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Lecture 13 Surface integral

e Local parameterization

We give ourselves four real numbers a < b, ¢ < d and a space of parameters (u, v) € R? such
that a < u < b and ¢ <v < d. We define the parametrized sheet ¥ in space R by a continuously
differentiable function ® fom the rectangle X = [a, b] X [c, d] and taking its values in R3. This
application @ is called the "local map". The parameterized sheet ¥ is defined by the relation
Y = ®(X). A point M(u,v) of the parametric sheet has coordinates x, y et z that are regular
functions of the parameters u and v: x =X (u,v), y=Y(u,v) et z=Z(u,v).

The fundamental example is a plane parallelogram. The equation of the plane is for example
of the form z=ax+By+7v. Fora<u<b and c<v<d,weset x=u, y=v and z=
ou+pBv+y.

A second example concerns a surface with equation z = f(x,y). It is similar to the previous
case except that the affine function f(x,y) = ax+ By+ 7 is replaced by a function f of two
variables while remaining fairly regular.

The next example is the sphere centered at the origin O and of radius R > 0. We use the
spherical coordinates of the three-dimensional space. We project the current point M of the
sphere onto the xOy plane at a point m. We have: z =R cos0 and Om = R sin0. It comes
then x = Om cos@ = Rsin0 cos@ and y = Om sin@ = R sin 0 sin @.

e Tangent plane

We suppose the function @ différentiable at the point (u, v):

D(u+ Su, v+ 8v) = O(u, v) + 52 (u, v) Su +%2 (u, v) Sv+ || (u, v) || €(Su, 8v). The two tan-

gent vectors %—qu’(u, v) and %—?(u, v) are two vectors of space R?. We suppose that the family

(%, %) is non-degenerate and the point M = ®(u, v) is a “regular point” of the surface. The
tangent plane to the parametrized sheet ¥ at the point M = ®(u, v) is the affine plane that
passes through the point M (u, v) with an associated vector plane that has as its basis the family
of two vectors %—f(u, v) and %—cf(u, V).

In the case of a surface of the form z = f(x, y), the two parameters are the abscissa x and the
the ordinate y. We have % = (1,0, ‘;—fg)‘ and %—? = (0,1, g—f;)‘. They always form a free family

whatever the function f.
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For a sphere of radius R > 0 and centered at the origin, we introduce the spherical coordinates,
so the two polar angles 0 and ¢ suchthat x=R sin0 cos¢®, y=R sin0 sin@ and z=R cos 6.
The moving reference frame (e,, eg, e¢) is defined by the relations

er(0,¢)=sin0 (cos@ e;+sing ey)+cos O e3, eg(0, ) =cos O (cos P e;+sin@ e;) —sin O e3
and ey (@) = —sin@ e; +cos @ e. In the case of the sphere of radius R, we have

dM =R (eg dO +ep sin6 do); we deduce 2 89 —Reg and 24 = Rsin6 eq.

e  Vector product

Let u and v be two vectors in an euclidian space of dimension 3. The vector product u X v
satisfies the following properties.

(i) The vector product u x v is orthogonal to the vectors u and v: (u X v, u) = (uxv,v) =0.

90

(ii) If the vectors u and v are collinear, the vector product u X v is zero.

(iii) If P(u, v) is the parallelogram generated by the vectors u and v:

Pu,v) ={xcR?30,£,0<0<1,0<&E <1, x=0u+Ev}, then the area of this paral-
lelogram is equal to the norm of the vector product u x v: |P(u,v)| = |u x v||. Moreover,
loa X vl < [fael v

(iv) We give ourselves a direct orthonormal basis (ej, e, e3) and the components of the two
vectors u and v: u = Z?:l ujej and v = 22:1 vier. The vector product u X v is expressed in
upr u Vv uz v3
uy Vv us vs3 up vi
(v) It is possible to prove that w = u X v is a biliear function of the two vectors u and v:
(au+Bu')yxv=a(wxv)+B W xv)and ux (av+pVv)=a(uxv)+p (uxV), whatever
the choice of vectors u, u’, v, v/ and whatever the choice of numbers o and .

(vi) If u x v # 0, the family (u, v, u x v) is a direct basis of R3: the change matrix of basis

the basis (ey, €3, e3) via the relation: u x v = es+ e+

between a direct orthonormal basis (e}, e, e3) and the family (u, v, u X v) is strictly positive.
(vii) Be careful, the vector product is not associative: in general, u X (v X w) # (u X v) X w.

e Normal vector

We assume that the point M = ®P(u, v) is a regular point of the surface, i.e. that the family

(aa‘f(u, v) aa‘f(u v)) is free. Then the vector product 2 S, D (1, v) x %‘f(u v) is not zero. The
norm | 4 S @ (1, v) x %‘f (u, v) || of this vector product is equal to the surface of the parallelogram

constructed with the two tangent vectors ?(u v) and aq> 5, (u,v). We define the normal vector

n(u, v) as the unit vector constructed from this vector product.
1 D P
n(u,v) = X u, v
(' ) 152 (1, v) x G2 ()| G (1) 5 1 v).
It is a vector orthogonal to the tangent plane. Hence the name “normal” or “normal vector”.

For a surface of the form z = f(x,y), we have %f X ‘?;f = (—a—f _9f 1)" and

(_a_f U ar 1)t dx’ dy?
\/H- af dx’  dy’ :

oM R2

90 sin 0 e,. We deduce

For the sphere of radlus R, we have the relation 2 ﬁ X
| 2 55 X a(p M| =R?sin® and n(0, @) =e.(0, @).

e Scaled surface

To approximate a curve I', we give ourselves points on the curve and we approach the curve by

the sequence of strings stretched between a point and its neighbor. Through two different points
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there always passes one and only one line segment. Thus we obtain a continuous approximation
of the curve I".

To approximate a surface, it is more delicate. Indeed, we give ourselves an integer n > 1 and
we discretize first the rectangle [a, b] X [c, d] in the parameter space with small rectangles of
the type [a+ih,a+ (i+1)h] x [c+ jk,c+ (j+1)k] with h =24 and k = 2%, The image
by the local map @ is a curvilinear quadrangle whose four corners we denote by

Mij = q3(61+ih, C+jk), Mi+l7j = dD(a—l- <i+ l)h, C+jk),

Mij1,jr1 =P(a+(i+1)h,c+(j+1)k) and M; j 11 = P(a+ih,c+ (j+1)k). These four
points are close enough if n is large enough belong to the surface ¥ but are not coplanar in
general. We propose to approximate the surface quadrilateral

Qij =®(la+ih,a+ (i+1)h] x [c+ jk,c+ (j+1)k]) by a plane parallelogram QV,J local-
ized on the tangent plane to the surface X at the point M;;. Precisely QNU is the parallelo-
gram passing through the point M;; and directed by two tangent vectors at the point M;;, i.e.
haq’(al—lh ¢+ jk) and kaq’(aJrlh ¢+ jk). We have

Qu _M,]+{§h3q)(a+zh c+]k)+nk3q)(a+zh c+jk),0<&,n <1}. The area |QU\
of this parallelogram is given by the norm of the vector product of the two tangent vectors:
03| =k [[(32 x %®)(a+ih, ¢+ jK) |

Such a plane parallelogram is, for n large enough, i.e. & and k small enough, a good approxi-
mation of the surface parallelogram Q;;. When we join all these parallelograms for 0 < i, j <n,
we obtain an approximation X, = Up<;, j<n Qv,j fairly accurate surface X, but it has the defect
of being discontinuous at the interfaces. Hence the expression “scaled surface”.

e Surface of a parametrized sheet

We first define the surface |X,| of the scaled surface ¥, associated with the rectangle cutout
Y = [a, b] X [c, d] of the parameters into n X n small rectangleS' |Z | = Z”_l ”_1 \QVU| Given
the surface of a piece of scale Qvij, we have |Z,| =Y Z;‘ | (22 T X av )(a+zh c+jk)|| hk.
We then make the integer n tend to infinity. The double sum converges to the double integral on
the rectangle ¥ of the function (u, v) —s|| (22 70 X %cf)(u v)||. We deduce an expression for the
surface of the parameterized sheet: |Z| S fz | (22 5 X av ®)(u,v)| du dv. We define the element
of surface do by the relation do =|| 22 5, X a @ || du dv and then we write in a deceptively simple
way: |Z| = [Js do. The surface element do does not depend on the chosen parameterization

and the relation |X| = [ fi do is intrinsic.

The metric term || (22 e a ©) || is to be compared to the length when calculating the length of an

curve F IT| = f ()| dr = f ds. For a sphere ¥ of radius R, we have seen that n = e,
and 2 W X %— R? sin 0 e,. We can therefore write the surface element

do —|| 58 X a(p M11"46 d = R? sin® dO d¢. Then we have for the sphere ¥ suchthat 0< 6 <7
and 0 < @ <2m, || = [ d6 [37 do R? sin® = 4 R2.

e Surface integral

A function f defined on a parametric sheet ¥ can also be written as a function of the parameters

wand v: f(u,v) = f(®(u,v)). For n>1 we introduce the scaled surface ¥, associated to a
discretization M;j = ®(a+ih,c+ jk) of £ = [a, b] X [c, d|. We can approximate the function
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f on X, by the stepped function equal to the constant f(M;;) in each parallelogram Q, . Given
the value || (22 5. < %‘f)( +ih,c+ jk)| of the surface of this parallelogram, we define the
appr0x1mate integral I, of the function f on the surface ¥ by

L=Y" Z;’ o f(M;)) H(au X av)(cH—lh ¢+ jk)|| hk. If n tends to infinity and if the function
functlon f 1s continuous to fix the ideas, the sequence I, converges to the double integral
1= [[s f(®P(u,v)) ||(au X aV)(u v)| dudv. We deﬁne the surface integral [y f(M)do by
the relation [y f(M)do = [[s f(P(u,v)) || (22 50 X av @) (u, v)|| du dv. It does not depend on the
parameterization.

In the case where f(M) =1, we do find the value |X| for the area of the surface X: [y do = |X|.

e Flow of a vector field

We give ourselves a vector field ¢: R? — R? continuous to fix the ideas. If f(M) = (®, n),
scalar product of the field ¢ against the normal vector of the surface X, the corresponding
surface integral defines the flux ® of the vector field ¢ on the surface £: ® = [; (P, n) do.

Exercises

e  On half-spheres

We denote by X the half-sphere centered at the origin, of radius R > 0 and defined also by the
inequality z > 0.

a) In troduce a parameterization of this half-sphere with the spherical coordinate system r,
0 and ¢ such that x =rsin0 cos¢, y=rsin0 sin@ and z =rcos6.

b) In what intervals vary the angles 6 and ¢ ?

c) Propose an expression for the surface element do as a function of the variables of the
problem.

d) Compute the integral I = [; zdo. [T R3]
e) Go back to the questions b), ¢) and d) of this exercice raplacing on one hand the half-
sphere ¥ by the half-sphere ¥ of radius R > 0, centered at the origin and defined by the inequa-
lity x > 0 and on the other hand the integral I by J = f)f xdo.

f)  Why the questions d) and e) are related in a simple manner ?

e Surface of a truncated cone

We consider a truncated cone with a circular basis, a radius R > 0 and a height equal to 2 > 0.
a) Show that the half-angle 6 at the summit satisfies to the relation tan 0 = %.

b)  Show that truncated cone can be parameterized with the relations x = Rcos¢ (1 — %),
y=Rsing(1—}) and z =z, with 0 < ¢ <27 and 0<z<h

¢) Compute the cartesian components of the vectors a— and aM

d) Express the element of surface do as a function of the geometrical parameters R and £,
of the coordinates ¢ and z along the truncated cone and of the product d¢ dz.

e) Show that the surface S of this truncated cone is equal to TR/ R? + h2.
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e Computation of a flux

We consider the half-sphere ¥ with radius R > 0 centered at the origin and defined by the
inequality z > 0. We denote by n the normal vector field pointing in a direction such that
n; > 0. We consider also the vector field y(x, y, z) = (x, y, 0).

a) Compute the scalar product (y, n) on the half-sphere X. [R sin” 6]
b) Computer the flux ® = [; (y.n) do of the vector field y on the half-sphereX. [3 7R



