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Lecture 9 Curvilinear integral

e Introduction to curvilinear integrals

We suppose given a curve I in space R?: [0, 1] 31— M(t) = (X (1), Y (¢

linear abscissa is the length of the curve. We have ds = || dM | = \/(X'(t))2 —|— (X'(1))? dr.

A first example is the arch of parabola. We have in this case y =Y (x) = % % and we suppose
0 <x<a with a>0. Then ds=+/1+ (Y'(x))?dx=+/1+ (x/a)? dx in this case.

An arch of circle admits a representation typlcally given by the relation

[6min, Omax] 2 0 — (X(0),Y(0)) = (Rcos O, Rsin0). In that case, we have ds = R d6.

We suppose also given a function f from R? and taking its values in R: f(M) € R if M € R,
The question is to define the curvilinear integral / = [ f(M) ds. This integral depends on the
curve I' and on the function f. We observe that if f(M) = 1, then we have fOL ds =L, the
length of the curve I'.

)) € R2. The curvi-

e Parameterization

If we use the conventional settings [0, 1] 3¢ — M(t) = (X(¢), Y(¢)) € R? for defining the
curve T, the value f(M) when M belongs to the curve I is equal to f(X(¢), Y (¢)) and we set
Jr F(M(s) ds = fy F(X(0), Y (1)) & dr.

For example, with the previous parabola y = 2 , we have X(x) =x and Y (x) = % Associated
with the polynomial function (x, y) = x, we obtain the explicitation of the curvilinear integral:
o f ( (s))ds= [5'x X dx. After some lines of elementary calculus, this integral is equal
to & S (2vV2-1).

An other example with the same function f(x,y) = x and the half circle of radius R centered
at the origin and in the half plane {y > 0}. We have [rxds= [;’Rcos® Rd6 = 0. With the
half circle in the half plane {x > 0}, it comes [-xds= ffﬁzR cos® RdO =2R>.

e The curvilinear integral does not depend on the parameterization

With the choice [0, 1] 51+ M(zr) = (X (t),Y(t)) € R? done previously, we have
[=|pf(M(s))ds = fo fX(@), Y(t )) dr. If we consider now an other parameterization of
the same curve, [a, ] > 6 — M(6) = (X(6),Y(8)) € R?, we have the change of variable
6 = K (1) such that M(0) = M(K (1)) = M(t). The associated expression for the curvilinear inte-
gral takes the form J = [ f(M(s)) ds = fol? f(X(0),Y(8)) % d6. This expression is coherent
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with the previous one: we have I = J. More precisely, after the change of variable 8 = K(t) in
the integral J, we have J = [£ £(X(0),Y(8)) & d6 = f) f(X(r),Y(r)) 3590 dr = 1.

e Circulation of a vector field

A vector field @ is a vector valued function, defined for (x,y) € R? by its coordinates. We
have ®(x,y) = (Px(x,y), Py(x,y)). The circulation y of the vector field & along the curve I"
is by definition the curvilinear integral y= [(®(M), T(M)) ds with (M) = 9 is the tangent
unitary vector along the curve I'. Observe that the expression (®(M), T(M)) is the scalar prod-
uct @, 7, + P, 7,. Then we have also y = [(P(M), T(M)) ds = [(P, dX + P, dY) because
Tds=dM = (dX, dY).

For example with the circle X(6) =R cos0,Y(6) = Rsin6, we have 7(6) = (—sin, cos ).
For the circulation y = [-(®(M), T©(M)) ds of the vector field ®(x,y) = (—y, x) along this
circle, we first observe that we have (®(M), T(M)) =R, then y= fOMR ds =27 R

e  When the vector field is the gradient of a potential
The vector field @ can be written & = Vy for some scalar function y if we have &, = %—‘)’:

and o, = %_q/ Then the circulation of this vector field depends only on the extremities of the
curve I'. With M(0) =A and M(1) = B, we have y= [(Vy(M), ©(M)) ds = y(B) — y(A).
The proof consists to evaluate the scalar product (®, dM). We have

(D, dM) = (%—I)’: x4 %’ XY dr = L[y (X (r), Y(¢))] dr. After integration we obtain

S5 (@, dM) = [ §w(X (), Y(1))] d = y(B) — y(A).
e Flux of a vector field in two space dimensions

We recall that for a plane curve, we have chosen in a previous chapter a tangent vector

T=9 _ (& D) and a normal vector n such that n, = 7, and ny, = —7,. Then the ortho-

normal basis (n, 7) is a direct basis.

The flux ¢ of the vector field & along the curve I' is defined by ¢ = [(®(M), n) ds and
this curvilinear integral can also be written @ = [ (®(M) 7y(M) — Py (M) 7(M)) ds or more
simply ¢ = [p(P, dY — P, dX).

For example the flux of the field ®(x, y) = (x, y) along the whole circle of radius R centered at
the origin is equal to [-(®, n) ds = 2w R%. The flux of the same vector field along the parabola

: 2 : . 2
of equation y = 5~ with the constraint 0 <x < a is equal to %.
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Exercices

e Along an arch of parabola

In the affine Euclidian plane, we wonsider the parabola of equation y = x> and the points
A(—1,1) and B(2,4) on this parabola.

Compute the curvilear integral I = [} (xy dx+ (x-+y) dy). (%]
e Along an half circle

Let I' be the half circle in the affine Euclidian plane of radius R > 0, centered at the origin
and included in the half plane y > 0. Let n be the unity normal vector pointing in the direction
opposite to the origin.

a) Illustrate these geometrical data with a drawing.

b) How express the curvilinear alscissa s along the half circle I"?

c) Compute the curvilinear integral I = [ xn, ds. [ nR?]
d) Compute the curvilinear integral J = [i-[(x —y) dx+ (x+y) dy]. [T R?]
e Along a complete circle

The letter C names the circle of radius equal to one centered at the origin. We suppose that it is

oriented in the direct sense.
Compute the integral 1 = [ [(x—y?) dx+x> dy]. 3 7]

[\S1{O%}

e Along an other arch of parabola

Let a > 0 a number and [0,d] > x— Y (x) = %%2 an arch I" of parabola. We introduce the
scalar field y(x,y) = 3 (x* +)?) and the vector field ® = V.

a) What are the components of the vector field ®?

b) Compute directly the circulation y = [(®(M), T(M)) ds of this vector field.

¢) Using a result proposed in the course, recover this result. [2d%]



