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Multi-phase Flow Simulations with LBM

Irmgard, Ray, Morris, Lee, & Nagel, Soft Matter 2016

Less viscous (left) and viscous (right) drop impact Unstructured two-phase LBM

Wardle & Lee, Comp Math Appl 2013

Connington, Miskin, Lee, Morris, Jaeger, IJMF 2015

Liquid bridge break-up

Lee, in preparation Lee, in preparation

Breakup of liquid filament

Drop Splashing



Engulfment of a Drop on Solids Coated by a Film

(A) Experimental setup. Water/glycerol pendant drops of radius R~1 mm and viscosity 𝜂𝑤 = ሾ
ሿ

0.035 −
0.154 𝑃𝑎 ∙ 𝑠 are brought into contact with a silicone oil film of height H and viscosity 𝜂𝑜 = ሾ

ሿ
0.33 −

1.54 𝑃𝑎 ∙ 𝑠. Viscosity ratios are held at 1:10.

(B) Initialization of the droplet spreading simulation.

Note: The dynamics of droplets coalescing with solids coated with a very thin oil film H/R<<1 can be characterized

by an inertial time scale 𝑡𝜌 =
𝜌𝑅3

𝜎𝑎𝑜
for Oh<<1 and by a viscous time scale 𝑡𝜂 =

𝜂𝑜𝑅

𝜎𝑎𝑜
for Oh>>1 (Carlson 2013),

where 𝑂ℎ =
𝜂𝑜

𝜌𝑜𝜎𝑤𝑜𝑅
. (Zhao, Kern, Carlson, and Lee, in preparation)



Droplet dynamics on a thin oil film H/R=0.1 and a
thick film H/R=4 for Oh=5.2.

Engulfment of a Drop on Solids Coated by a Film

Droplet dynamics on a thin oil film H/R=0.1 and a
thick film H/R=4 for Oh=0.07.



Contour plot of the viscous dissipation of a thin film H/R=0.1 and a thick film H/R=4 for Oh=5.27.

Engulfment of a Drop on Solids Coated by a Film

Comparison between the simulation and the experiment for H/R=0.2. Simulation: Oh=40. Experiment: Oh=57.



• Model equation: External intermolecular force based single-
component two-phase flow model (He et al. 1998 PRE; Lee and 
Fischer 2006 PRE) and incompressible binary two-phase flow model 
(He et al. 1999 JCP; Lee and Liu 2010 JCP)

• External force based model vs. equilibrium free energy model 
(Wagner & Qi 2006 Physica A) ; External force based model & S-C 
model (He et al. 1998 PRE): They can be shown equivalent

• Other (early) stable models: single-component two-phase flow 
model (Yuan & Schaefer 2006 PF) and incompressible binary two-
phase flow model (Inamuro et al. 2004 JCP; Zheng et al. 2006 JCP) 

• Non phase-field model (sharp interface model): Front-tracking LBM 
(Lallemand 2007 JCP), VOF LBM (Thurey et al. Proc. Vision Mod 
Visualization 2006) → simpler physics and generally more stable but 
not necessarily more accurate
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𝜕𝑓𝛼
𝜕𝑡

+ 𝒆𝛼 ∙ ∇𝑓𝛼 = −
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  +

 𝒆𝛼 − 𝒖 ∙ 𝑭
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Bulk density may fluctuate around equilibrium value

Momentum equation for non-ideal gas:
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⟹ 𝜌 
𝜕𝒖

𝜕𝑡
+ 𝒖 ∙ ∇𝒖 = − ∇𝑝0 

𝑐𝑟𝑢𝑐𝑖𝑎𝑙  𝑡𝑜
𝑝ℎ𝑎𝑠𝑒  𝑠𝑒𝑝𝑎𝑟𝑡𝑖𝑜𝑛

+ 𝜌𝜅∇∇2𝜌     
𝑠𝑢𝑟𝑓𝑎𝑐𝑒  
𝑡𝑒𝑛𝑠𝑖𝑜𝑛

+ ∇ ∙ Π 

𝑐𝑠
2 =

𝜕𝑝0

𝜕𝜌
 

𝑭 = ∇𝜌𝑐𝑠
2 − ∇𝑝0 + 𝜌𝜅∇∇2𝜌 



Introducing More Terms

• Model equation:

𝜕𝑓𝛼
𝜕𝑡

+ 𝒆𝛼 ∙ ∇𝑓𝛼 = −
1

𝜆
𝑓𝛼 − 𝑓𝛼

𝑒𝑞
+

𝒆𝛼 − 𝒖𝛼 ∙ 𝑭

𝜌𝑐𝑠
2 𝑓𝛼

𝑒𝑞

~𝑡𝛼
𝒆𝛼

𝑐𝑠
2+

𝒆𝛼∙𝒖 𝒆𝛼−𝒖𝑐𝑠
2

𝑐𝑠
4 ∙𝑭

• Recovered Governing Equations:

𝜕𝜌

𝜕𝑡
+ ∇ ∙ 𝜌𝒖 = 0

𝜕𝜌𝒖

𝜕𝑡
+ ∇ ∙ 𝜌𝒖𝒖 = −∇𝜌𝑐𝑠

2 + ณ𝑭
∇𝜌𝑐𝑠

2−∇𝑝0+𝜌𝜅∇∇2𝜌

+ 𝛻 ∙ 𝜂 𝛻𝒖 + 𝛻𝒖𝑇

• Enforcing incompressibility typically requires certain transformation to introduce −∇𝑝𝑑𝑦𝑛𝑎𝑚𝑖𝑐

• Additional LB equation for passive scalar with the velocity from 𝒖 =
1

𝜌
σ𝒆𝛼𝑓𝛼 and 𝜌 = σℎ𝛼

𝜕ℎ𝛼

𝜕𝑡
+ 𝒆𝛼 ∙ ∇ℎ𝛼 = −

1

𝜆
ℎ𝛼 − ℎ𝛼

𝑒𝑞
+

𝒆𝛼 − 𝒖𝛼 ∙ 𝑮

𝜌𝑐𝑠
2 𝑓𝛼

𝑒𝑞

• Recovered scalar transport equation:

𝜕𝜌

𝜕𝑡
+ ∇ ∙ 𝜌𝒖 = ∇ ∙ 𝜆𝑐𝑠

2 𝑮 − 𝑭

• SC force: 𝑭 = −ℊ𝜓 𝒙 σ𝛼 𝜓 𝒙 + 𝒆𝛼𝛿𝑡 𝒆𝛼 = −∇
3ℊ𝑐𝑠

2𝛿𝑡𝜓
2

2
−

3ℊ𝑐𝑠
4𝛿𝑡

3

8
𝜓∇∇2𝜓 He et al. PRE 1997

Guo et al. 2002



Equilibrium Profile

▪ Free energy functional: Ψ = ׬ 𝐸0 +
𝜅

2
𝛻𝜌 2 𝑑𝑉 − 𝑆׬ 𝜌𝑠𝜙𝑑𝑆

𝐸0 ≈ 𝛽 𝜌 − 𝜌𝑙𝑖𝑞
𝑠𝑎𝑡 2

𝜌 − 𝜌𝑣𝑎𝑝
𝑠𝑎𝑡 2

𝜇0 =
𝜕𝐸0

𝜕𝜌
, 𝑝0 = 𝜌

𝜕𝐸0

𝜕𝜌
− 𝐸0

▪ In plane interface, density profile (D being interface thickness) is determined such that the 

energy is minimized (𝜇 = 𝜇0 − 𝜅𝛻2𝜌) (Lee and Lin, JCP 2005)

𝜌 𝑧 =
𝜌𝑙𝑖𝑞
𝑠𝑎𝑡+𝜌𝑣𝑎𝑝

𝑠𝑎𝑡

2
+

𝜌𝑙𝑖𝑞
𝑠𝑎𝑡−𝜌𝑣𝑎𝑝

𝑠𝑎𝑡

2
tanh

2𝑧

𝐷

▪ Surface tension:

𝜎 =
𝜌𝑙𝑖𝑞
𝑠𝑎𝑡−𝜌𝑣𝑎𝑝

𝑠𝑎𝑡
3

6
2𝜅𝛽, 𝜅 =

𝛽𝐷2 𝜌𝑙𝑖𝑞
𝑠𝑎𝑡−𝜌𝑣𝑎𝑝

𝑠𝑎𝑡
2

8

▪ Boundary condition: 𝜅
𝜕𝜌

𝜕𝒏
= −𝜙, 

𝜕𝜇

𝜕𝒏
= 0

Ω =
4𝜙

𝜌𝑙𝑖𝑞
𝑠𝑎𝑡−𝜌𝑣𝑎𝑝

𝑠𝑎𝑡
2

2𝜅𝛽
(Dimensionless wetting potential)

cos 𝜃𝑤 =
1+Ω 3/2− 1−Ω 3/2

2
(Equilibrium contact angle)

Fig. 1: Density profile in the normal 
direction to wall (a) liquid (b) vapor



LBM as Phase  Field/Diffuse Interface Approach

◼ Pressure tensor and/or chemical potential are defined such that the
system will phase separate below the critical temperature

◼ Interfaces and their associated dynamics will be a natural feature of
the simulation

◼ Ability to handle tortuous interface geometries without having to
resort to interface-tracking schemes (weakness: necessity for
interface to have finite width)

◼ When exploring systems on a mesoscopic scale it is very reasonable
that finite width of a thermodynamic interface is explicitly apparent
in the simulation → vital in controlling the dynamics of moving
contact line or phase ordering of a fluid

◼ Stable NS diffuse interface approach is also new (Ding et al. 2007
JCP)



Is LBM Particularly more unstable?

• Phase-field LBM appears to be more stable than NS version of 
phase-field approach (PF-NS is generally less stable than Level 
set, FT or VOF-NS)                                                                                                       

• Forcing terms are stiff!

– Large density gradient

– Stiff equation of state

– Large surface tension force
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• Larger speed of sound at large density ratio → sharper interface

• Discretization: Upwind biased vs. Central schemes

• Spurious currents (parasitic currents) → not clear

𝑭 = ∇𝜌𝑐𝑠
2 − ∇𝑝0 + 𝜌𝜅∇∇2𝜌 

𝑭 = ∇𝜌𝑐𝑠
2 − ∇𝑝0 + 𝜌𝜅∇∇2𝜌 

𝑭 = ∇𝜌𝑐𝑠
2 − ∇𝑝0 + 𝜌𝜅∇∇2𝜌 

❶ 



Incompressible Navier-Stokes Equations

Interface Tracking Equations

𝛻 ∙ 𝒖 = 0

𝜌
𝜕𝒖

𝜕𝑡
+ 𝒖 ∙ 𝛻𝒖 = −𝛻𝑃 + 𝛻 ∙ 𝜂 𝛻𝒖 + 𝛻𝒖𝑇 + 𝑭𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑡𝑒𝑛𝑠𝑖𝑜𝑛

𝑜𝑟 𝑷𝑷𝑬: 𝛻 ∙
1

𝜌
𝛻𝑃 = −𝛻 ∙ 𝒖 ∙ 𝛻𝒖 −

1

𝜌
𝛻 ∙ 𝜂 𝛻𝒖 + 𝛻𝒖𝑇 −

1

𝜌
𝑭𝑠 +

𝜕𝒖

𝜕𝑡

𝜕𝜌

𝜕𝑡
+ 𝒖 ∙ 𝛻𝜌 = 𝜌𝛻 ∙ 𝒖

𝛻∙𝒖=0 𝜕𝜌

𝜕𝑡
+ 𝒖 ∙ 𝛻𝜌 = 0

or define volume fraction 𝝓 s.t. 𝜌 = 𝜙𝜌𝑙 + 1 − 𝜙 𝜌𝑣
𝜕𝜙

𝜕𝑡
+ 𝒖 ∙ 𝛻𝜙 = 0

or define level set function 𝝍 s.t. 𝛻𝜓 = 1
𝜕𝜓

𝜕𝑡
+ 𝒖 ∙ 𝛻𝜓 = 0

Notes: Local mass conservation and calculation of surface tension
• Due to dispersion and dissipation errors interface tends to oscillate and smear
• VOF: Interface reconstruction is required 
• Level set: Reinitialization step is required (Abadie, Aubin, Legendre, JCP 2015)



Level-Set Equation

Phase Field Equations (Allen-Cahn and Cahn-Hilliard)

𝜕𝜙

𝜕𝑡
+ 𝒖 ∙ 𝛻𝜙 = −𝑀ณ𝜇

𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙
𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙

= −𝑀
𝜕𝑓

𝜕𝜙
− 𝛻2𝜙

known as Allen-Cahn equation. 
Notes: 
• Pattern formation processes (e.g., solidification) 
• Non-conservative due to curvature driven interface

𝜕𝜓

𝜕𝑡
+ 𝒖 ∙ 𝛻𝜓 = 0

𝑅𝑒𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝜕𝜓

𝜕𝜏
+ 𝑠 𝜓0 𝛻𝜓 − 1 = 0

𝑆.𝑆.
𝑠 𝜓0 𝛻𝜓 − 1 = 0

at steady state: 𝛻𝜓 = 1

Note: Interface can shift during reinitialization → Mass conservation problem

𝜕𝜙

𝜕𝑡
+ 𝒖 ∙ 𝛻𝜙 = 𝛻 ∙ 𝑀𝛻𝜇 = 𝛻 ∙ 𝑀𝛻

𝜕𝑓

𝜕𝜙
− 𝛻2𝜙

known as Cahn-Hilliard equation. 

Notes: 
• Non-linear high-order spatial derivatives
• Globally conservative but loses mass when curvature is large → 𝑟𝑐 =

3

16𝜋
𝐷𝑉

1/3

= 𝛻 ∙ 𝑀
𝜕2𝑓

𝜕𝜙2 𝛻𝜙 − 𝛻𝛻2𝜙



Benchmark I: Bubble Rising within a Thin Gap

▪ Few numerical simulation of 
unsteady bubble motion have been 
performed at high Reynolds number

▪ Detailed study of path oscillations, 
shape oscillations, and unsteady 
wake dynamics of high Re bubble 
flow (O(102) ~ O(104))

▪ Dimensionless numbers

𝐵𝑜 =
𝑔∆𝜌𝑑2

𝜎

𝐴𝑟 =
𝑔𝑑𝑑

𝜈

𝑅𝑒 =
𝜌𝑙𝑈𝑡𝑑

𝜂𝑙

where g : gravity
∆𝜌 : density difference
𝜎 : surface tension
d : bubble diameter
𝜂𝑙 : liquid viscosity
Vt : terminal velocity



Re~4000

𝜕𝜙

𝜕𝑡
+ 𝒖 ∙ 𝛻𝜙 = 𝛻 ∙ 𝑀𝛻𝜇 = 𝛻 ∙ 𝑀𝛻

𝝏𝒇

𝝏𝝓
− 𝜵𝟐𝝓



Hyperbolic Tangent Equilibrium Profile (Chiu & Lin, JCP 2011)

Conservative Phase Field Equation without Curvature Contribution

𝜕𝜙

𝜕𝑡
+ 𝒖 ∙ 𝛻𝜙 = 𝑀 𝛻2𝜙 −

𝜕𝑓

𝜕𝜙
− 𝛻𝜙 𝛻 ∙

𝛻𝜙

𝛻𝜙
= 𝑀 𝛻2𝜙 −

𝜕𝑓

𝜕𝜙
− 𝛻𝜙 𝜅

𝒏 =
𝛻𝜙

𝛻𝜙
,

Issues: 
• Division by zero (1/ 𝛻𝜙 ) possible; could be unstable PDE
• Tend to fragmentize continuous interfaces into droplets and bubbles

𝜅 = 𝛻 ∙ 𝒏 = 𝛻 ∙
𝛻𝜙

𝛻𝜙
,

𝜕𝜙

𝜕𝒏
= 𝛻𝜙 =

𝜙 1 − 𝜙

𝜖
,

𝜕2𝜙

𝜕𝒏2 =
𝛻𝜙 ∙ 𝛻 𝛻𝜙

𝛻𝜙
=

𝜕𝑓

𝜕𝜙
=

𝜙 1 − 𝜙 1 − 2𝜙

𝜖2

𝜙 = 
1

2
1 + tanh

𝑥

2𝜖

= 𝑀 𝛻2𝜙 −
𝛻𝜙 ∙ 𝛻 𝛻𝜙

𝛻𝜙
− 𝛻𝜙 𝛻 ∙

𝛻𝜙

𝛻𝜙

= 𝑀 𝛻2𝜙 −
𝛻𝜙

𝛻𝜙
∙ 𝛻

𝜙 1 − 𝜙

𝜖
−

𝜙 1 − 𝜙

𝜖
𝛻 ∙

𝛻𝜙

𝛻𝜙

= 𝑀𝛻 ∙ 1 −
𝜕𝜙/𝜕𝒏

𝛻𝜙
𝛻𝜙

= 𝑀𝛻 ∙ 1 −
𝜙 1 − 𝜙

𝜖

1

𝛻𝜙
𝛻𝜙

4

𝛿

∇𝜙𝑖

∇𝜙𝑖
𝜙𝑖 1 − 𝜙𝑖 −

𝜙𝑖
2

σ𝑗=1
3 𝜙𝑗

2 ෍

𝑗=1

3
4

𝛿

∇𝜙𝑗

∇𝜙𝑗

𝜙𝑗 1 − 𝜙𝑗



Fig 1: Droplet under Kolmogorov forcing on 1283 grid

Variation of mass of the system for rising bubble.



Navier-Stokes Equations with Non-ideal Gas EOS

9 velocity model (2D)

1
e


2
e


3
e


4
e


5
e


6
e


7
e


8
e


0
e


Lattice Boltzmann (Discrete Boltzmann) Equations

𝜌
𝜕𝒖

𝜕𝑡
+ 𝒖 ∙ 𝛻𝒖 = −𝛻𝑝 + 𝛻 ∙ 𝜂 𝛻𝒖 + 𝛻𝒖𝑇 + 𝑭

𝜕𝜌

𝜕𝑡
+ 𝒖 ∙ 𝛻𝜌 = 𝜌𝛻 ∙ 𝒖

𝜕𝑓𝛼
𝜕𝑡

+ 𝒆𝛼 ∙ 𝛻𝑓𝛼

𝑆𝑡𝑟𝑒𝑎𝑚𝑖𝑛𝑔

= −
1

𝜆
𝑓𝛼 − 𝑓𝛼

𝑒𝑞
+

𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛

ณ𝐹𝛼
𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙
𝐹𝑜𝑟𝑐𝑒

𝑓𝛼 : Particle distribution function (σ𝛼 𝑓𝛼 = 𝜌;σ𝛼 𝒆𝛼𝑓𝛼 = 𝜌𝒖)

𝒆𝛼 : Microscopic particle velocity, e.g. in D2Q9 model

(𝑒0 = 0,0 ; 𝑒1 = 1,0 ; 𝑒2 = 1,1 ;… ; 𝑒8 = 1,−1 )

𝑓𝛼
𝑒𝑞

: Equilibrium distribution function

𝑓𝛼
𝑒𝑞

= 𝑡𝛼𝜌 1 +
𝒆𝛼∙𝒖

𝑐𝑠
2 +

𝒆𝛼𝒆𝛼−𝑐𝑠
2𝑰 :𝒖𝒖

2𝑐𝑠
4

𝜆 : Relaxation time (𝜂 = 𝜌𝜆𝑐𝑠
2, 𝑐𝑠: speed of sound)

Set of 1st order hyperbolic PDEs with constant advection velocities

(Nonlinearity is considered in 𝑓𝛼
𝑒𝑞

)

𝐹𝛼 = 𝑡𝛼
𝒆𝛼

𝑐𝑠
2 +

𝒆𝛼 ∙ 𝒖 𝒆𝛼 − 𝒖𝑐𝑠
2

𝑐𝑠
4 ∙ 𝑭

𝑭 = 𝛻𝜌𝑐𝑠
2

Leading order
term

− 𝜌𝛻 𝜇0 − 𝜅𝛻2𝜌

Guo 2002



From DBE to Lattice Boltzmann Equation (LBE): Standard Approach

• Discretize DBE along characteristics over time δt

න

𝑡

𝑡+𝛿𝑡
𝜕𝑓𝛼
𝜕𝑡

+ 𝒆𝛼 ∙ 𝛻𝑓𝛼 𝑑𝑡′ = − න

𝑡

𝑡+𝛿𝑡
1

𝜆
𝑓𝛼 − 𝑓𝛼

𝑒𝑞
𝑑𝑡′ + න

𝑡

𝑡+𝛿𝑡

𝐹𝛼𝑑𝑡′

• Applying Crank-Nicolson scheme to integrate RHS

𝑓𝛼 𝒙, 𝑡 + 𝛿𝑡 − 𝑓𝛼 𝒙 − 𝒆𝛼𝛿𝑡, 𝑡 = − อ
𝑓𝛼 − 𝑓𝛼

𝑒𝑞

2𝜏
𝒙−𝒆𝛼𝛿𝑡,𝑡

+
𝛿𝑡

2
ቚ𝐹𝛼

𝒙−𝒆𝛼𝛿𝑡,𝑡

− อ
𝑓𝛼 − 𝑓𝛼

𝑒𝑞

2𝜏
𝒙,𝑡+𝛿𝑡

+
𝛿𝑡

2
ቚ𝐹𝛼

𝒙,𝑡+𝛿𝑡

• Introduction of modified particle distribution functions (He et al. 1998)

ҧ𝑓𝛼 = 𝑓𝛼 +
𝑓𝛼−𝑓𝛼

𝑒𝑞

2𝜏
−

𝛿𝑡

2
𝐹𝛼 & ҧ𝑓𝛼

𝑒𝑞
= 𝑓𝛼

𝑒𝑞
−

𝛿𝑡

2
𝐹𝛼

• LBE

ҧ𝑓𝛼 𝒙, 𝑡 + 𝛿𝑡 − ҧ𝑓𝛼 𝒙 − 𝒆𝛼𝛿𝑡, 𝑡 = − อ
ҧ𝑓𝛼 − ҧ𝑓𝛼

𝑒𝑞

𝜏 + 1/2
𝒙−𝒆𝛼𝛿𝑡,𝑡

+ 𝛿𝑡 ቚ𝐹𝛼
𝒙−𝒆𝛼𝛿𝑡,𝑡

• This equation can be solved in two steps: Collision & Streaming

• Non-local forcing requires particular attention: truncation errors due to time 
and space discretizations may not be balanced



Strang & Force Splitting

• Strang Splitting: A method to compute 𝑓𝛼
𝑛+1 from 𝑓𝛼

𝑛 (Dellar 2013)

𝑓𝛼
𝑛+1 = 𝐶𝜆

𝐼 𝛿𝑡

2
∘ 𝑆𝒆𝛼

𝛿𝑡 ∘ 𝐶𝜆
𝐸 𝛿𝑡

2
𝑓𝛼

𝑛

• Here, 𝐶𝜆
𝐼 𝛿𝑡

2
and 𝐶𝜆

𝐸 𝛿𝑡

2
represent numerical operator for following ODE

𝑑𝑓𝛼
𝑑𝑡

= −
𝑓𝛼 − 𝑓𝛼

𝑒𝑞

𝜆
+ 𝐹𝛼

∗∗

over a half time-step. Superscripts E and I indicate explicit and implicit Euler   

time-stepping schemes

• 𝑆𝒆𝛼
𝛿𝑡 is numerical operator for

𝜕𝑓𝛼
𝜕𝑡

+ 𝒆𝛼 ∙ 𝛻𝑓𝛼 = 𝐹𝛼
∗

over full time-step

• Strang splitting: 𝐹𝛼 = 𝐹𝛼
∗ + 𝐹𝛼

∗∗



Proposed Force Splitting

• 𝑆𝒆𝛼
𝛿𝑡 : Hyperbolic equation with a source term, which can be fairly stiff

𝜕𝑓𝛼
𝜕𝑡

+ 𝒆𝛼 ∙ 𝛻𝑓𝛼 = 𝐹𝛼
∗

• It is desired that 𝐹𝛼
∗ is close to 𝒆𝛼 ∙ 𝛻𝑓𝛼 to the leading order, for instance 

𝐹𝛼
∗~𝑡𝛼𝒆𝛼 ∙ 𝛻𝜌𝑐𝑠

2, so that their difference is small 

• Here we choose the following force splitting (Patel & Lee 2016)

𝐹𝛼
∗ = 𝑡𝛼

𝒆𝛼

𝑐𝑠
2 ∙ 𝑭 and 𝐹𝛼

∗∗ = 𝑡𝛼
𝒆𝛼 ∙ 𝒖 𝒆𝛼 − 𝒖𝑐𝑠

2

𝑐𝑠
4 ∙ 𝑭

such that

෍
𝛼
𝐹𝛼

∗∗ = 0 and ෍
𝛼
𝒆𝛼𝐹𝛼

∗∗ = 0

and thus collisions do not change conservative moments



Navier-Stokes Equations with Non-ideal Gas EOS

Lattice Boltzmann (Discrete Boltzmann) Equations

𝜌
𝜕𝒖

𝜕𝑡
+ 𝒖 ∙ 𝛻𝒖 = −𝛻𝑝 + 𝛻 ∙ 𝜂 𝛻𝒖 + 𝛻𝒖𝑇 + 𝑭

𝜕𝜌

𝜕𝑡
+ 𝒖 ∙ 𝛻𝜌 = 𝜌𝛻 ∙ 𝒖

𝜕𝑓𝛼
𝜕𝑡

+ 𝒆𝛼 ∙ 𝛻𝑓𝛼 = −
1

𝜆
𝑓𝛼 − 𝑓𝛼

𝑒𝑞
+ 𝑡𝛼

𝒆𝛼

𝑐𝑠
2 ∙ 𝛻𝜌𝑐𝑠

2

𝐹𝛼
∗

+ 𝑡𝛼
𝒆𝛼 ∙ 𝒖 𝒆𝛼 − 𝒖𝑐𝑠

2

𝑐𝑠
4 ∙ 𝛻𝜌𝑐𝑠

2

𝐹𝛼
∗∗

Introduction of modified particle distribution functions 

ҧ𝑓𝛼 = 𝑓𝛼 +
𝑓𝛼 − 𝑓𝛼

𝑒𝑞

2𝜏
−

𝛿𝑡

2
𝑡𝛼

𝒆𝛼 ∙ 𝒖 𝒆𝛼 − 𝒖𝑐𝑠
2

𝑐𝑠
4 ∙ 𝛻𝜌𝑐𝑠

2

ҧ𝑓𝛼
𝑒𝑞

= 𝑓𝛼
𝑒𝑞

−
𝛿𝑡

2
𝑡𝛼

𝒆𝛼 ∙ 𝒖 𝒆𝛼 − 𝒖𝑐𝑠
2

𝑐𝑠
4 ∙ 𝛻𝜌𝑐𝑠

2

𝐹𝛼 = 𝑡𝛼
𝒆𝛼

𝑐𝑠
2 +

𝒆𝛼 ∙ 𝒖 𝒆𝛼 − 𝒖𝑐𝑠
2

𝑐𝑠
4 ∙ 𝑭

𝑭 = 𝛻𝜌𝑐𝑠
2

Leading order
term

− 𝜌𝛻 𝜇0 − 𝜅𝛻2𝜌

Guo 2002

Collision step after combining 𝐶𝜆
𝐼 𝛿𝑡

2
and 𝐶𝜆

𝐸 𝛿𝑡

2
:

ҧ𝑓𝛼 𝒙, 𝑡 + 𝛿𝑡 − ҧ𝑓𝛼 𝒙, 𝑡 = − อ
ҧ𝑓𝛼 − ҧ𝑓𝛼

𝑒𝑞

𝜏 + 1/2
𝒙,𝑡

+ 𝛿𝑡 อ𝑡𝛼
𝒆𝛼 ∙ 𝒖 𝒆𝛼 − 𝒖𝑐𝑠

2

𝑐𝑠
4 ∙ 𝛻𝜌𝑐𝑠

2

𝒙,𝑡



From DBE to Lattice Boltzmann Equation (LBE)

• Discretize 𝑆𝒆𝛼
𝐴 𝛿𝑡 along characteristics over time δt

න

𝑡

𝑡+𝛿𝑡
𝜕 ҧ𝑓𝛼
𝜕𝑡

+ 𝒆𝛼 ∙ 𝛻 ҧ𝑓𝛼 𝑑𝑡′ = න

𝑡

𝑡+𝛿𝑡

𝐹𝛼
∗𝑑𝑡′

• Applying Crank-Nicolson scheme to integrate RHS

ҧ𝑓𝛼 𝒙, 𝑡 + 𝛿𝑡 − ҧ𝑓𝛼 𝒙 − 𝒆𝛼𝛿𝑡, 𝑡 =
𝛿𝑡

2
อ

𝑡𝛼

𝑐𝑠
2 𝒆𝛼 ∙ 𝛻𝜌𝑐𝑠

2

𝒙−𝒆𝛼𝛿𝑡,𝑡

+
𝛿𝑡

2
อ

𝑡𝛼

𝑐𝑠
2 𝒆𝛼 ∙ 𝛻𝜌𝑐𝑠

2

𝒙,𝑡+𝛿𝑡

• How to discretize directional derivative 𝛿𝑡𝒆𝛼 ∙ 𝛻𝜌?

– Discretization along characteristics: 

𝛿𝑡𝒆𝛼 ∙ 𝛻𝜌 =
1

2
𝜌 𝒙 + 𝒆𝛼𝛿𝑡 − 𝜌 𝒙 − 𝒆𝛼𝛿𝑡

– Isotropic finite difference (Lee & Lin 2005; Kumar 2004)

𝛿𝑡𝒆𝛼 ∙ 𝛻𝜌 = 𝒆𝛼 ∙ ෍

𝛼≠0

𝑡𝛼𝒆𝛼 𝜌 𝒙 + 𝒆𝛼𝛿𝑡 − 𝜌 𝒙 − 𝒆𝛼𝛿𝑡

2𝑐𝑠
2



Numerical Test: 𝜌𝒖 field of a 2D Stationary Drop

• Ω ≔ −1,1 2 filled with quadrilateral spectral elements, 
𝜌𝑙

𝜌𝑣
= 10

• Uniform mesh of size 𝐸 = 32 × 32 and 𝑁 = 5, after 106 time steps

SAS-DBM, vectors magnified by 1015 SANS-DBM, vectors magnified by 102



Numerical Test: 2D Stationary Drop on Perturbed Mesh

• Ω ≔ −1,1 2 filled with quadrilateral spectral elements, 
𝜌𝑙

𝜌𝑣
= 10

• Non-uniform mesh of size 𝐸 = 16 × 16 and variable 𝐿𝑎 =
𝜎2𝑅0

𝜌𝜈2 = 103

Perturbed mesh with zig-zagged distribution. The degree of 
perturbation is based on the skewness coefficient 𝛼 = tan 𝜃



- Cahn-Hilliard LBM performs well but suffers local mass conservation 
when local curvature effect is large

- To correct mass conservation error for low resolution simulation, 
derivative-free conservative phase-field LBM has been proposed, 
which possesses excellent Galilean invariant property, numerical 
efficiency, and accuracy.

- Moment-based fully derivative-free model lacks robustness of finite 
difference version, which needs to be improved.

- A force splitting scheme based on the Strang splitting is proposed and 
tested for two-phase lattice Boltzmann equation

- Discretization along characteristics is consistent with LB framework, 
more stable, and delivers better quality solutions.

Summary

𝑭 = 𝛻𝜌𝑐𝑠
2

Leading order
term

− 𝜌𝛻 𝜇0 − 𝜅𝛻2𝜌
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