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e The numerical scheme introduced by D. d’Humiéres [2| is a flexible framework to
discretize mathematical models in physics and engineering. It introduces the choice of
N (= 4 for three-dimensional acoustic applications) conserved momenta: m; = W; (for
0 <i < N —1) and relaxation coefficients s; that define the evolution of non-conserved
momenta: mjy = my + s (mzq —myg). Moreover the time step At is a natural parameter
for the evolution of particle populations: fj(z, t + At) = f/(r — v; At, t). When the
equilibrium momenta m;* are a linear function of the conserved variables W, we have
shown in [4] that is is possible with the so-called Taylor expansion method [3] to derive N
equivalent partial differential equations for the unknown vector W at first order in time
and at any order of accuracy in space.

e The system of linearized conservation equations issued from the lattice Boltzmann
scheme can be written under the form A(At, 0)eW = 0 with a compact notation:
A(At, 0) is a 4 x 4 (for three-dimensional applications) matrix of differential opera-
tors of high order relative to the conservative variables W. We search the eigenmodes of
operator A(At,0), id est the eigenvalues \;(At,0) and the eigenvectors r;(At,d) such
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that A(At, 0)er;j(At,0) = A;jr;(At,0). We introduce the diagonal matrix A(At,0)
composed by the eigenvalues \;(At,0) and the square matrix R(At,d) composed by
the eigenvectors. Then the previous relation can be written under the synthetic form:

A(At, 9) o R(At,0) = R(AL,0) « A(AL, D).

e  Moreover, the operator A(At,0) is a polynomial relatively to the variable At:
A(At, 0) = Ao(0)+At A1(0)+At* Ay (9)+ At A3(0)+O(At*). We can apply in this case
the perturbation theory for linear operators (see e.g. |1] for an elementary introduction).
First for At = 0, the operator Ag(0) is exactly the perfect linear acoustic model and a
system Ry(0) of classical reference eigenvectors can be given. The two acoustic waves
and the two shear waves are put in evidence with this diagonalization. The parameter
At is supposed to be infinitesimal and we introduce an expansion of the eigenvalues with
diagonal matrices A;(9): A(At, 0) = Ao(0) + At Ay (9) + At Ay(9) + At A3(9) +O(At*)
and relative perturbations Q;(9) of the eigenvectors: R(At,d) = Ry(9) « (Id+At Q1(9)+
A Q2(0)+At® Q5(9)+O(At*)). We insert the previous expansions inside the eigenmode
condition and find step by step the expression of eigenvalues and eigenvectors at any order
of accuracy.

e Doing this, we expand formally the eigenvalues in terms of the infinitesimal parameter.
We can adjust the coefficients s, of the d’Humiéres lattice Boltzmann scheme in order
to enforce fourth order accuracy (quartic parameters presented in [4] in the case of shear
waves). In this contribution, we show that the previous methodology is also applicable
to acoustic situations with D2Q13 and D3Q27 schemes. For simpler schemes as D2Q9
and D3Q19, we show that the simulation of acoustic waves is improved when isotropy
conditions are enforced. We will present various simulations to verify these ideas and will
list a few pending questions.
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