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Abstra
tWe use latti
e Boltzmann method to model anisotropi
 di�usion problem 
alled �oblique�ow". We have adapted a general methodology for equivalent equations to the expli
itdetermination of dis
rete gradient and �uxes for this problem. We validate this numeri
alapproa
h with a detailed 
omparison with �nite di�eren
es.Keywords : Anisotropy ben
hmark, Latti
e Boltzmann Method.1 Latti
e Boltzmann s
hemeThe latti
e Boltzmann s
heme or Latti
e Boltzmann Equation �LBE" is a mesos
opi
method and deals with a small number of fun
tions {fi} that 
an be interpreted as popula-tions of �
titious �parti
les". We 
onsider in this work the parti
ular D2Q9 [DDH92℄ model(i.e. d = 2 two-dimensional LBE model with nine velo
ities q = 9). The spa
e is dis-
retized by a regular latti
e L parametrized by a spatial s
ale ∆x. This latti
e is 
omposedby a set L0 ≡ {xj ∈ (∆xZ)2} of nodes or verti
es. We 
hoose the velo
ities ci, i ∈ (0 . . . 8)
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2 François Dubois, Pierre Lallemand and Mohammed Mahdi Tekitekde�ned by: c = (0, 0), (1, 0), (0, 1), (−1, 0), (0,−1), (1, 1), (−1, 1), (−1,−1), (1,−1) andwe de�ne ∆t as the time step of the evolution of LBE and let the 
elerity λ ≡ ∆x
∆t
. We
hoose the velo
ities vi, i ∈ (0 . . . 8) su
h that vi ≡ ci

∆x
∆t

= ciλ. The populations fi evolvea

ording to the LBE s
heme whi
h 
an be written as follows [Du08℄:(1) fi(xj , t + ∆t) = f ∗
i (xj − vi∆t, t), 0 ≤ i ≤ 8,where the supers
ript ∗ denotes post-
ollision quantities. Therefore during ea
h timein
rement ∆t there are two fundamental steps: 
ollision and adve
tion.In the adve
tion step the �parti
les� move from a latti
e node xj to either itself (with thevelo
ity v0 = 0), one of the four nearest neighbors (with the velo
ity vi, 1 ≤ i ≤ 4), orone of the four next-nearest neighbors (with the velo
ity vi, 5 ≤ i ≤ 8).The 
ollision step 
onsists in the redistribution of the populations {fi} at ea
h node xj ,and it is modeled by the operator supers
ript ∗ in (1). This step is best des
ribed in thespa
e of moments mk [DDH92℄. They are obtained by a linear transformation of ve
tors

fj : mk =
∑

j Mk jfj. Expli
it formula for Mk j is given by
M =
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Note that matrix M is invertible and orthogonal. To simulate di�usion problems, we 
on-serve only the �rst moment m0 ≡ T in the 
ollision step and obtain one ma
ros
opi
 s
alarequation. For the other quantities (non-
onserved moments), we assume that they relaxtowards equilibrium values meq
k that are nonlinear fun
tions of the 
onserved quantitiesand set:

m∗
k = (1 − sk) mk + skm

eq
k , 1 ≤ k ≤ 8,where sk is a relaxation rate whi
h satisfy 0 < sk < 2 to get a numeri
ally stable s
heme.The pre
ise values of sk are given in the se
ond se
tion. With the following 
hoi
e ofequilibrium values: meq

1 = 0, meq
2 = 0, meq

3 = αT, meq
4 = βT, meq

5 = 0, meq
6 = 0, meq

7 =

axxT and meq
8 = axyT and using Taylor expansion [DLT08℄, we �nd the di�usion equationup to order three in ∆t:

∂T

∂t
− div(K∇T ) = O(∆t3).where K = (ki,j)1≤i,j≤2 is the di�usion tensor where k11 = λ2∆t

6
( 1

s1

− 1
2
)(4 + α + 3axx),

k12 = k21 = λ2∆t
2

( 1
s1

+ 1
s2

− 1)axy and k22 = λ2∆t
6

( 1
s2

− 1
2
)(4 + α − 3axx).



Using Latti
e Boltzmann S
heme for Anisotropi
 Di�usion 32 Numeri
al results
• Test 3 Oblique �ow, min = 0, max = 1, uniform re
tangular mesh, mesh2.We have used LBE D2Q9 s
heme to solve the following anisotropi
 di�usion problem so
alled �oblique �ow�:(2) −div(K∇u) = 0 in Ω =]0, 1[2, u = u on ∂Ω.where K = Rθ diag(1, 10−3) R−1

θ , Rθ is the rotation of angle θ = 40 degrees, and u = 1on (0, 0.2) × {0} ∪ {0} × (0, 0.2), 0 on (0.8, 1) × {1} ∪ {1} × (0.8, 1), 1
2
on (0.3, 1) ×

{0} ∪ {0} × (0.3, 1), 1
2
on (0, 0.7) × {1} ∪ {1} × (0, 0.7). Figure 1 and Figure 2 show theapproximate solution on the following uniform re
tangular mesh, mesh2: (2i+1×2i+1), i =

2..7, 
al
ulated by D2Q9 s
heme after 
onvergen
e (i.e. 2.106 iterations) with s1 = 1.3,
s2 = 1.8 and β = 1 and other parameters are �xed to have K as the di�usion tensor given(2). To impose u on boundary we have use a �rst order s
heme for boundary 
onditionsdes
ribed in [DLT08℄.

Figure 1. Solutions for the oblique �ow on mesh2_i for i=2 (left), i=3 (
enter), i=4(right). The Grey s
ale of the �gure 
orresponds to a linear variation from 0 (bla
k) to 1(white).

Figure 2. Solutions for the oblique �ow on mesh2_i for i=5 (left), i=6 (
enter), i=7(right).
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Figure 3. Solutions for the oblique �ow on mesh_4 (32 × 32) at y = 17. (a)Approximate solution vs x on the 
enter and boundary of the volume 
ontrol K. (b)Approximate solution vs x using Taylor expansion on the 
enter of the volume 
ontrol Kwhere dis
rete ∇u is given by LBE.We note that we 
an improve the approximate solution by using the dis
rete gradient ∇uwithout any additional 
omputation (as ∇u is given by LBE). Figure 3 (a) shows theinterpolate solution and Figure 3 (b) shows the solution using Taylor expansion of orderone in ∆x, where ∇u is given by LBE.i nunkw nnmat sum�ux umin umax1 9 × 16 - 5.27E-16 1.14E-01 8.86E-012 9 × 64 - 2.44E-15 3.78E-02 9.62E-013 9 × 256 - 1.01E-14 1.11E-02 9.89E-014 9 × 1024 - 3.59E-14 7.14E-03 9.93E-015 9 × 4096 - 1.42E-13 3.53E-03 9.96E-016 9 × 16384 - 5.75E-13 1.76E-03 9.98E-017 9 × 65536 - 7.88E-10 9.36E-04 9.99E-01Table 1. Number of unknowns (nunkw), the dis
rete �ux balan
e (sum�ux), value of theminimum (umin) and value of the maximum (umax) vs the mesh size i.Table 1 shows the following quantities:
• nunkw: number of unknowns.
• nnmat: number of nonzero terms in the matrix. As the latti
e Boltzmann s
heme isan expli
it method, designed to simulate time dependent problems, we have no matrixto inverse to �nd solution (like in 
lassi
al numeri
al method �nite elements or �nite
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heme for Anisotropi
 Di�usion 5volumes) but we have to make many iterations to rea
h 
onvergen
e.
• sum�ux: the dis
rete �ux balan
e, that is: �ux0+�ux1+�uy0+�uy1-sumf, where �ux0,�ux1, �uy0, �uy1 are the outward �uxes at the boundaries x = 0, x = 1, y = 0, y = 1,for example �ux0 is an approximation of −

∫

x=0
K∇u.nds, and sumf= ∑

K∈τ |K|f(xj)where xj denotes latti
e node and represents the 
enter of the 
ontrol volume K. Sin
e
f = 0 in our test (no sour
e term in equation (2)), we have sumf= 0 and sum�ux= 0(see Table 1). Here the dis
rete gradient ∇u on the boundaries is 
omputed using theDiri
hlet boundary 
ondition u and the mass �ux j [DLT08℄ on the boundaries. Note thatwhen re�ning the mesh, the sum�ux variable looses 6 orders of magnitude. This indi
atesthe di�
ulties to rea
h the steady state.
• umin: value of the minimum of the approximate solution. Table 1 shows that theminimum umin 
onverge to 0 and umin > 0. The variable umax is the value of themaximum of the approximate solution. Table 1 shows that the maximum umax 
onvergeto 1 and umax < 1. Note that the e�e
tive grid points follow the 
lassi
al 
ell 
enter�nite volume methodology. Hen
e the points at whi
h umin and umax are determinedare lo
ated at ∆x

2
from the a
tual boundary and thus data in Table 1 have not beenextrapolated to the boundary.i �ux0 �ux1 �uy0 �uy11 -1.46E-01 -2.57E-01 -1.52E-01 5.57E-012 -1.04E-01 1.04E-01 -1.89E-01 1.89E-013 -2.46E-01 2.46E-01 -4.90E-02 4.90E-024 -1.97E-01 1.97E-01 -9.53E-02 9.53E-025 -1.75E-01 1.75E-01 -1.16E-01 1.16E-016 -1.89E-01 1.89E-01 -1.02E-01 1.02E-017 -1.96E-01 1.96E-01 -9.56E-02 9.56E-02Table 2. Outward �uxes at the boundaries with Taylor expansion. Results obtained usingthe dis
rete gradient ∇u given by the LBE method.i �ux0 �ux1 �uy0 �uy11 3.18E-01 -3.18E-01 -2.02E-02 2.02E-022 6.78E-02 -6.78E-02 1.28E-01 -1.28E-013 -2.51E-01 2.51E-01 -1.61E-01 1.61E-014 -2.50E-01 2.50E-01 -1.60E-01 1.60E-015 -1.76E-01 1.76E-01 -8.30E-02 8.30E-026 -1.76E-01 1.76E-01 -8.31E-02 8.31E-027 -1.96E-01 1.96E-01 -1.02E-01 1.02E-01Table 3. Outward �uxes at the boundaries with Taylor expansion. Results obtained usingthe dis
rete gradient ∇u given by �nite di�eren
e method.



6 François Dubois, Pierre Lallemand and Mohammed Mahdi TekitekIn Table 2 and Table 3 we show the values (�ux0,�ux1,�uy0,�uy1) the outward �uxes atthe boundaries vs the i whi
h represent the mesh size of mesh2 (equal to 2(1+i) × 2(1+i)).The dis
rete gradient ∇u on the boundaries is obtained in Table 2 by using �uxes at theboundaries [DLT08℄ (Fourier low), Diri
hlet boundaries 
ondition u and Taylor expan-sion [Du08℄. In table 3 the �uxes are obtained by using the dis
rete gradient ∇u on theboundaries obtained by paraboli
 interpolation. We note here that the outward �uxes
omputed by both above methods 
onverge to the same value on the �ne grids.i ener1 ener2 eren1 2.42E-01 2.02E-01 1.64E-022 2.53E-01 2.55E-01 9.39E-043 2.58E-01 2.75E-01 6.16E-034 2.55E-01 2.66E-01 4.07E-035 2.44E-01 2.50E-01 2.72E-036 2.42E-01 2.45E-01 8.95E-047 2.42E-01 2.43E-01 3.00E-04Table 4. Two 
omputations of energy ener1 and ener2. Results obtained using thedis
rete gradient ∇u given by the LBE method.i ener1 ener2 eren1 5.83E-01 2.21E-01 6.20E-022 7.71E-01 3.35E-01 5.65E-023 5.67E-01 4.93E-01 1.30E-024 3.56E-01 4.37E-01 1.84E-025 2.59E-01 2.88E-01 1.00E-026 2.47E-01 2.57E-01 3.92E-037 2.43E-01 2.60E-01 6.62E-03Table 5. Two 
omputations of energy ener1 and ener2. Results obtained using thedis
rete gradient ∇u given by �nite di�eren
e method.Table 4 and able 5 show the following quantities:
• ener1: is energy given by ener1 =

∫

Ω
K∇u.∇u dx. To 
ompute ener1 we need the dis
retegradient ∇u on all nodes xi of the mesh. This dis
rete gradient is given by the methodusing moments (m1, m2) or (m5, m6), for more details see [DLT08℄.

• ener2: is energy given by ener2 =
∫

∂Ω
K∇u.nu dx. We note here that to 
ompute ener2,
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heme for Anisotropi
 Di�usion 7we use only the boundary outward normal �uxes. Sin
e f = 0 (i.e. no sour
e term inequation (2)), the quantities ener1 and ener2 should 
onverge to the same value. Table1 shows that these two dis
rete quantities 
onverge to the same value and shows thatrelative error between ener1, ener2 given by: eren = |ener1 − ener2|/max(ener1, ener2),
onverge to zero on �ne grids.Table 5 shows the value ener1, ener2 and eren 
omputed using dis
rete gradient ∇u whi
his obtained by �nite di�eren
es (using a 9 points sten
il). We note here that the resultsobtained by LBE (see Table 4) are more e�
ient than those obtained by �nite di�eren
esmethod.3 Comments on the resultsThe latti
e Boltzmann s
heme is a mesos
opi
 method whi
h have a lot of unknowns pernode of the latti
e (9 unknowns in D2Q9 model), however linear 
ombinations of theselo
al unknown allow to 
ompute the �rst order and the se
ond order spa
e derivativesof the solution. We have shown how to adapt the latti
e Boltzmann s
heme to simulatean anisotropi
 di�usion problem and present numeri
al results showing that the s
heme
onverges to the solution.The latti
e Boltzmann s
heme has been designed for time dependent situations and isfounded on the fa
t that the s
heme is exa
t for parti
ular adve
tion velo
ities. We haveused this method for a steady di�usion problem. The s
heme 
onverges slowly towardsthe stationary solution with a time 
onstant proportional to the number of nodes in themesh. We have not used any a

eleration te
hniques like embedded grids.Referen
es[DDH92℄ D'Humières D., �Generalized latti
e-Boltzmann equation�, AIAA Rare�edGas Dynami
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e Boltzmanns
heme�, Computers & Mathemati
s with Appli
ations, vol 55, p. 1141�1149, 2008.[DLT08℄ Dubois F., Lallemand P., Tekitek M. M., � Using the Latti
e Boltz-mann S
heme for Anisotropi
 Di�usion Problems�, Finite Volumes for Complex Ap-pli
ations V; Problems & Perspe
tives, R. Eymard and J.M. Hérard (Eds), ISBN:9781848210356, J. Wiley & Sons, ISTE, p. 351-358, 2008.


