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Abstract
We propose to extend the multiple relaxation times lattice Boltzmann schemes with a addi-

tional projection step. For the explicit example of the D2Q9 scheme, we define this extended

method. We prove that in general the projection step does not change the asymptotic partial

differential equations at second order. We present four numerical test cases. One concerns

linear stability with a Fourier analysis with a single-vertex scheme. Three bidimensional

fluid flows with a coarse mesh have been tested: the Minion and Brown sheared flow, the

Ghia, Ghia and Shin lid-driven cavity and an unsteady acoustic wave. Our results indicate

that the bulk viscosity can be dramatically reduced with a better stability than the initial

scheme.

∗ This contribution submitted to Physics of Fluids has been presented at the 33rd Conference on

Discrete Simulation of Fluid Dynamics, Eidgenössische Technische Hochschule Zürich (Switzerland)

the 09 July 2024.
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François Dubois and Paulo Cesar Philippi

1) Introduction

The single relaxation time lattice Boltzmann schemes proposed by Higuera and Jiménez [33],

McNamara and Zanetti [45], Qian, d’Humières and Lallemand [51] have two origins: the

lattice gas automata of Hardy, Pomeau and de Pazzis [30] and Frisch, Hasslacher and

Pomeau [25], and the discrete velocities models for the Boltzmann equation introduced by

Carleman [11], Broadwell [9], and Gatignol [26].

The multiple relaxation times (MRT) lattice Boltzmann scheme is essentially due to d’Humiè-

res [35]. Two discrete representations are used: a representation of the populations of par-

ticles and a representation of the state with set of moments. The equilibrium macroscopic

moments are conserved during the collision and satisfy asymptotically a set of macroscopic

partial differential equations. The non-equilibrium moments are not conserved and relax

towards their equilibrium values in accordance with a set of relaxation times. This method

has been well understood since the work of Lallemand and Luo [39].

A new idea has been proposed by Shan et al. [53] and Philippi et al. [50] with the intro-

duction of Hermite polynomials to represent the velocity functions. A simplification of the

method, so-called “regularization” by Latt and Chopard [40], follows the main idea of the

work of Ladd [38], but with a single relaxation time. Both the MRT and the regularization

approaches are moment-based methods. The main difference between these two approaches

is that the MRT method modulates high-order moments through suitable relaxation param-

eters. In contrast, in the regularization method, the higher-order moments are filtered from

the representation. In addition, while the MRT approach is based on a set of orthogonal

polynomials generated by the Gram-Schmidt orthogonalization process, the regularization

approach is based on a set of Hermite polynomials.

The regularization method was further modified by Malaspinas [43] and extended to high-

order lattice Boltzmann models by Mattila et al. [47] with the introduction of recursion.

Recursion consists of expressing high-order moments in terms of lower-order advection mo-

ments. Consider for instance the flux of energy. This flux has two components: a diffusion

flux (heat flow) and an advection flux. In isothermal problems the diffusion flux is null.

Since the flux of energy is a third-order moment, this moment is reduced to its advec-

tion components and expressed in terms of second-order non-equilibrium moments and the

macroscopic velocity (an equilibrium moment). Therefore, instead of filtering the high-order

moments in the representation, these moments are expressed in terms of lower-order ones

using recursivity.

These regularization algorithms have had a major impact on operational calculation codes,

thanks to the simplification of the MRT algorithm and the gain in stability. We refer e.g. to

the contributions of Coreixas et al. [13], Feng et al. [24], Zhang et al. al [54], Liu et al. [41]

and Mattila et al. [47]. Morever, this regularization algorithm has been adapted to complex

flow simulations, see e.g. Cao et al. [10], Zhang et al. [55].

Independently of this dynamic, in a series of papers [17, 18, 19], one of us has proposed

a direct approach to bring to light the equivalent partial equations of a lattice Boltzmann

scheme. If we adopt an acoustic scaling where the space step always remains proportional to
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MRT lattice Boltzmann schemes with projection

the time step, the result is a family of asymptotic partial differential equations parameterized

by the space step. This expansion have been validated in several numerical experiments

(see, for example [7, 21, 22]). The formalism of the Chapman-Enskog expansion, a Gaussian

equilibrium assumption or Hermite polynomials, are not necessary, in this approach. A

simple Taylor expansion of the numerical algorithm is sufficient. The major assumption is

that the equilibrium particle distribution is a regular function of the conserved moments.

Moreover, the introduction of the differential advection operator in the basis of moments and

the “ABCD” decomposition of this operator [19] enables us to deal with a number of schemes

that fit into the paradigm proposed by d’Humières [35]. Then the analysis of MRT lattice

Boltzmann schemes can be conducted without any a priori reference to physical properties.

The equivalent partial differential equations can be formally derived from the knowledge of

the equilibrium value of the non-equilibrium moments and the relaxation parameters.

As a result, the extension of this family of lattice Boltzmann schemes with regularized

methods should make it possible to transfer the qualities of regularized schemes to the

MRT approach: fewer parameters to tune and better stability properties. But it poses

a difficult methodological problem because the two paradigms are apparently incompati-

ble. Regularized methods are based on Hermite polynomials representations of equilibrium

moments,whereas the MRT approach on a set of orthogonal polynomials obtained by the

Gram-Schmidt orthogonalization procedure. In this contribution, we propose a first step to

combine the qualities of regularized lattice Boltzmann schemes with the generality of the

multiple relaxation times approach.

We follow a totally discrete approach without any need of any specific hypothesis relative

to the moments. A fundamental remark is the consequence of the matrix structure of the

differential advection operator ABCD in the basis of moments. We have observed in [23] that

three families of moments emerge from the asymptotic analysis of lattice Boltzmann schemes:

the conserved moments W that define the unknowns of the equivalent partial differential

equations, the nonconserved “viscous moments” Ye for setting the first order terms and the

nonconserved “energy transfer moments” Yv for adjusting second-order dissipation. Precise

definitions of these quantities are given below.

In this contribution, we propose a new “multiple relaxation times with projection” lattice

Boltzmann scheme inspired by kinetic regularization involving Hermite polynomials (see e.g.

[40, 43, 47] and many others!). Our motivation is to be able to make the computations very

near the stability limit. In that case, the use of a coarse mesh is possible and the global cost

of the computation is reduced.

The outline of our contribution is the following. We remind in section 2 the essential about

the multiple relaxation time schemes for fluids, in particular for the D2Q9 lattice Boltzmann

scheme. Then in section 3, we explain how the equivalent partial equivalent differential

equations emerge from an asymptotic analysis based on the ABCD decomposition. The

present projected multiple relaxation time D2Q9 scheme is presented in section 4. We insist

on the importance of the hollow structure of the matrix of advection in the basis of moments.

The asymptotic analysis of the MRT scheme with projection is conducted in section 5. The
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François Dubois and Paulo Cesar Philippi

first numerical experiments for a linear model problem are presented in section 6. In section 7,

we focus on two fluid applications for two space dimensions. An unsteady linear acoustics

problem is presented in section 8. Some words of conclusion are proposed in section 9. The

section 10 is an appendix developing a technical point relative to the multiple relaxation

times lattice Boltzmann schemes with projection.

2) Multiple relaxation time D2Q9 scheme for fluids

In this section, we recall the basics about the D2Q9 lattice Boltzmann scheme for isothermal

fluid flow, studied in detail by Lallemand and Luo [39]. Recall that in the MRT framework

proposed by d’Humières [35], the mesoscopic scale is represented with the vector f describing

the distribution of particle populations over the discrete set ej for j = 0, . . . , b − 1 of

microscpîc velocities, and the vector m of moments. The vector of particles is associated to

a velocity rose described on a square lattice at the Figure 1. A scale speed λ is associated

to the ratio between the space step ∆x and the time step ∆t:

λ =
∆x

∆t
.

0 1

2

3

4

56

7 8

Figure 1: The nine velocities of the D2Q9 scheme [39].

The velocities ej for 0 ≤ j ≤ b ≡ 8 of the D2Q9 scheme described in Figure 1 admit the

components ejx, ejy. They are scaled with the numerical velocity λ. We have

{ej} =

(

0 λ 0 −λ 0 λ −λ −λ λ

0 0 λ 0 −λ λ λ −λ −λ

)

.

The particles and the moments are linked together with the “d’Humières matrix” M such

that

m = M f . (1)

Following [39], the matrix M is constructed with the help of polynomials relative to the

velocities ei. We have

Mij = Pi(ejx, ejy)


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MRT lattice Boltzmann schemes with projection

with a family of polynomials given in [39] by


























































P0(ejx, ejy) = 1

P1(ejx, ejy) = ejx
P2(ejx, ejy) = ejy
P3(ejx, ejy) = 3 (e2jx + e2jy)− 4λ2

P4(ejx, ejy) = e2jx − e2jy
P5(ejx, ejy) = ejx ejy
P6(ejx, ejy) =

[

3 (e2jx + e2jy)− 5λ2
]

ejx
P7(ejx, ejy) =

[

3 (e2jx + e2jy)− 5λ2
]

ejy
P8(ejx, ejy) = 9

2
(e2jx + e2jy)

2 − 21
2
(e2jx + e2jy) + 4λ4

.

The matrix M is an invertible fixed matrix. Following [39], its lines are chosen orthogonal

and each line corresponds to a specific moment. We have for the D2Q9 scheme:

M =































1 1 1 1 1 1 1 1 1

0 λ 0 −λ 0 λ −λ −λ λ

0 0 λ 0 −λ λ λ −λ −λ

−4λ2 −λ2 −λ2 −λ2 −λ2 2λ2 2λ2 2λ2 2λ2

0 λ2 −λ2 λ2 −λ2 0 0 0 0

0 0 0 0 0 λ2 −λ2 λ2 −λ2

0 −2λ3 0 2λ3 0 λ3 −λ3 −λ3 λ3

0 0 −2λ3 0 2λ3 λ3 λ3 −λ3 −λ3

4λ4 −2λ4 −2λ4 −2λ4 −2λ4 λ4 λ4 λ4 λ4































. (2)

In this contribution, the nine moments are represented with the following notations:

m =
(

ρ, Jx, Jy, ε, pxx, pxy, qx, qy, h
)t
.

We observe that we have by definition pxx =
∑

j

(

e2jx − e2jy
)

fj and pxy =
∑

j ejx ejy fj.

Moreover, following Lallemand and Luo [39], the three moments ε, pxx and pxy associated

with polynomials of degree two define a second-order tensor that describes the transfer of

momentum, including the tensor ταβ responsible for the viscous transfer, while qx and qy
are third-order moments describing the transfer of energy.

The density ρ and the two components (Jx, Jy) of the momentum constitute the vector

W of conserved variables:
W = (ρ, Jx, Jy)

t . (3)

The other moments
Y = (ε, pxx, pxy, qx, qy, h)

t (4)

are the non-equilibrium moments. We have

m =

(

W

Y

)

. (5)

The relaxation process constructs locally a new vector of moments denoted by m∗ with a

local and nonlinear algorithm. First the conserved moments are invariant in this process:

ρ∗ = ρ, J∗
x = Jx, J

∗
y = Jy


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François Dubois and Paulo Cesar Philippi

and we have simply W ∗ = W . Secondly, we define a vector Φ(W ) of non-conserved moments

at equilibrium. We introduce the two components (u, v) of the macroscopic velocity with

the relations
Jx ≡ ρ u , Jy = ρ v.

For the D2Q9 scheme for fluid flows, we have the classical relations [12, 51]:


































Φε = −2λ2 ρ + 3 ρ (u2 + v2)

Φxx = ρ (u2 − v2)

Φxy = ρ u v

Φqx = −ρ λ2 u

Φqy = −ρ λ2 v

Φh = ρ λ4 − 3 ρ λ2 (u2 + v2)

(6)

and
Φ(W ) =

(

Φε, Φxx, Φxy, Φqx, Φqy, Φh

)t
. (7)

Then the relaxation operates on the six non-conserved moments and it is parameterized

by four “relaxation coefficients” sε, sµ, sq, sh. These coefficients characterize the process of

relaxation with a family of multiple times. We have


































ε∗ = ε+ sε (Φε − ε)

p∗xx = pxx + sµ (Φxx − pxx)

p∗xy = pxy + sµ (Φxy − pxy)

q∗x = qx + sq (Φqx − qx)

q∗y = qy + sq (Φqy − qy)

h∗ = h+ sh (Φh − h) .

(8)

We write the previous relations in a compact vector form. We first introduce a diagonal

matrix containing all the relaxation coefficients:

S = diag
(

sε, sµ, sµ, sq, sq, sh
)

. (9)

For the approximation “BGK” of the Boltzmann equation initially introduced by Bhatnagar,

Gross and Krook [4], all relaxation coefficients are identical.

Then the relations (8) can be written

Y ∗ = Y + S (Φ(W )− Y ) . (10)

At the end of the relaxation process, we have constructed the vector m∗ of “moments after

relaxation”:
m∗ ≡

(

W ∗

Y ∗

)

=

(

W

Y + S (Φ(W )− Y )

)

and the vector of equilibria Φ(W ) is evaluted thanks to the relation (7).

The second step of one iteration of a MRT lattice Boltzmann scheme is the linear advection

process. Once the vector m∗ of moments after relaxation is define, it is transformed into

particles populations:
f ∗ = M−1 m∗ .

Then these particles are advected with the velocities ej of the scheme:

fj(x, t+∆t) = f ∗
j (x− ej ∆t, t) (11)


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MRT lattice Boltzmann schemes with projection

which corresponds to the method of characteristics for the advection equation

∂fj
∂t

+ eαj
∂fj
∂xα

= 0

when it is exact!

3) Equivalent partial differential equations

The “ABCD” method for deriving the asymptotic equilavent partial differential equations for

the macroscopic moments (Dubois [19]) corresponds to a mathematical reformulation of the

discrete multiscale Chapman-Enskog analysis proposed by Alexander et al. [1], McNamara

and Alder [44], Qian and Zhou [52], as established in Dubois et al. [20].

We first introduce the advection operator in the basis of moments

Λ = M diag
(

∑

1≤α≤d

eα ∂α

)

M−1 .

For the D2Q9 lattice Boltzmann scheme and the d’Humières matrix M proposed in Eq. (2),

we have

Λ =



































0 ∂x ∂y 0 0 0 0 0 0
2λ2

3
∂x 0 0 1

6
∂x

1
2
∂x ∂y 0 0 0

2λ2

3
∂y 0 0 1

6
∂y −1

2
∂y ∂x 0 0 0

0 λ2 ∂x λ2 ∂y 0 0 0 ∂x ∂y 0

0 λ2

3
∂x −λ2

3
∂y 0 0 0 −1

3
∂x

1
3
∂y 0

0 2λ2

3
∂y

2λ2

3
∂x 0 0 0 1

3
∂y

1
3
∂x 0

0 0 0 λ2

3
∂x −λ2 ∂x λ2 ∂y 0 0 1

3
∂x

0 0 0 λ2

3
∂y λ2 ∂y λ2 ∂x 0 0 1

3
∂y

0 0 0 0 0 0 λ2 ∂x λ2 ∂y 0



































.

This matrix is decomposed into four blocks:

Λ =

(

A B

C D

)

(12)

with four matrices A, B, C and D of differential operators associated to the decomposition

proposed in Eq. (5) of the moments:

A =





0 ∂x ∂y
2λ2

3
∂x 0 0

2λ2

3
∂y 0 0



 , B =





0 0 0 0 0 0
1
6
∂x

1
2
∂x ∂y 0 0 0

1
6
∂y −1

2
∂y ∂x 0 0 0



 ,

C =



















0 λ2 ∂x λ2 ∂y
0 λ2

3
∂x −λ2

3
∂y

0 2λ2

3
∂y

2λ2

3
∂x

0 0 0

0 0 0

0 0 0



















, D =



















0 0 0 ∂x ∂y 0

0 0 0 −1
3
∂x

1
3
∂y 0

0 0 0 1
3
∂y

1
3
∂x 0

λ2

3
∂x −λ2 ∂x λ2 ∂y 0 0 1

3
∂x

λ2

3
∂y λ2 ∂y λ2 ∂x 0 0 1

3
∂y

0 0 0 λ2 ∂x λ2 ∂y 0



















.


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François Dubois and Paulo Cesar Philippi

Then, as remarked in [19], each iteration (11) of the lattice Boltzmann scheme can be

expressed as an exact exponential expression:

m(x, t+∆t) = exp(−∆tΛ) m∗(x, t) . (13)

In practice, we must consider the development of the exponential of an operator:

exp(−∆tΛ) = I−∆tΛ +
∆t2

2
Λ2 +O(∆t3) .

Moreover, we have to be careful with the non commutation of the product of two matrices,

even if all the partial differential operator commute! For example, we have

Λ2 = Λ Λ =

(

A B

C D

)(

A B

C D

)

=

(

A2 +B C AB +BD

C A+DC C B +D2

)

.

With a formal expansion of the evolution into several scales:

∂t = ∂t1 +∆t ∂t2 +O(∆t2) ,

the Taylor expansion with ABCD method revisit the multiscale Chapman-Enskog. The

equivalent partial differential equations of the scheme can be written










































∂t1W + Γ1 = 0

∂t2W + Γ2 = 0

Γ1 = AW +B Φ(W )

Y = Φ(W ) + ∆t S−1 Ψ1 +O(∆t2)

Ψ1 = dΦ(W ).Γ1 − (CW +DΦ(W ))

Σ ≡ S−1 − 1
2
I

Γ2 = B ΣΨ1 .

(14)

In the relations (14), we have introduced the diagonal matrix Σ. This matrix is called the

Hénon matrix [32]. For the D2Q9 scheme, we have

Σ = diag (σε, σµ, σµ, σq, σq, σh) (15)

and in particular
σε =

1

sε
−

1

2
, σµ =

1

sµ
−

1

2
. (16)

As a reult of the previous asymptotic analysis, the isothermal Navier-Stokes emerge at

second order when the third order terms relative to the velocity are neglected (see e.g.

[15, 16, 19, 27, 36, 39] and many other references). The asymptotic model satisfies the

conservation of mass and momentum:






∂tρ+ ∂x(ρ u) + ∂y(ρ v) = 0

∂t(ρ u) + ∂x(ρ u
2 + p) + ∂y(ρ u v) = ∂xτxx + ∂yτxy

∂t(ρ v) + ∂x(ρ u v) + ∂y(ρ v
2 + p) = ∂xτxy + ∂yτyy .

(17)

The pressure is given by the relation p = c20 ρ with the speed of sound c0 obtained by the

relation c0 =
λ√
3
. The viscous tensor in right hand side of (17) satisfies







τxx = 2µ ∂xu+ (ζ − µ) (∂xu+ ∂yv)

τxy = µ (∂xv + ∂yu)

τyy = (ζ − µ)(∂xu+ ∂yv) + 2µ ∂yv .


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MRT lattice Boltzmann schemes with projection

The shear viscosity µ satisfies µ = λ
3
ρ σµ ∆x and the bulk viscosity ζ is given by the

relation ζ = λ
3
ρ σε ∆x.

The preceeding algebraic relations are valid only for two space dimensions. For D space

dimensions, we have

ταβ = µ
(

∂αuβ + ∂βuα

)

+
(

ζ −
2

D
µ
)

(divu) δαβ

and the trace of the viscous stress is given by ταα = ζ D (divu) with ζ the bulk viscosity.

Moreover, with the usual definition of viscous stress tensor employed in kinetic theory, where

this tensor is interpreted as the macroscopic flux of momentum, a minus sign arises. It differs

from the convention used in the Fluid Mechanics theory, where the tensor represents the

stress exerted on the fluid by neighboring fluid particles and the minus sign is absent.

We observe that the equilibrium value of the viscous moments ε, pxx, pxy fix perfect fluid

terms. For this reason, the vector Ye of viscous moments is defined by

Ye =





ε

pxx
pxy



 . (18)

In a similar way, the equilibrium value of the energy transfer moments qx, qy allow adjust-

ment of second-order terms. In this contribution, the energy transfer moments Yv are given

according to

Yv =





qx
qy
h



 . (19)

The expression of the equilibrium of the “ghost moment” h has been studied by Lallemand

and Luo [39], Dellar [15, 16], Geier [27] among others. We observe here that this last moment

has no impact on the second order equations (17).

4) Projected multiple relaxation time D2Q9 scheme

Following the remark done at the end of the previous section, we replace the family Y of

non-conserved moments by two families Ye and Yv with Y = (Ye, Yv)
t. The important

point concerns the advection operator Λ in the basis of moments. For isothermal D2Q9

studied in the previous section, the operator Λ contains a certain number of zero blocks, as

observed therehein:

Λ =





































0 ∂x ∂y 0 0 0 0 0 0
2λ2

3
∂x 0 0 1

6
∂x

1
2
∂x ∂y 0 0 0

2λ2

3
∂y 0 0 1

6
∂y −1

2
∂y ∂x 0 0 0

0 λ2 ∂x λ2 ∂y 0 0 0 ∂x ∂y 0

0 λ2

3
∂x −λ2

3
∂y 0 0 0 −1

3
∂x

1
3
∂y 0

0 2λ2

3
∂y

2λ2

3
∂x 0 0 0 1

3
∂y

1
3
∂x 0

0 0 0 λ2

3
∂x −λ2 ∂x λ2 ∂y 0 0 1

3
∂x

0 0 0 λ2

3
∂y λ2 ∂y λ2 ∂x 0 0 1

3
∂y

0 0 0 0 0 0 λ2 ∂x λ2 ∂y 0





































.


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François Dubois and Paulo Cesar Philippi

In other terms, we have a 3 by 3 structure composed by six non-zero blocks of 3 by 3 matrices:

Λ =





A Be 0

Ce 0 Dev

0 Dve Dvv



 (20)

with

A =





0 ∂x ∂y
2λ2

3
∂x 0 0

2λ2

3
∂y 0 0



 , Be =





0 0 0
1
6
∂x

1
2
∂x ∂y

1
6
∂y −1

2
∂y ∂x



 , Ce =





0 λ2 ∂x λ2 ∂y
0 λ2

3
∂x −λ2

3
∂y

0 2λ2

3
∂y

2λ2

3
∂x



 ,

Dev =





∂x ∂y 0

−1
3
∂x

1
3
∂y 0

1
3
∂y

1
3
∂x 0



 , Dve =





λ2

3
∂x −λ2 ∂x λ2 ∂y

λ2

3
∂y λ2 ∂y λ2 ∂x
0 0 0



 , Dvv =





0 0 1
3
∂x

0 0 1
3
∂y

λ2 ∂x λ2 ∂y 0



 .

In consequence, it is natural to propose a new structure for the moments with three compo-

nents:

m =





W

Ye

Yv



 . (21)

First the conserved moments

W =





ρ

ρ u

ρ v



 , (22)

then the non conserved moments Y decomposed into two sub-families:

Y =

(

Ye

Yv

)

(23)

with the Eulerian moments Ye introduced in (18) and the viscous moments Yv defined at

the relation (19). With this new sub-structure, the non conserved moments at equilibrium

can be written
Φ(W ) =

(

Φe

Φv

)

.

The eulerian moments at equilibrium Φe are obtained with the usual relations (6):

Φe =





Φε

Φxx

Φxy



 =





−2λ2 ρ + 3 ρ (u2 + v2)

ρ (u2 − v2)

ρ u v



 (24)

and we take for the viscous moments at equilibrium Φv (see again (6)):

Φv =





Φqx

Φqy

Φh



 =





−ρ λ2 u

−ρ λ2 v

ρ λ4 − 3 ρ λ2 (u2 + v2)



 . (25)

The defect of equilibrium Ψ is also decomped into two components:

Ψ1 =

(

Ψe

Ψv

)

. (26)

Recall that the Hénon matrix Σ is defined according to

Σ = S−1 −
1

2
I. (27)


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MRT lattice Boltzmann schemes with projection

This diagonal matrix is now considered as decomposed into two blocks:

Σ = diag
(

Σe , Σv

)

(28)

and the first block Σe is a diagonal 3 by 3 matrix:

Σe = diag (σε, σµ, σµ). (29)

with σε and σµ specified in relation (16).

5) Asymptotic analysis of the MRT scheme with projection

We first revisit the classic MRT scheme when the struture emerging in relations (20)-(29)

is taken into account. With this choice of a substruture, and in particular the advection

matrix in the basis of moments given according to the block decomposition (20), the equiv-

alent partial differential equations of the second order of the MRT scheme described by the

relations (14) take the form










































∂t1W + Γ1 = 0

Γ1 = AW +Be Φe(W )

Ye = Φe(W ) + ∆t S−1
e Ψe +O(∆t2)

Ψe = dΦe(W ).Γ1 − (Ce W +Dev Φv(W ))

Σe = diag(σε, σµ, σµ)

Γ2 = Be Σe Ψe

∂t2W + Γ2 = 0 .

(30)

First observe that the relations (30) are completely equivalent to the initial system (14). This

property can be demonstrated as follows. We have from (14) the relation ∂t1W + Γ1 = 0.

Then the following calculus

Γ1 = AW +B Φ(W ) = AW +Be Φe(W )

establishes the first order relations in (30). For the nonconserved moments, the relation

Y = Φ(W ) + ∆t S−1 Ψ1 + O(∆t2) is splitted into two components according to (23). For

the first component, we have Ye = Φe(W ) +∆t S−1
e Ψe +O(∆t2). Now, the two sub-vectors

decomposition (26) introduces a first component Ψe. from the structure (20), we deduce

Ψe = dΦe(W ).Γ1 − (Ce W +Dev Φv(W )).

Then, due to the substructuring of the Hénon matrix, we have (28)

Γ2 = B ΣΨ1 = Be Σe Ψe

and the set of relations (30) is established. □

We observe now that, as previously observed in [40, 43, 47] in an other context, the equilibria

(25) are related to the equilibria (24) according to the relation

Φv = KW + LΦe (31)

with

K =





0 −λ2 0

0 0 −λ2

−λ4 0 0



 , L =





0 0 0

0 0 0

−λ2 0 0



 . (32)


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François Dubois and Paulo Cesar Philippi

The relation (31) has been inspired by the recurrence relations between Hermite polynomials,

developed in Malaspinas [43] and Mattila et al. [47]. Observe that we have simply






−ρ λ2 u = −λ2 (ρ u)

−ρ λ2 v = −λ2 (ρ v)

ρ λ4 − 3 ρ λ2 (u2 + v2) = −λ4 ρ− λ2
(

− 2λ2 ρ + 3 ρ (u2 + v2)
)

and the relation (31) is a simple consequence of (24) and (25). □

In conclusion of this important remark, we have obtained with (31) a simple expression of the

viscous moments at equilibrium Φv with a linear expression of the conserved variables W

and the eulerian moments Φe.

From the previous remark, we define a projection operator P in the space of moments by

the relation

P





W

Ye

Yv



 =





W

Ye

KW + LYe



 (33)

with the help of the two matrices K and L introduced at the relation (32). The projected

vector Pm has three compoents:






(Pm)W = W

(Pm)e = Ye

(Pm)v = KW + LYe .

(34)

With this projector operator, we define a multiple relaxation time lattice Boltzmann scheme

with projection by the following algorithm. For a set of moments m given by the relation (21)

for the D2Q9 lattice Boltzmann scheme, we have

(i) projection of the moments m −→ Pm.

Then the moments at equilibrium (Pm)eq can be decomposed into three vector components:

(Pm)eq =





W

Φe

KW + LΦe



 =





W

Φe

Φv



 = meq (35)

(ii) relaxation Pm −→ (Pm)∗.

We have simply

(Pm)∗ =





W

Y ∗
e

KW + LY ∗
e



 (36)

with Y ∗
e = (I− Se)Ye + Se Φe. We observe that we have now

Y ∗
v = KW + LY ∗

e (37)

instead of Y ∗
v = (I− Sv)Yv + Sv Φv for the initial lattice Boltzmann scheme.

(iii) propagation

From the moments after relaxation, we introduce the particle representation

f ∗ = M−1(Pm)∗. (38)

This distribution is exactly advected during one time step:

fj(x, t+∆t) = f ∗
j (x− ej ∆t, t) . (39)


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MRT lattice Boltzmann schemes with projection

The moments m at the new time step are a linear transform of the particles: m = M f .

Then the algorith can be iterated again.

The MRT lattice Boltzmann scheme with projection has the same asymptotic properties

at second order than the initial multiple relaxation times lattice Boltzmann scheme. An

important result of our contribution is the following

Proposition 1 : a theoretical result for the MRT scheme with projection

For the MRT scheme with projection defined at the relations (33) to (39), we have at second

order the following set of partial differential equations














∂tW + Γ1 +∆tΓ2 = O(∆t2)

Γ1 = AW +Be Φe

Ψe = dΦe(W ).Γ1 − (Ce W +Dev Φv(W ))

Γ2 = Be ΣeΨe .

(40)

At second order of accuracy, the MRT scheme with projection represents the same physics

than the initial MRT scheme.

The proof of this result is developed in Annex 1.

We observe that the resulting model (40) is identical to the result (30) for initial multi-

ple relaxation times lattice Boltzmann scheme. The projection step does not change the

asymptotic physical model at second order!

We observe finally that the preceding proposition is general in scope. Nevertheless, we

consider in this contribution the MRT scheme with projection only for the D2Q9 lattice

Boltzmann scheme. If the advection matrix operator in the basis of moments Λ admits a

structure of the type (20), the equivalent partiel differential equations satisfy the Proposi-

tion 1 and in particular the relations (40). The projected MRT scheme is derived following

a general algorithm. The hypothesis is essentially that the matrix of advection in the basis

of moments admits a block structure of the type (12) and that the moments at equilibrium

verify an identity of the type (31)

6) Numerical experiments for a linear model

We have implemented the algorithm (33)-(39) for the D2Q9 scheme. Our first results concern

a linearized version of the D2Q9 scheme around a constant state with velocity

(u0, v0) = (0.2, 0)

and sound velocity c0 =
1√
3
. We have in that case a linearization of the scheme (24)(25)

W =





ρ

ρ (u0 + u)

ρ v



 , Φe(W ) =





−2λ2 ρ + 6 ρ u0 u

2 ρ u0 u

0



 , Φv(W ) =





−ρ λ2 (u0 + u)

−ρ λ2 v

ρ λ4 − 6 ρ λ2 u0 u



 .

We can verify very simply that the matrices K and L introduced in (32) satisfy the rela-

tion (31): we have Φv = KW + LΦe.


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François Dubois and Paulo Cesar Philippi

For each set of parameters (sµ, sε), we determine the maximum values of the associated

aigenvalues for all the wave vectors, following the method proposed in Lallemand and

Luo [39]. If the maximum of moduli of these eigenvalues is greater than one, the scheme

is unstable. The iso-maxima of the eigenvalues are represented in Figure 2. They show a

significant increase in the stability zone for the relaxation parameter sε. With the initial

MRT scheme, stability is limited to the range 0 ≤ sε ≤ 1.75. The projected MRT lattice

Boltzmann scheme is stable for 0 ≤ sε ≤ 2 and 0 ≤ sµ ≤ 1.9.

1.0 1.2 1.4 1.6 1.8 2.0
s_e

1.0

1.2

1.4

1.6

1.8

2.0

s_

0.999997

1.000000

1.
10

00
00

1.0 1.2 1.4 1.6 1.8 2.0
s_e

1.0

1.2

1.4

1.6

1.8

2.0

s_
0.999997

1.000000
1.020000

Figure 2: Comparison of linear stability zones for advection speed u0 = 0.35 c0 and v0 = 0.

Traditional D2Q9 scheme [39] on the left and D2Q9 MRT with projection on the right. The

stability zone is extended for higher values of the relaxation parameter sε.

7) Numerical tests for fluid applications

In this section, we present the first numerical simulations with the MRT scheme with pro-

jection. In this contribution, we limit ourselves to the D2Q9 stencil. We focus on qualitative

aspects and compare the scheme results with the initial MRT scheme.

We have first considered two classical test cases: the Minion-Brown test case [48] studying

the performance of under-resolved two-dimensional incompressible flow simulations, and the

lid-driven cavity proposed by Ghia et al. [28]

The Minion-Brown test case describes a Kelvin-Helmholtz instability. At the initial time,

the density is constant and the velocity is given in the square [0, L]2 with L = 1 by the

relations
u =

{

tanh
[

κ
(

y − 1
4

)]

for y ≤ 1
2

tanh
[

κ
(

3
4
− y

)]

for y ≥ 1
2

, v = δ sin
[

2π
(

x+
1

4

)

]

(41)

with
κ = 80 , δ = 0.05 .
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MRT lattice Boltzmann schemes with projection

This test case has been simulated with the help of lattice Boltzmann schemes by Marié et

al. [46], Dellar [16] and Mattila et al. [47] among others.

We first explain how we have chosen our numerical parameters. As proposed in [48], a

relative coarse mesh is used and all our compuatations have been done with

N = 128

mesh points in each direction. Then ∆x = 1
N

= 0.0078125. We have chosen the same Mach

number M0 ≡
U0

c0
= 0.04 as in reference [46]. With the classical value c0 =

1√
3

for the sound

velocity, we have a reference velocity U0 = 0.0231. Then with the definition Re ≡ U0 L
ν

of the

Reynolds number Re, we have ν = 2.31 10−6 when Re = 104. From the classical relation

ν = σµ

∆x

3
(42)

(see e. g. [39]), we deduce σµ = 8.8704 10−4 and

sµ =
1

0.5 + σµ

= 1.996458123572134 . (43)

The physical duration is fixed to T = L
U0

≈ 43.29. It corresponds to the final time chosen

by Dellar [16]. When ∆x = ∆t, this value can be approximatively translated into
NT = 5541 (44)

iterations of the lattice Boltzmann scheme.

Our first simulation concerns the BGK [4] version of the lattice Boltzmann scheme. In that

case, all the viscosities are taken identical:
sε = sq = sh = sµ . (45)

Curiously, our scheme is not diverging with such parameters. But the results (see Figure 3)

have nothing to do with what is physically expected!
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Figure 3: Minion-Brown test case [48] for Reynolds number Re = 104, 128 grid points

and NT = 5541 discrete time iterations. BGK results: sε = sq = sh = sµ given by the

relation (43). Vorticity field; the results are not satisfying.
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François Dubois and Paulo Cesar Philippi

Figure 4: Minion-Brown test case [48] for Reynolds number Re = 104, 128 grid points and

NT discrete time iterations (44). MRT results on the left with sε = 1.715, and results for

the MRT scheme with projection on the right with the same parameter sε. These vorticity

fields are qualitatively correct. The shades of grey card is analogous to the one of Figure 3.

Then we have taken a MRT scheme with sq = sh = 1 to mimic the effects of the projection

scheme. With the value sε = 1.72, this MRT scheme is giving overflow values after NT

iterations with the previous parameters. With sε = 1.715, the simulation is giving acceptable

results. For this set of parameters, the simulation is close the stability limit for the classic

MRT sceme. The results are presented on the left part of the Figure 4. With the MRT

lattice Boltzmann scheme with projection, with the same numerical parameters sε and sµ,

the computation does not encounter any difficulty. The results are very close to the MRT

ones and are presented on the right of Figure 4.

It is possible to reduce the bulk viscosity for this Minion and Brown test case with a Reynolds

number Re = 104. With the MRT with projection, we can reduce the bulk viscosity up to

ζ = 6.51 10−8 with sε = 1.9999. The projected MRT lattice Boltzmann scheme remains

stable while the initial MRT scheme diverges. The Reynolds number based on this bulk

viscosity equal to 35.5 104. The results are presented in Figure 5.
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MRT lattice Boltzmann schemes with projection

Secondly, we have considered the lid-driven cavity initially proposed by Ghia et al. [28]. This

test case has been simulated in the framework of lattice Boltzmann schemes by numerous

teams, including Guo et al. [29], Hou et al. [34], Kumar and Agrawal [37], Luo et al. [42],

Mohammedi and Reis [49], Hegele et al. [31] and Bazarin et al. [3].
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Figure 5: Minion-Brown test case [48] for Reynolds number Re = 104, 128 grid points and

NT = 5541 discrete time iterations. Results for the MRT scheme with projection. The bulk

viscosity is reduced by using the parameter sε = 1.9999. Vorticity field with shades of grey

card analogous to the one of Figure 3

.

The velocity U0 on the top of the computational domain is taken equal to U0 = 0.01. It

corresponds to a Mach numer of 0.0173. Then the resulting flow is very close to incom-

pressibility. For this test case, our target Reynolds number is Re = 1.000. We used a mesh

with N = 128 grid points as in the previous test case. Then from the relation (42), we have

σµ = 0.00384 and sµ = 1.984757065735154.

With a relative high value of the bulk viscosity, sε = 1.7 to fix the ideas, it has been possible

to integrate the initial multiple relaxation times scheme with sq = sh = 1 up to a stationary

solution. We have used NT = 400.000 time steps by initializing the velocity field to zero.

With the same parameters, the projected multiple relaxation times lattice Boltzmann scheme

proposes also a stationary fluid flow. They are compared in Figure 6. Observe that taking

sε = 1.80, the classic MRT solver is diverging. On the other hand, the projection version

gives results that make sense for fluid mechanics. In Figure 7, we show the stream function

results when sε = 1.98.

In figures 8 and 9, we present classical outputs for the Ghia et al. test case: the two

components of the velocity in the middle of the flow. We compare our results with the

reference proposed by Botella and Peyret [8] with a spectral approach.
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François Dubois and Paulo Cesar Philippi

Our results are quantitavely correct. We consider that these first results validate the multiple

relaxation times scheme with projection for stationary nearly incompressible fluid flows.

Figure 6: Lid-driven cavity [28] with Re = 1000 [sµ = 1.984757065735154], sε = 1.7. Stream

lines for the classic MRT scheme with parameters sq = sh = 1 (left figure) and multiple

relaxation times scheme with projection (right figure). The results are very similar.

Figure 7: Lid-driven cavity [28] with Re = 1000 [sµ = 1.984757065735154] and sε = 1.98.

Stream lines for the MRT scheme with projection. The MRT scheme diverges for these

parameters with sq = sh = 1.
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MRT lattice Boltzmann schemes with projection
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Figure 8: Lid-driven cavity [28] with Re = 1000 [sµ = 1.984757065735154] and sε = 1.98.

MRT scheme with projection: x-component of the velocity at y = 1
2

and comparison with

Botella and Peyret [8] results.
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Figure 9: Lid-driven cavity. Same test case than in Figure 8; y-component of the velocity at

x = 1
2
.
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François Dubois and Paulo Cesar Philippi

8) Unsteady linear acoustics

With this test case, we study the two-dimensional propagation of an initial gaussian density

profile associated with a zero velocity field. Qualitatively, the evolution is a simple propa-

gation of the disturbance in density at the speed of sound c0 =
1√
3
≃ 0.5773. It’s a problem

invariant to rotation around the initial center of the Gaussian. This invariance is, of course,

broken by any numerical approximation. With this test case, the isotropic qualities and

defects of the numerical schemes are particularly highlighted.

We took a number a meshes N = 129 in order to have a good location of the mesh center.

The initial condition is a gaussian profile for the density:

ρ = 1 + δρ exp
(

− r2/R2
)

with δρ = 0.1 and R = 0.02. This gaussian initial condition is represented in figures 10

and 11. For each discrete vertex of the mesh, we calculate the radius r from the center

and then plot the density ρ as a function of r. We first use a classic MRT scheme with

sµ = 1.99. It corresponds to a Reynolds number Re = 88927 based on the speed of sound.

We have taken the following relaxation parameters:

sε = 1.99 , sq = 1.9 , sh = 1.54 .

The results are shown in figures 12 and 13. The results are globally satisfying. However, there

are multiple density values at the same radius at some locations. This numerical observation

is characteristic of an isotropy defect. If we want to mimic the projection scheme, we change

the two last relaxation parameters for sq = sh = 1. The results are displayed in figures 14

and 15. They clearly indicate than an instability is developing.

With the projection multiple relaxation times scheme for the same parameters, id est sµ =

sε = 1.99, the results are very satisfying. We refer to the figures 16 and 17. Rotation

invariance is much better satisfied, as shown by the density curve as a function of distance

from the center.

Last but not least, Augier et al. have studied in [1] the possibility of rotation-invariant MRT

lattice Boltzmann schemes up to fourth order. In the D2Q9 case, the “quartic” relaxation

parameters take the form
σµ = σε = σh , σµ σq =

1

6
.

In our case, sµ = sε = sh = 1.99 and the very unusual value sq = 0.01496259351620921.

The results are presented in figures 18 and 19. They are very good quality.

As a conclusion of this section, the projected MRT scheme has a very good ability to give

correct results with good stability. The initial version of the MRT scheme uses more pa-

rameters, is more fragile from a stability point of view, but in some cases produces better

quality results.
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1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.10

Figure 10: Unsteady acoustics: isovalues of the gaussian initial density
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Figure 11: Unsteady acoustics: the gaussian initial density as a function of the radius.
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Figure 12: Acoustic with the classic MRT, sµ = 1.99, sε = 1.99, sq = 1.9, sh = 1.54, isovalues

of the density.
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Figure 13: Unsteady acoustics with the classic MRT scheme, sµ = 1.99, sε = 1.99, sq = 1.9,

sh = 1.54, density as a function of the distance to the center.
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Figure 14: Unsteady acoustics with the classic, sµ = sε = 1.99, sq = sh = 1, isovalues of the

density. Strong oscillations are clealy visible.
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Figure 15: Unsteady acoustics: MRT, sµ = sε = 1.99, sq = sh = 1, density as a function of

the distance to the center.
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Figure 16: Unsteady acoustics, MRT with projection with parameters sµ = sε = 1.99,

isovalues of the density.
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Figure 17: Unsteady acoustics, MRT with projection, sµ = sε = 1.99, density as a function

of the distance to the center.
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Figure 18: Unsteady acoustics: classic MRT scheme with quartic parameters, sµ = sε =

sh = 1.99, σµ σq =
1
6
. Isovalues of the density.
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Figure 19: Unsteady acoustics: classic MRT scheme, sµ = sε = sh = 1.99, σµ σq =
1
6
, density

as a function of the distance to the center.
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9) Conclusion

In this contribution, we have given a first answer to the question of linking d’Humières’ mul-

tiple relaxation times lattice Boltzmann schemes and the regularized version of Boltzmann

schemes. In the particular case of D2Q9 scheme for isothermal fluids, we have extended the

lattice Boltzmann introduced by Malaspinas [43] and developed also by Mattila et al. [47].

Recal that the MRT scheme with projection consists of three stages: projection, relaxation,

and propagation.

Our approach is no longer based on Hermite polynomials of the moments but on the spec-

tific structure (20) of the advection operator in the basis of moments. This point of view

completely dispenses with any algebraic reference to a Gaussian representation of the equi-

librium distribution. Compared with the reference MRT scheme, this lattice Boltzmann

scheme with projection reduces the number of parameters. In particular, the two relaxation

parameters in this new scheme have a clear physical meaning and are related to shear and

volume viscosities.

We have generalized the asymptotic analysis based on Taylor developments to this scheme

with projection. This new asymptotic analysis at second order accuracy shows that the

equivalent partial differential equations obtained for the inital multiple relaxation times

scheme are not modified by the addition of a projection step in the algorithm.

From a practical point of view, this projected MRT scheme can be used in the same way as

the initial MRT scheme. Our first numerical tests are qualitatively satisfying and highlights

a gain in stability for the parameters associated to bulk viscosity.

The question of the convergence of this new numerical scheme is of course raised. From an

experimental point of view, the situation remains delicate. In fact, the asymptotic partial

differential equation doesn’t usually coincide with a model that doesn’t depend on the mesh.

Indeed, with the acoustic scaling adopted in this work, it is possible to get convergence

towards the solution of a model other than the one specified at the outset, for very small

space and time steps, as demonstrated by the numerical experiments of Dellacherie in [14]

(see also [5, 6]). Nevertheless, the study of convergence of the MRT scheme with projection

is a natural question for a future contribution.

This new MRT scheme with projection should enable gains in stability, and therefore in

iso-accuracy performance. Of course, the extension to three spatial dimensions is a very

important step. A fundamental point for defining this scheme is the matrix structure of the

differential advection operator in the basis of moments. This matrix is sparse and contains

null blocks that allow a clear separation between the three families of moments. These

properties for D2Q9 can be transposed to other lattices, as we highlighted in our work [23]

with Pierre Lallemand. For example, two-dimensional schemes such as D2Q13, D2Q17,

D2V17, D2Q17 or three-dimensional schemes such as D3Q19, D3Q27 or D3Q33 have this

property. In conclusion, this work should soon be extended to other stencils, particularly for

three spatial dimensions.


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MRT lattice Boltzmann schemes with projection

10) Annex: equivalent equations of the projection MRT scheme

We recall the Proposition 1 statement. We suppose that the advection matrix in the basis

of moments satisfies the condition (20). We suppose morever that after the decompostion

(21) of the moments into conserved variables W , eulerian momentsYe and viscous moments

Yw, the equilibrium values satisfy the relation (31). Then the MRT scheme with projection,

defined by the relations (33) to (39), satisfies at order two the asymptotic relations (40):














∂tW + Γ1 +∆tΓ2 = O(∆t2)

Γ1 = AW +Be Φe

Ψe = dΦe(W ).Γ1 − (Ce W +Dev Φv(W ))

Γ2 = Be ΣeΨe .

We begin by an analysis at order zero. We still have the relation (13)

m(x, t+∆t) = exp(−∆tΛ) m∗(x, t) .

Moreover, the moments m∗ after relaxation satisfy now:

m∗ = (W, Y ∗
e , K W + LY ∗

e )
t .

In consequence, we have m+O(∆t) = m∗ +O(∆x) and in particular

Ye − Y ∗
e ≡ Se (Ye − Φe) = O(∆t) .

Then Ye = Φe +O(∆t) when Se is fixed and is invertible. Then we have also

Y ∗
e = Φe +O(∆t).

For the third component, we have due to the relation (37),

Y ∗
v ≡ KW + LY ∗

e = KW + LΦe +O(∆t) = Φv +O(∆t) .

We have also (Pm)v+O(∆t) = Y ∗
v +O(∆x) and (Pm)v = Φv+O(∆x). Then by combining

the three components, we have at order zero

m = meq +O(∆t)

and
m∗ = meq +O(∆t) .

We consider now the analysis at order one. We expand the relation (13) at first order. For

the first component W , we have

W +∆t ∂tW +O(∆t2) = W −∆t (AW +B Y ∗) + O(∆t2)

= W −∆t (AW +Be Y
∗
e ) + O(∆t2).

Then we have ∂tW + (AW + Be Y
∗
e ) = O(∆t) and due to the identity Y ∗

e = Φe + O(∆t),

the relation ∂tW +AW + Be Φe(W ) = O(∆t) is still true. In conclusion, we have at first

order Γ1 = AW +Be Φe(W ).

We consider again now the analysis at order one. We pay attention to the fact that the devil

in the details! We expand the relation relation (13) at first order and we focus on the second

component. We have

Ye +∆t ∂tYe +O(∆t2) = Y ∗
e −∆t (Ce W +Dev Y

∗
v ) + O(∆t2)



T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
5
4
0
4
1



François Dubois and Paulo Cesar Philippi

and we remark that ∂tYe = dΦe.∂tW +O(∆t) = −dΦe.Γ1 +O(∆t). Than

Ye −∆t dΦe.Γ1 +O(∆t2) = Y ∗
e −∆t (Ce W +Dev Φv) + O(∆t2) .

We deduce that Se (Ye − Φe) ≡ Ye − Y ∗
e = ∆t [dΦe.Γ1 − (Ce W +Dev Φv)] + O(∆t2). With

Ψe = dΦe(W ).Γ1−(Ce W+Dev Φv(W )), we can expand this family of non-conserved moments

at first order: Ye = Φe −∆t S−1
e Ψe +O(∆t2). Then the relaxation scheme

Y ∗
e = (I− Se)Ye + Se Φe

implies

Y ∗
e = Ye − Se (Ye − Φe) = Φe −∆t S−1

e Ψe +∆tΨe +O(∆t2)

= Φe +∆t
(

I− S−1
e

)

Ψe +O(∆t2).

We introduce the “reduced Hénon matrix”

Σe ≡ S−1
e −

1

2
I .

Then we have the following expansions of the non-conserved moments at first order
{

Ye = Φe +∆t
(

Σe +
1
2
I
)

Ψe +O(∆t2)

Y ∗
e = Φe +∆t

(

Σe −
1
2
I
)

Ψe +O(∆t2).

For the analysis at order two, we need to calculate the value of the Λ2 matrix. We have

Λ2 =





A Be 0

Ce 0 Dev

0 Dve Dvv









A Be 0

Ce 0 Dev

0 Dve Dvv





=





A2 +Be Ce ABe Be Dev

Ce A Ce Be +Dev Dve Dev Dvv

Dve Ce Dvv Dve Dve Dev +D2
vv





because A2 = A2 +Be Ce and B2 =
(

ABe Be Dev

)

.

For the analysis at order two, we expand the relation (13) at second order for the first

component W . We obtain

W +∆t ∂tW + 1
2
∆t2 ∂2

tW +O(∆t3)

= W −∆t (AW +B Y ∗) + 1
2
∆t2 (A2 W +B2 Y

∗) + O(∆t3)

= W −∆t (AW +Be Y
∗
e )+

1
2
∆t2

(

(A2 +Be Ce)W + ABe Y
∗
e +Be Dev Y

∗
v

)

+O(∆t3).

We observe that

∂2
tW = −∂t

(

AW +Be Φe

)

+O(∆t)

= −
(

A+Be dΦe

)

.∂tW +O(∆t) = (A+Be dΦe).Γ1 +O(∆t).

Then

∂tW = −∆t
2
(A+Be dΦe).Γ1 − AW −Be

(

Φe +∆t
(

Σe −
1
2
I
)

Ψe

)

+∆t
2

[

(A2 +Be Ce)W + ABe Φe +Be Dev Φv

]

+O(∆t2)

= −(AW +Be Φe)−∆t Be ΣeΨe +∆t
[

− 1
2
(A+Be dΦe).Γ1

+1
2
Be (dΦe.Γ1 − Ce W −Dev Φv) +

1
2
A (AW +Be Φe)


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MRT lattice Boltzmann schemes with projection

+1
2
Be (Ce W +Dev Φv)

]

+O(∆t2)

= −(AW +Be Φe)−∆t Be ΣeΨe +
∆t
2

[

− AΓ1 − Be dΦe.Γ1

+Be dΦe.Γ1 − Be (Ce W +Dev Φv) + AΓ1 +Be (Ce W +Dev Φv)
]

+O(∆t2)

= −(AW +Be Φe)−∆t Be ΣeΨe +O(∆t2).

We have finally
∂tW + Γ1 +∆tΓ2 = O(∆t2)

with Γ1 = AW +Be Φe and Γ2 = Be ΣeΨe. The relations (40) are established. □
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