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Lecture 4 Eigenvalues and eigenvectors

• Pair of eigenvalue and eigenvector
We consider a vector space E of finite dimension n, and a map u from E to E : for each x ∈ E,
there exists a unique vector y = u(x) image of x by the map u and y ∈ E. We say that u is
an endomorphism of E and we write u ∈ L (E). We remark that u(0) = 0. Then for each
number λ , we have u(0) = λ .0.
We say that a non-zero vector x ∈ E is an eigenvector of the operator u (or of the linear map u)
if on one hand x ̸= 0 and on the other hand there exists some number λ such that u(x) = λ .x.
The number λ is called the eigenvalue associated with the eigenvector x ̸= 0.
We say also that λ is an eigenvalue of the operator u if and only if there exists some vector
x ∈ E such that x ̸= 0 and u(x) = λ .x.
For example, consider E = P1 the vector space of all affine functions with the basis ( f0, f1)

defined by R∋ t 7−→ f0(t) = 1 ∈R and R∋ t 7−→ f1(t) = t ∈R. The operator w from P1 to P1

defined by the relation w(b f0+a f1) = (2a+3b) f1 is a linear map and λ = 0 is an eigenvalue
of this operator. We have w(b f0+a f1) = 0 if and only if 2a+3b = 0. Then taking a = 3 and
b =−2 to fix the ideas, we have w(r1) = 0 .r1 with r1 =−2 f0 +3 f1. We observe that r1 ̸= 0
then it can be called eigenvector of the linear map w associated with the eigenvalue λ = 0. For
this very specific example, we recognize also that r1 is a basis of the kernel Kerw.

• Matrix expression
If (e1, . . . , en) is a basis of the vector space E, we consider the matrix A of the linear map
u ∈L (E). A vector x ∈ E can be decomposed in an unique way under the form x = ∑

n
j=1 x j e j

and we can introduce the column matrix X = (x1, . . . , xn)
t of its components. Then x is an

eigenvector of the operator u if and only if X ̸= 0 and if there exists an eigenvalue λ ∈ R
(or λ ∈ C) such that AX = λ X .
By extension of the previous definition, we say that such a non-zero column vector X is an
eigenvector of the matrix A with an associated eigenvalue equal to λ when we have the relation
AX = λ X with X ̸= 0.
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• Computation of the eigenvalues
We first recall that a square matrix B with n lines and n columns is invertible if and only if its
determinant is not equal to zero. If there exists a non-zero column matrix X such that BX = 0,
then the matrix B is not invertible and its determinant is equal to zero.
Denote by I the identity matrix with n lines and n columns. Then the relation AX = λ X is
equivalent to the relation (A−λ I) X = 0. If X is an eigenvector of the matrix A, the matrix
B = A− λ I is not invertible and we have the relation det(A− λ I) = 0. An eigenvalue λ is
a root of the polynomial p(λ ) ≡ det(A− λ I). This polynomial is called the characteristic
polynomial. It is a polynomial of degree n if the matrix A is a square matrix of order n. We
have to keep in mind that the number of eigenvalues is always limited.
For the previous example in the vector space E = P1, the matrix of the operator w in the

basis ( f0, f1) is equal to A =

(
0 0
3 2

)
. Then det(A−λ I) =

∣∣∣∣−λ 0
3 2−λ

∣∣∣∣ = λ (λ − 2). The

operator w admits two eigenvalues: λ = 0 studied previously and λ = 2.

• Computation of an eigenvector once the eigenvalue is known.
We suppose that the eigenvalue λ is known. Then it satisfies det(A−λ I) = 0. An eigenvector
x ̸= 0 in the vector space is represented with a column vector X such that (A− λ I) X = 0.
We have to find a non-zero solution of this set of n linear equations. It is possible since the
determinant of the associated linear system is null.

With the previous example, we have A =

(
0 0
3 2

)
. If the eigenvector r2 = b f0 +a f1 is associ-

ated with the eigenvalue λ = 2, it satisfies the relation
(

0 0
3 2

) (
b
a

)
= 2

(
b
a

)
. Then we have

b = 0 and a can be chosen ad libitum, except the value a = 0. A simple choice is r2 = f1.

• Diagonalizable operator, diagonalizable matrix
Let E be a vector space of dimension n and u a linear map, u ∈ L (E). If there exists a basis
(r1, r2, . . . , rn) composed by eigenvectors of the operator u, we say that the linear map u is
diagonalizable. Recall that the vectors r j are necessarily not equal to zero and moreover there
exits eigenvalues λ1, λ2, . . . , λn satisfying the n relations u(r j) = λ j r j for 1 ≤ j ≤ n. With the
matrix A of the operator u in a given basis, we introduce the column vector R j composed with
the coordinates of the vector r j. We have the relations A R j = λ j R j and the conditions R j ̸= 0
for all indexes j satisfying 1 ≤ j ≤ n.
It is immediate from the relations u(r j) = λ j r j that the matrix of the operator u in the basis
(r1, r2, . . . , rn) is a diagonal matrix Λ : Λi j = 0 if i ̸= j. Moreover, the jth diagonal coefficient
of the matrix Λ is exactly the eigenvalue λ j. We can write Λi j = λ j δi j with the Kroneker sym-
bol δi j. We remark also that if P is the transfer matrix between the initial basis (e1, e2, . . . , en)

and the basis (r1, r2, . . . , rn) of eigenvectors, we have the relation P−1 A P = Λ. The matrix A
has been changed into a diagonal matrix; we have diagonalized the operator u ∈ L (E).
By extension, we say that a given matrix A is diagonalizable if there exists an invertible ma-
trix P and a diagonal matrix Λ such that P−1 A P = Λ. In this case, the columns R j of the
transfer matrix P are non zero column vectors and if Λ = diag(λ1, λ2, . . . , λn), we have the

2



APPLIED MATHEMATICS

relations A R j = λ j R j for all the indices j.

With our example E = P1 and A =

(
0 0
3 2

)
, we have Λ =

(
0 0
0 2

)
in the basis (r1, r2) with

r1 =−2 f0 +3 f1 and r2 = f1 introduced previously.

• An important result
If a linear operator u admits n distinct eigenvalues, id est λi ̸= λ j if i ̸= j, then the linear map u
is diagonalizable

It is the case for our example E = P1 with n = 2 associated with the matrix A =

(
0 0
3 2

)
. The

two eigenvalues, 0 and 2, are distinct.

• There exists non-diagonalizable operators
We introduce the following example in E = P1. We consider the basis ( f0, f1) and we define a
linear map ζ ∈L (P1) by the relations ζ ( f0) = 0 and ζ ( f1) = f0. In this basis, the operator ζ

has an associated matrix J =
(

0 1
0 0

)
. We observe that this matrix is not equal to the zero matrix

in M2(R) due to the number 1 at the top right position. The calculus of the eigenvalues is easy
and we observe that λ = 0 is the unique (double) eigenvalue of the characteristic polynomial
p(λ ) = det (J−λ I)≡ λ 2.
We say that the operator ζ is not diagonalizable: we can not find a basis of the vector space P1

composed uniquely with eigenvectors of ζ . Indeed, if ζ is diagonalizable, we must find an
invertible matrix P such that P−1 JA P = Λ. In this case, the matrix Λ is equal to zero, the null
matrix, because the two eigenvalues are both equal to zero. Then we must have J = 0 because
the transfer matrix P is invertible. We are in front of a contradiction since we know that the
matrix J is not the null matrix. In consequence, our hypothesis of diagonalizability is false and
the associated operator ζ is not diagonalizable.

3



FRANÇOIS DUBOIS

Exercices
• Basic diagonalization

We set A =

 2 8 −7
3 −3 3
−2 −2 7

.

a) What are the eigenvalues of this matrix ? [−6, 3, 9]
b) Suggest values for the eigenvectors, with expressions as simple as possible.
c) Check the previous computations through an elementary calculus.
d) Prove that the matrix A is diagonalizable.
e) What is the result matrix if we consider the associated operator in a basis of eigenvectors ?

f) Same questions with the matrix B =

−1 −4 11
−4 14 −4
11 −4 −1

.

• Diagonalization with complex numbers
We suppose given two real numbers a and b. We set A =

(
a −b
b a

)
.

a) Show that if b = 0, this matrix is diagonalizable on the field R.
b) Prove that if b ̸= 0, the matrix A is not diagonalizable on R. We make this hypothesis
b ̸= 0 for all subsequent questions.
c) What ae the complex eigenvalues of the matrix A?
d) Propose a set of complex eigenvectors for the matrix A.
e) If P is the square matrix whose columns are composed with the two eigenvectors of the
matrix A, show without any calculation the value of the matrix Ã = P−1 A P.

• A parameterized problem

For any real number a, we set A =

 1 −1 −1
−1 a2 0
−1 0 a2

.

a) Determine the eigenvalues and eigenvectors of the matrix A when a = 0.
b) Same question if a = 1.
c) Same question in all the other cases.

• Cayley-Hamilton theorem
We consider the two matrices A =

(
0 1
1 0

)
and N =

(
0 1
0 0

)
.

a) What are the characteristic polynomials of these two matrices ?
b) Verify that the Cayley-Hamilton theorem is satisfied: each of these matrices annul its
characteristic polynomial.
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