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Abstract
This paper describes an original approach consisting on an application of
fractional calculus to the time domain simulation of the skin effect in tubular
conductors.
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1 Introduction

e This study concerns electromagnetic compatibility simulations. The aim
is to calculate propagation of perturbations in wires in time the domain using
the SABER simulator to solve the network and line propagation equations.
Time domain is more convenient to take into account non-linearity in circuits.
e The difficulty, here, consists in the representation of the skin effect along
the wires. This issue has been historically treated in the frequency domain
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[1], [2], [3], where it is easy to find the exact solution of impedance, given by
the Bessel functions. Then the time domain impulse response is given by its
Inverse Fourier Transform.

e Here, we propose the application of fractional calculus theory to the time
domain analysis of the skin effect in tubular conductors by using a validated
approximation of the frequency domain expression.

e Without considering propagation, as a first step, the fractional calculus
is compared to the convolution of the impulse response of the approxima-
ted impedance with the input current. This impulse response needs to be
causal: we also show it is possible if frequency domain approximations keep
characteristics of the real and imaginar part.

2 Physical model: The diffusion equation and impe-
dance in the frequency domain

H
e Maxwell’s equations inside a good conductor (Ohm’s law : 7 =0FE )
are written, supposing that displacement current is negligible compared to
conduction current and that there is no charge accumulation.
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Figure 1.  Cross section of the axisymetric tubular conductor.

e For a cylindrical conductor of radius r = a (see Fig. 3), we suppose that
the current density has an unique contribution following the axis direction of
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the conductor. Also, for a cylindrical shape the current is independent of ¢.
Finally we consider no propagation in z so that j = j,(r, t)us.

e In order to describe the inner impedance of the wire, we use the diffusion
equation for the current density inside the cylindrical conductor given by:

82]'2(7“,75) 10j,(r,t) 07.(r,t)
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If we perform a Fourier transform over time ¢ the partial differential equation
is transformed into an ordinary differential equation:

4. (r,w) N ldyz(r, w)
dr? rdr
The impedance per unit length of the conductor can then be defined as [1],

121,131, 14]:
(1)
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where Jy and J; are Bessel functions with a complex argument k& = /—jwo g

and 0 = , /w%u is the skin depth.

e Usually, for frequency domain resolution, just the real part of this impe-
dance is used because the imaginary part can be neglected compared to the
external inductance of the wire. We will see later that the imaginary part is
necessary to preserve causality.
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3 Time domain response

e To obtain the time domain evolution of current under skin effect we
propose an original approach that has been used in other applications [7],
and based on the fractional calculus [6].

e  We choose to approximate (1) throughout the whole bandwidth ranging
from DC to high frequency with:
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Although this expression overestimates the impedance at high frequencies,

A~

it’s impulse response is real (Zg,(—w) = Z\;pp(w)) and preserves causality
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(Kramers-Kronig relations). The impedance in the two previous equations

can be rewritten as:
~ 1 1 I
Zappron (@) = walo + 27‘(’&\/; Je:

w
The time domain response for a causal real function i(¢) is then:

2) u(t) =

where we define the fmctional derivative as in [7]:

1 t dZ(T)
D2i(t E/ / \/ wl ) et dw.
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The numerical expression of the fractional derivative can be developed in
different ways [7]. We expose here briefly the use of the formal square root

of a finite difference operator (Griinwald-Letnikov differintegral).

e Fixing a time step h > 0, the values of the i(¢) function at regular steps
are expressed i, = i(nh) where n € N. The finite difference upwind scheme
for the first derivative is:

0]~ - = [ - 0]

where [; and ¢ are identity and delay operators so that [I4i], = 7, and
(X7, = ix—1. The definition of the fractional derivative comes then naturally:
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Applying the previous results to (2) it follows:
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Figure 2. Current in the wire: comparison with the exact solution, classical
approximations and fractional technique.

4 Simulation Results

e The values correspond to an AWG22 wire, a = 0.36 mm for the radius
of the cylinder, o = 5.2107.S/m for its electrical conductivity. The excitation
signal, v(t), is a pulse of amplitude A = 1V and ¢,;5c = ¢, = 1ns and pulse
width of 80ns. The time is discretized in regular steps of h = 1ns. Output
current is calculated at points ¢(kh) with k& € N and compared to the the
classical DFT plus IDFT of the complete expression of the impedance.

5 Conclusion

In this paper, we demonstrate the application of fractional calculus techniques
to the skin effect simulation of wires in the time domain. This numerical me-
thod is interesting as all coefficients are calculated a priori. Compared to the
convolution with the impulse response (numerically computed with Inverse
Fourier Transform), the fractional technique also allows to keep an analytic
approach in the time domain. It must still be improved in order to mini-
mize the difference between results and it will be integrated into propagation
model of wires.
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