD (1992, 2002), FD, S. Salaün and S. Salmon (2000, 2003) :

ω − curlu = 0
ν curl ω + ∇p = g
div u = 0 .

Integrate by parts and multiply by ad hoc coefficients : abstract form

W : space for vorticity, U for velocity, P for pressure

three continuous linear forms

j : W × W ∋ (ω, ϕ) 7−→ j(ω, ϕ) ∈ IR

r : W × U ∋ (ω, v) 7−→ r(ω, v) ∈ IR

d : U × P ∋ (u, q) 7−→ d(u, q) ∈ IR

bilinear form k : (W × U × P ) × (W × U × P ) −→ IR

k((ω, u, p), (ϕ, v, q)) = j(ω, ϕ) + r(ω, v) + r(ϕ, u) + d(u, q) + d(v, p)
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Three fields formulation 

associated linear operators :

J : W −→ W ′ , < Jω, ϕ >= j(ω, ϕ), ω ∈ W, ϕ ∈ W

R : W −→ U ′ , < Rω, v >= r(ω, v), ω ∈ W, v ∈ U

R′ : U −→ W ′ , < ω, R′v >= r(ω, v), ω ∈ W, v ∈ U

D : U −→ P ′ , < Du, q >= d(u, q), u ∈ U, q ∈ P

D′ : P −→ U ′ , < u, D′q >= d(u, q), u ∈ U, q ∈ P

linear system to solve :

(6) J ω + R′u = f

(7) Rω + D′p = g

(8) Du = h

orthogonal decomposition of the velocity :
u = u0 + u1, u0 ∈ kerD, u1 ∈ (kerD)⊥

orthogonal decomposition of the vorticity :
ω = ω0 + ω1, ω0 ∈ kerR, ω1 ∈ (kerR)⊥ .

Fifth European Finite Element Fair, 17-19 May 2007



Three fields formulation 

(6) J ω + R′u = f
(7) Rω + D′p = g
(8) Du = h

Equation (8) takes the form : (9) u1 ∈ (kerD)⊥, Du1 = h

natural hypothesis (iii) to solve (9) : D ∈ Isom ((kerD)⊥, P ′)

test second equation against v ∈ kerD to eliminate the pressure p :

< D′p, v >=< p, Dv >= 0

(10) ω1 ∈ (kerD)⊥, ∀ v ∈ kerD, < Rω1, v >=< g, v >

natural hypothesis (iv) to solve (10) : R ∈ Isom ((kerR)⊥, (kerD)′)

then equation (10) implies that g − Rω ∈ (kerD)0

and equation (7) takes now the form (11) D′p = g − Rω

then due to hypothesis (iii) : D′ ∈ Isom (P, (kerD)0)

equation (11) has a unique solution

Fifth European Finite Element Fair, 17-19 May 2007



Three fields formulation 

(6) J ω + R′u = f
(7) Rω + D′p = g
(8) Du = h

The fields u1, ω1 and p are known.

Test equation (6) against ϕ ∈ kerR : < R′u, ϕ >=< u, Rϕ >= 0

and report the value of ω1 :

(12) ω0 ∈ kerR, ∀ϕ ∈ kerR, < Jω0, ϕ >=< f − Jω1, ϕ >

natural hypothesis (v) to solve (12) : J ∈ Isom (kerR, (kerR)′)

then equation (12) implies that f − Jω ∈ (kerR)0

and equation (6) takes now the form

(13) u0 ∈ kerR, R′u0 = f − Jω − R′u1

due to hypothesis (iv) : R′ ∈ Isom (kerD, (kerR)0)

equation (13) has a unique solution.

Note the algorithm induced by this approach : u1, ω1 , p , ω0 ,u0.
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Three fields formulation 

Isomorphism Theorem with three fields

Let K be defined from W × U × P to W ′ × U ′ × P ′

by the matrix K =





J R′ 0
R 0 D′

0 D 0





then K is an isomorphism if and only if the three hypotheses
(v) J ∈ Isom (kerR, (kerR)′)
(iv) R ∈ Isom ((kerR)⊥, (kerD)′)
(iii) D ∈ Isom ((kerD)⊥, P ′) are satisfied

We can replace (iii) by D′ ∈ Isom (P, (kerD)0)

and (iv) by R′ ∈ Isom (kerD, (kerR)0) .

Note that the infinity condition associated to (iv) :

∀ϕ ∈ S(kerR)⊥ , sup
u∈kerD

r(ϕ, u) = +∞ is a priori not trivial !

Fifth European Finite Element Fair, 17-19 May 2007



Answer to an old question put by J. F. Mâıtre 

J.F. Mâıtre (Giens, Canum 1993) :
“What is the link between the three fields infsup conditions
and the classical two fields infsup conditions ?”

In other terms,





J R′ 0
R 0 D′

0 D 0



 =

(

A B′

B 0

)

?

ok when X = W × U , M = P , A =

(

J R′

R 0

)

, B = ( 0 D ) .

the infsup condition for B′ operator ∃β′ > 0, inf
p∈M

sup
v∈X

b(v, p)

‖ v ‖ ‖ p ‖
≥ β′

takes the analogous form for D’ : ∃ δ′ > 0, inf
p∈P

sup
v∈U

d(v, p)

‖ v ‖ ‖ p ‖
≥ δ′

At what precise conditions operator A is an isomorphism
from kerB = W × kerD onto its dual (kerB)′ = W ′ × (kerD)′ ?
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Answer to an old question put by J. F. Mâıtre 

Make attention that R′ is not exactly equal to R′ restricted to kerD !

The exact isomorphism condition R′ ∈ Isom (kerD, (kerR)0)

leads to an infsup condition

∃ ρ′ > 0, inf
u∈kerD

sup
ϕ∈(kerR)⊥

r(ϕ, u)

‖ ϕ ‖ ‖ u ‖
≥ δ′

that can be written equivalently

∃ ρ′ > 0, inf
u∈kerD

sup
ϕ∈W

r(ϕ, u)

‖ ϕ ‖ ‖ u ‖
≥ δ′

But the associated infinity condition

∀ϕ ∈ S(kerR)⊥ , sup
u∈kerD

r(ϕ, u) = +∞

remains a priori not trivial and has not to be dropped !

Many thanks to Christine Bernardi for a very fruitfull interaction !


