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Lecture 3 Changing the basis

e Linear map

We consider two vector spaces E and F and a map u from E to F: for each x € E, there
exists a unique vector y = u(x) image of x by the map u. We say that the map u is linear if
and only if the two following conditions of compatibility are satisfied: compatibility with the
addition Vx,y € E, u(x+y) = u(x) + u(y), and compatibility with the external multiplication
VA eR, u(A.x) =A.u(x).

We use the following example constructed as follows. We denote by P; the vector space of
all affine functions. In particular the function fy defined by R 57+ fy(t)) = 1 € R and the
function f] is such that R 37+ fi(t)) =t € R. The affine functions fy and f; are vectors
in the space Pj. The family (fp, f1) is a basis of P;. Each f € P; can be decomposed in the
following way: f = b fo+a f1 and the real coefficients a and b are unique. The application w
from Py to Py is defined by the relation w(b fo+a fi) = (2a+3D) fi. Itis a linear map defined
on P and taking its values in P;.

e Kernel

We consider a linear map u € Z(E, F) between the vector spaces E and F. The kernel
Ker u is a subset of E defined by the following condition: x € Ker « if and only if u(x) = 0.
The kernel Ker u is a vector subspace of the space E. In particular, Keru C E.

With the previous example w € .Z(P;) and we have
Kerw={f€P,JacR,VIeR, f(t)=a(t—3)} =< ¢ > with ¢(t) =1 —
e Image

We consider a linear map u € Z(E, F) between the vector spaces E and F. The Image Imu
is a subset of F defined by the condition that y € Im u if and only if there exists x € E such
that y = u(x). The image Imu is a vector subspace of the space F and Imu C F.

wIN

For the previous example with w € Z(P;), we have

Imw={feP,JaeR, f=afi}=<f1>.

e Conservation of the dimension

We consider a vector space E with a finite dimension: dimE = n, where n is a nonnegative inte-
ger, and we introduce also u € Z(E). Then the spaces Keru and Imu are of finite dimensions
and we have the relation dim Ker u+dimImu =dimFE.
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For the previous example with w € .Z(P; ), we have dim Ker w =1 and dim Im w = 1 whereas
dim P; =2 as we observed in the previous chapter.

e  Matrix of a linear map relatively to a set of bases

We consider a vector space E of finite dimension n and we introduce a basis (e, e2,..., e,)
of this space. We suppose given also a vector space F of dimension p and we introduce
a basis (f1, f2,..., fp) of the vector space F. For j=1,...,n, the vector u(e;) € F can
be secomposed in a unique way in the basis (f, f2,..., fp): there exists unique coefficients
aij, ajs. .., ap; in such a way that u(e;) = Y2 | a;;- f;. We regroup these np coefficients into
a matrix M, = (a;) L<i<p, 1<j<n
linear map u relatively to the bases (eq, ez,...,e,) of E and (fi, f2,..., fp) of F. We can

with p lines and n columns. This matrix is the matrix of the

ap aiz -oay; oo dip

azy axp - Azj e Ay
write it in the following way: M, =

I ) R 7

apl ap2 DEPEEY apj .o apn

With the linear map w € £ (P;) introduced previously, the associated matrix M,, is given by

the relation M,, = <g

e OQutput of a given vector

g) relatively to the basis (fo, f1).

With the previous notations, we regroup the components xi, xo, ..., X, of the vector
x= Z;le xj-e; in the basis (ey, e,..., e,) of E into a single vector X with one column and
X1
. X2
n lines: X =
Xn
Analogously, the coordinates yp,ys,...,y, of the vector y = u(x) = Zf’zl yi - fi in the basis
(fi, f2,..., fp) of F are presented with a vector ¥ with one column and p liges :
Y1
y2
Y=|".
Yp
Then the coordinates y; = 2?21 a;jjx; can be expressed with the help of the product of the matrix
Y1 apl ayzg - ayj v Qip X1
y2 azy axp - dzj - Ayp X2
M, withthevector X: Y=| "~ | =| ° ) ' -l =M, X
Yi ajp A4 0 4y o0 dip Xj
yp apl ap2 e apj e apn Xn
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The coordinates Y of the image vector u(x) are obtained by the mutiplication of the matrice
M, of operator u by the coordinates X of the vector x € E: Y =M, X.

4
With the previous linear map w € Z(P;) and the vector x = 4 fy — f1, we have X = ( 1).

4
We can perform the product and ¥ = M,, X = <g g) . ( 1) = (100). Thus w(x) = 10 f].

e Bijectivity
Racall that a map u from E to F is bijective if and only if for each y € F, the equation u(x) =y
has unique solution x that belongs to the domain E.

Theorem. Let E be a vector space of finite dimension: dimE =n with n € N, and let u be a
linear map from E to E (u € Z(E)). Then u is bijective if and only if one of the following
conditions is satisfied: (i) u is injective, (ii) Ker u = {0}, (iii) u is surjective, (iv) Imu = E,
(v) u transforms a given basis of E into a new basis of E, (vi) the matrix M,, of the operator u
relatively to a given basis is invertible in ..

The linear map w € Z(P}) introduced previously is not bijectie. We have for example Ker u
of dimension 1. We remark also that the matrix M,, is clearly not invertible.

The linear map 6 € £ (P;) defined by P, > f=bfo+afi — 0(f) =afo+bfi € P is

01
bijective. Its matrix My is equal to < ) 0) and is invertible.

e Change of basis

Let E be the vector space < ey, e, ..., €, > of dimension n. Then the family (ey, ez, ..., e,) is
abasis of E. Each vector x € E can be decomposed as a linear combination of the vectors of this
basis: x = Z;?:lx je; and the coordinates x; are uniquely defined. We introduce a new family
of vectors ey, €3, ..., e, defined by their decomposition in the previous basis: ¢; = 2?21 Pji e;.
The coefficients Pj, for 1 < j, k <n compose a square matrix P with n lines and n columns,
called the transfer matrix. The components of the new vector ¢; define the kth column of the
transfer matrix. We have the following result.

Theorem. The family of vectors (e, ea, ..., e,) is a basis of the space E if and only if the
transfer matrix P is invertible.

If we wish to write the new coordinates x; of the previous vector x € E, we have the relation
PX = X between the column vector X of the old coordinates x ; and the column vector X of
the new coordinates Xj: x = Yiixjej =Y | Xrex. To explicit the coordinates in the new
basis, it is necessary to solve a linear system associated with the transfer matrix.

e Change of matrix of a linear map when changing the basis of the vector space

With the standard hypothesis of a finite dimensional vector space E of dimension n € N,
we consider a linear map u € .Z(E) and the associated matrix M, relatively a given basis
(e1, e, ...,e,). When we change the basis of E for a new basis (ey, €2, ..., e,) of the same
space, we introduce an invertible transfer matrix P. Then the matrix M, of the linear map u in
the new basis is related to the previous data according to the relation M,=P'M,P.
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Exercices

e A change of basis in the space of affine functions

We denote by P; the space of affine functions. The basis functions fy and f; are defined by the
relations fy(z) = 1 and fi(¢t) =1 for any arbitrary r € R. We consider the two new functions
¢o and ¢; defined by the relations @y(¢) = 1+¢ and @;(¢) = 1 —¢ for an arbitrary 7 € R.

a) Express the two vectors ¢y and ¢; as linear combinations of fy and fj.

b) What is the transfer matrix P between the family (fp, 1) and the new family (¢, ¢1)?
c) Prove that the family (¢, ¢;) is a basis of the space P;.

d) What are the coordinates of the affine function f defined by f(¢) =at+ b (for an arbitrary
real number ¢ € R) in the basis (¢o, ¢;)?

e Changing the basis of a linear map

We still denote by Py the space of affine functions and by (fo, f1) and (¢g, ¢;) the bases
defined previously. The operator w (or the linear map w) is defined by the relation

W(bf() +af1) = (20+3b)f1.

a) Recall the value of the matrix M,, of the linear map w relatively to the basis (fy, f1)-

b)  With a relation introduced in this chapter, precise the value of the matrix M,, in the new
basis (@o, ¢1).

c) Express the vectors w(¢p) and w(¢;) in the basis (¢p, ¢;) and recover the result of the
previous question.

e Changing the basis for an other linear map

We still denote by P; the space of affine functions and by (fy, f1) and (¢, ¢;) the bases
introduced during the first exercice. The operator 0 is defined by the relation

0(bfo+afi) =afo+bfr.

a) Recall the value of the matrix My of the linear map w relatively to the basis (fo, f1)-

b) Prove that the map 6 is a bijection from P; on the space P;.

¢)  With an algebraic relation introduced in this chapter, precise the value of the matrix 1\29 in
the new basis (¢, ¢1).

d) Express the vectors 6(¢@y) and 6(¢;) in the basis (¢, ¢;) and recover the result of the
previous question.

e Determinant of a linear map.

Let E be of dimension n, u € Z(E) a linear map from E to E, M, the matrix of this map u
relatively to a given basis and P the transfer matrix from the given basis and a new basis of E.
We denote by M, the matrix of u relatively the new basis.

a) Propose an algebraic relation between the matrices P, M, and Mu.

b) Prove that the determinant does not depend on the choice of the basis: det]\7lu =detM,,.



