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e An hyperbolic partial differential equation like the Burgers equation
ou 0 u?
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exhibits shock waves [5], id est discontinuities propagating with finite velocity. In order to
select the physically relevant weak solution, it is necessary to enforce the so-called entropy
condition
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as suggested by Friedrichs and Lax [4]. In the relation (2), n(e) is a strictly convex

function and ((e) the associated entropy flux (see |3] or |5]). For the Burgers equation,
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we consider usually the quadratic entropy : n(u) = %, ((u) = %
e When we use a lattice Boltzmann scheme like the so-called D1Q3 scheme with veloc-
ities v; € {—A, 0, A}, we replace the “macroscopic” hyperbolic equation (1) by a system
of “microscopic” Boltzmann equations : % v, Y= Q;(f), with Q;(f) related to an

ox
“equilibrium” value f;* of BGK type : Q;(f) = l(f;q — f;) . The best situation occurs

when dissipation can be established with a “microsTcopic entropy” H(f) =3, h;(f;) and
the so-called “H-Theorem” : 2 ( > hi(f;) + 2 >V hi(f;)) < 0.

e  With the approach proposed by Karlin [6], the choice H(f) = >, h;(f;) allows
the determination of the equilibrium functions fi according to a minimization process.
A natural question concerns the link between the microscopic entropy H(e) and the
macroscopic entropy 7(e). This question has been studied by F. Bouchut [1] in the context
of finite volumes methods. The result for the Burgers equation can be stated as follows
with the choice of the quadratic entropy done in this contribution. Introduce first the
so-called “entropy variables” ¢ = dn(u) (see e.g. [3]), the Legendre-Fenchel-Moreau dual
function n*(¢) = pu—n(u) and the “dual entropy flux” ¢*(¢) = ¢ f(u) —((u). Following
[1], if there exists convex functions h}(p) of the entropy variable ¢ such that
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2 Stable lattice Boltzmann scheme for a moving Burgers shock wave
then the equilibrium f7%(u) = d—] defines a stable approximation.
¥

e In this contribution, we consider two examples of stable equilibria in the context of lat-
tice Boltzmann scheme. More precisely, following the approach proposed by d’Humiéres

[2], we introduce a matrix M that links particle densities f; (j = —1, 0, 1) and mo-
menta my:
1 1 1
Az
(4) mEM'f: M = -A 0 A ) UEf_1+f0+f1:m1, )\:E
A0 N
We propose a first equilibrium distribution under the form : me®! = (u, % , Asgn(u) “;)t

Then it is possible to re-construct the dual-entropy n* and a dual entropy flux (*
in order to satisfy (3). The corresponding h} functions are convex if the Courant-
Friedrichs-Lewy condition |u |< A is satisfied. When using the other algebraic form
med? = (u, “72 , )‘—22 u) , the stability constraint takes the form |u|< % Then the relax-
ation step is nonlinear and local in space : mj = m{® = u, mj = my, + s, (m;' —my,) for
k > 2, with s, = s3 = 1.8 in our simulations. The particle distribution f; after relax-
ation is obtained by inversion of relation (4) : f* = M~'e m*. The time iteration of the

scheme follows the characteristic directions of velocity v; : fj(x, t+At) = fi(z—v; At, t).

e  We have tested these two numerical schemes for the Burgers equation with the initial
condition ug(x) = 1 for 2 < 0, up(z) =1 —2 for 0 < z < 1, up(z) =0 for z > 1,
which exhibits a focalizing shock wave for time ¢t > 1. The results will be presented at
the Iecmmes meeting.

e The author thanks Frangois Bouchut, Benjamin Graille and Pierre Lallemand for
helpful discussions during the elaboration of this work.
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