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Lecture 13 Surface integral

• Local parameterization
We give ourselves four real numbers a < b, c < d and a space of parameters (u, v) ∈ R2 such
that a≤ u≤ b and c≤ v≤ d. We define the parametrized sheet Σ in space R3 by a continuously
differentiable function Φ fom the rectangle Σ̂ ≡ [a, b]× [c, d] and taking its values in R3. This
application Φ is called the "local map". The parameterized sheet Σ is defined by the relation
Σ = Φ(Σ̂). A point M(u, v) of the parametric sheet has coordinates x, y et z that are regular
functions of the parameters u and v : x = X(u, v), y = Y (u, v) et z = Z(u, v).

The fundamental example is a plane parallelogram. The equation of the plane is for example
of the form z = α x+ β y+ γ . For a ≤ u ≤ b and c ≤ v ≤ d, we set x = u, y = v and z =
α u+β v+ γ .
A second example concerns a surface with equation z = f (x, y). It is similar to the previous
case except that the affine function f (x, y) = α x+β y+ γ is replaced by a function f of two
variables while remaining fairly regular.
The next example is the sphere centered at the origin O and of radius R > 0. We use the
spherical coordinates of the three-dimensional space. We project the current point M of the
sphere onto the xOy plane at a point m. We have: z = R cosθ and Om = R sinθ . It comes
then x = Om cosϕ = R sinθ cosϕ and y = Om sinϕ = R sinθ sinϕ .

• Tangent plane
We suppose the function Φ différentiable at the point (u, v) :
Φ(u+δu, v+δv) = Φ(u, v)+ ∂Φ

∂u (u, v)δu +∂Φ

∂v (u, v)δv+ || (u, v) || ε(δu, δv). The two tan-
gent vectors ∂Φ

∂u (u, v) and ∂Φ

∂v (u, v) are two vectors of space R3. We suppose that the family
(∂Φ

∂u ,
∂Φ

∂v ) is non-degenerate and the point M = Φ(u, v) is a “regular point” of the surface. The
tangent plane to the parametrized sheet Σ at the point M = Φ(u, v) is the affine plane that
passes through the point M(u, v) with an associated vector plane that has as its basis the family
of two vectors ∂Φ

∂u (u, v) and ∂Φ

∂v (u, v).
In the case of a surface of the form z = f (x, y), the two parameters are the abscissa x and the
the ordinate y. We have ∂Φ

∂x = (1, 0, ∂ f
∂x )

t and ∂Φ

∂y = (0, 1, ∂ f
∂y )

t. They always form a free family
whatever the function f .
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For a sphere of radius R > 0 and centered at the origin, we introduce the spherical coordinates,
so the two polar angles θ and ϕ such that x=R sinθ cosϕ , y=R sinθ sinϕ and z=R cosθ .
The moving reference frame (er, eθ , eϕ) is defined by the relations
er(θ , ϕ)= sinθ (cosϕ e1+sinϕ e2)+cosθ e3, eθ (θ , ϕ)= cosθ (cosϕ e1+sinϕ e2)−sinθ e3

and eϕ(ϕ) =−sinϕ e1 + cosϕ e2. In the case of the sphere of radius R, we have
dM = R(eθ dθ + eϕ sinθ dϕ) ; we deduce ∂M

∂θ
= Reθ and ∂M

∂ϕ
= R sinθ eϕ .

• Vector product
Let u and v be two vectors in an euclidian space of dimension 3. The vector product u× v
satisfies the following properties.
(i) The vector product u× v is orthogonal to the vectors u and v: (u× v, u) = (u× v, v) = 0.
(ii) If the vectors u and v are collinear, the vector product u× v is zero.
(iii) If P(u, v) is the parallelogram generated by the vectors u and v :
P(u, v) = {x ∈ R3, ∃θ , ξ , 0 ≤ θ ≤ 1, 0 ≤ ξ ≤ 1, x = θ u+ ξ v}, then the area of this paral-
lelogram is equal to the norm of the vector product u× v : |P(u, v)| = ||u× v||. Moreover,
||u× v|| ≤ ||u|| ||v||.
(iv) We give ourselves a direct orthonormal basis (e1, e2, e3) and the components of the two
vectors u and v : u = ∑

3
j=1 u j e j and v = ∑

3
k=1 vk ek. The vector product u× v is expressed in

the basis (e1, e2, e3) via the relation: u× v =
u1 v1

u2 v2
e3 +

u2 v2

u3 v3
e1 +

u3 v3

u1 v1
e2.

(v) It is possible to prove that w = u× v is a biliear function of the two vectors u and v :
(α u+β u′)× v = α (u× v)+β (u′× v) and u× (α v+β v′) = α (u× v)+β (u× v′), whatever
the choice of vectors u, u′, v, v′ and whatever the choice of numbers α and β .
(vi) If u× v ̸= 0, the family (u, v, u× v) is a direct basis of R3: the change matrix of basis
between a direct orthonormal basis (e1, e2, e3) and the family (u, v, u× v) is strictly positive.
(vii) Be careful, the vector product is not associative: in general, u× (v×w) ̸= (u× v)×w.

• Normal vector
We assume that the point M = Φ(u, v) is a regular point of the surface, i.e. that the family
(∂Φ

∂u (u, v), ∂Φ

∂v (u, v)) is free. Then the vector product ∂Φ

∂u (u, v)× ∂Φ

∂v (u, v) is not zero. The
norm || ∂Φ

∂u (u, v)× ∂Φ

∂v (u, v) || of this vector product is equal to the surface of the parallelogram
constructed with the two tangent vectors ∂Φ

∂u (u, v) and ∂Φ

∂v (u, v). We define the normal vector
n(u, v) as the unit vector constructed from this vector product:
n(u, v) = 1

|| ∂Φ

∂u (u,v)×
∂Φ

∂v (u,v)||
∂Φ

∂u (u, v)× ∂Φ

∂v (u, v).

It is a vector orthogonal to the tangent plane. Hence the name “normal” or “normal vector”.
For a surface of the form z = f (x, y), we have ∂Φ

∂x × ∂Φ

∂y = (−∂ f
∂x ,−

∂ f
∂y , 1)t and

n(x, y) = 1√
1+( ∂Φ

∂x )
2+( ∂ f

∂y )
2
(−∂ f

∂x ,−
∂ f
∂y , 1)t.

For the sphere of radius R, we have the relation ∂M
∂θ

× ∂M
∂ϕ

= R2 sinθ er. We deduce
|| ∂M

∂θ
× ∂M

∂ϕ
||= R2 sinθ and n(θ , ϕ) = er(θ , ϕ).

• Scaled surface
To approximate a curve Γ, we give ourselves points on the curve and we approach the curve by
the sequence of strings stretched between a point and its neighbor. Through two different points
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there always passes one and only one line segment. Thus we obtain a continuous approximation
of the curve Γ.
To approximate a surface, it is more delicate. Indeed, we give ourselves an integer n ≥ 1 and
we discretize first the rectangle [a, b]× [c, d] in the parameter space with small rectangles of
the type [a+ ih, a+(i+ 1)h]× [c+ j k, c+( j+ 1)k] with h = b−a

n and k = b−a
n . The image

by the local map Φ is a curvilinear quadrangle whose four corners we denote by
Mi j = Φ(a+ ih, c+ j k), Mi+1, j = Φ(a+(i+1)h, c+ j k),
Mi+1, j+1 = Φ(a+(i+ 1)h, c+( j + 1)k) and Mi, j+1 = Φ(a+ ih, c+( j + 1)k). These four
points are close enough if n is large enough belong to the surface Σ but are not coplanar in
general. We propose to approximate the surface quadrilateral
Qi j = Φ([a+ ih, a+ (i+ 1)h]× [c+ j k, c+ ( j + 1)k]) by a plane parallelogram Q̃i j local-
ized on the tangent plane to the surface Σ at the point Mi j. Precisely Q̃i j is the parallelo-
gram passing through the point Mi j and directed by two tangent vectors at the point Mi j, i.e.
h ∂Φ

∂u (a+ ih, c+ j k) and k ∂Φ

∂v (a+ ih, c+ j k). We have
Q̃i j = Mi j + {ξ h ∂Φ

∂u (a+ ih, c+ j k)+η k ∂Φ

∂v (a+ ih, c+ j k), 0 ≤ ξ , η ≤ 1}. The area |Q̃i j|
of this parallelogram is given by the norm of the vector product of the two tangent vectors:
|Q̃i j|= hk ||(∂Φ

∂u × ∂Φ

∂v )(a+ ih, c+ j k) ||.
Such a plane parallelogram is, for n large enough, i.e. h and k small enough, a good approxi-
mation of the surface parallelogram Qi j. When we join all these parallelograms for 0≤ i, j < n,
we obtain an approximation Σn = ∪0≤i, j<n Q̃i j fairly accurate surface Σ, but it has the defect
of being discontinuous at the interfaces. Hence the expression “scaled surface”.

• Surface of a parametrized sheet
We first define the surface |Σn| of the scaled surface Σn associated with the rectangle cutout
Σ̂ = [a, b]× [c, d] of the parameters into n×n small rectangles: |Σn|= ∑

n−1
i=0 ∑

n−1
j=0 |Q̃i j|. Given

the surface of a piece of scale Q̃i j, we have |Σn|= ∑
n−1
i=0 ∑

n−1
j=0 ||(∂Φ

∂u × ∂Φ

∂v )(a+ ih, c+ j k) || hk.
We then make the integer n tend to infinity. The double sum converges to the double integral on
the rectangle Σ̂ of the function (u, v) 7−→||(∂Φ

∂u × ∂Φ

∂v )(u, v) ||. We deduce an expression for the
surface of the parameterized sheet: |Σ|=

∫∫
Σ̂
||(∂Φ

∂u × ∂Φ

∂v )(u, v) || du dv. We define the element
of surface dσ by the relation dσ =|| ∂Φ

∂u × ∂Φ

∂v || du dv and then we write in a deceptively simple
way: |Σ| =

∫∫
Σ̂

dσ . The surface element dσ does not depend on the chosen parameterization
and the relation |Σ|=

∫∫
Σ̂

dσ is intrinsic.

The metric term ||(∂Φ

∂u × ∂Φ

∂v ) || is to be compared to the length when calculating the length of an
curve Γ : |Γ|=

∫ b
a ||( dM

dt (t) || dt =
∫ b

a ds. For a sphere Σ of radius R, we have seen that n = er

and ∂M
∂θ

× ∂M
∂ϕ

= R2 sinθ er. We can therefore write the surface element
dσ =|| ∂M

∂θ
× ∂M

∂ϕ
|| dθ dϕ =R2 sinθ dθ dϕ . Then we have for the sphere Σ such that 0≤ θ ≤ π

and 0 ≤ ϕ ≤ 2π , |Σ|=
∫

π

0 dθ
∫ 2π

0 dϕ R2 sinθ = 4π R2.

• Surface integral
A function f defined on a parametric sheet Σ can also be written as a function of the parameters
u and v : f̂ (u, v) = f (Φ(u, v)). For n ≥ 1 we introduce the scaled surface Σn associated to a
discretization Mi j = Φ(a+ ih, c+ j k) of Σ̂ = [a, b]× [c, d]. We can approximate the function
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f on Σn by the stepped function equal to the constant f (Mi j) in each parallelogram Q̃i j. Given
the value || (∂Φ

∂u × ∂Φ

∂v )(a + ih, c + j k) || of the surface of this parallelogram, we define the
approximate integral In of the function f on the surface Σ by
In =∑

n−1
i=0 ∑

n−1
j=0 f (Mi j) ||(∂Φ

∂u ×
∂Φ

∂v )(a+ ih, c+ j k)|| hk. If n tends to infinity and if the function
function f is continuous to fix the ideas, the sequence In converges to the double integral
I =

∫∫
Σ̂

f (Φ(u, v)) || (∂Φ

∂u × ∂Φ

∂v )(u, v) || du dv. We define the surface integral
∫

Σ
f (M) dσ by

the relation
∫

Σ
f (M) dσ =

∫∫
Σ̂

f (Φ(u, v)) ||(∂Φ

∂u × ∂Φ

∂v )(u, v) || du dv. It does not depend on the
parameterization.
In the case where f (M)≡ 1, we do find the value |Σ| for the area of the surface Σ :

∫
Σ

dσ = |Σ|.
• Flow of a vector field
We give ourselves a vector field ϕ : R3 7−→ R3 continuous to fix the ideas. If f (M) = (Φ, n),
scalar product of the field ϕ against the normal vector of the surface Σ, the corresponding
surface integral defines the flux Φ of the vector field ϕ on the surface Σ : Φ =

∫
Σ
(Φ, n) dσ .

Exercises
• On half-spheres
We denote by Σ the half-sphere centered at the origin, of radius R > 0 and defined also by the
inequality z ≥ 0.
a) In troduce a parameterization of this half-sphere with the spherical coordinate system r,
θ and ϕ such that x = r sinθ cosϕ , y = r sinθ sinϕ and z = r cosθ .
b) In what intervals vary the angles θ and ϕ ?
c) Propose an expression for the surface element dσ as a function of the variables of the
problem.
d) Compute the integral I =

∫
Σ

z dσ . [π R3]
e) Go back to the questions b), c) and d) of this exercice raplacing on one hand the half-
sphere Σ by the half-sphere Σ̃ of radius R > 0, centered at the origin and defined by the inequa-
lity x ≥ 0 and on the other hand the integral I by J =

∫
Σ̃

x dσ .
f) Why the questions d) and e) are related in a simple manner ?

• Surface of a truncated cone
We consider a truncated cone with a circular basis, a radius R > 0 and a height equal to h > 0.
a) Show that the half-angle θ at the summit satisfies to the relation tanθ = R

h .
b) Show that truncated cone can be parameterized with the relations x = R cosϕ (1− z

h),
y = R sinϕ (1− z

h) and z = z, with 0 ≤ ϕ ≤ 2π and 0 ≤ z ≤ h.
c) Compute the cartesian components of the vectors ∂M

∂ϕ
and ∂M

∂ z .
d) Express the element of surface dσ as a function of the geometrical parameters R and h,
of the coordinates ϕ and z along the truncated cone and of the product dϕ dz.
e) Show that the surface S of this truncated cone is equal to π R

√
R2 +h2.
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• Computation of a flux
We consider the half-sphere Σ with radius R > 0 centered at the origin and defined by the
inequality z ≥ 0. We denote by n the normal vector field pointing in a direction such that
nz ≥ 0. We consider also the vector field ψ(x, y, z) = (x, y, 0).
a) Compute the scalar product (ψ, n) on the half-sphereΣ. [R sin2

θ ]
b) Computer the flux Φ =

∫
Σ
(ψ.n) dσ of the vector field ψ on the half-sphereΣ.

[4
3 π R3]
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