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Lecture 3 Changing the basis

• Linear map
We consider two vector spaces E and F and a map u from E to F : for each x ∈ E, there
exists a unique vector y = u(x) image of x by the map u. We say that the map u is linear if
and only if the two following conditions of compatibility are satisfied: compatibility with the
addition ∀x, y ∈ E, u(x+ y) = u(x)+u(y), and compatibility with the external multiplication
∀λ ∈ R, u(λ .x) = λ .u(x).

We use the following example constructed as follows. We denote by P1 the vector space of
all affine functions. In particular the function f0 defined by R ∋ t 7−→ f0(t)) = 1 ∈ R and the
function f1 is such that R ∋ t 7−→ f1(t)) = t ∈ R. The affine functions f0 and f1 are vectors
in the space P1. The family ( f0, f1) is a basis of P1. Each f ∈ P1 can be decomposed in the
following way: f = b f0+a f1 and the real coefficients a and b are unique. The application w
from P1 to P1 is defined by the relation w(b f0+a f1) = (2a+3b) f1. It is a linear map defined
on P1 and taking its values in P1.

• Kernel
We consider a linear map u ∈ L (E, F) between the vector spaces E and F . The kernel
Ker u is a subset of E defined by the following condition: x ∈ Ker u if and only if u(x) = 0.
The kernel Ker u is a vector subspace of the space E. In particular, Keru ⊂ E.

With the previous example w ∈ L (P1) and we have
Ker w = { f ∈ P1, ∃a ∈ R, ∀t ∈ R, f (t) = a

(
t − 2

3

)
}=< ϕ > with ϕ(t) = t − 2

3 .

• Image
We consider a linear map u ∈ L (E, F) between the vector spaces E and F . The Image Imu
is a subset of F defined by the condition that y ∈ Im u if and only if there exists x ∈ E such
that y = u(x). The image Imu is a vector subspace of the space F and Imu ⊂ F .

For the previous example with w ∈ L (P1), we have
Im w = { f ∈ P1, ∃α ∈ R, f = α f1}=< f1 >.

• Conservation of the dimension
We consider a vector space E with a finite dimension: dimE = n, where n is a nonnegative inte-
ger, and we introduce also u ∈ L (E). Then the spaces Keru and Imu are of finite dimensions
and we have the relation dim Ker u+dim Im u = dimE.
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For the previous example with w ∈L (P1), we have dim Ker w = 1 and dim Im w = 1 whereas
dimP1 = 2 as we observed in the previous chapter.

• Matrix of a linear map relatively to a set of bases
We consider a vector space E of finite dimension n and we introduce a basis (e1, e2, . . . , en)

of this space. We suppose given also a vector space F of dimension p and we introduce
a basis ( f1, f2, . . . , fp) of the vector space F . For j = 1, . . . , n, the vector u(e j) ∈ F can
be secomposed in a unique way in the basis ( f1, f2, . . . , fp) : there exists unique coefficients
a1 j, a2 j, . . . , ap j in such a way that u(e j) = ∑

p
i=1 ai j · fi. We regroup these n p coefficients into

a matrix Mu ≡
(
ai j

)
1≤i≤p,1≤ j≤n with p lines and n columns. This matrix is the matrix of the

linear map u relatively to the bases (e1, e2, . . . , en) of E and ( f1, f2, . . . , fp) of F . We can

write it in the following way: Mu =



a11 a12 · · · a1 j · · · a1n

a21 a22 · · · a2 j · · · a2n
...

...
...

...
ai1 ai2 · · · ai j · · · ain
...

...
...

...
ap1 ap2 · · · ap j · · · apn


.

With the linear map w ∈ L (P1) introduced previously, the associated matrix Mw is given by

the relation Mw =

(
0 0
3 2

)
relatively to the basis ( f0, f1).

• Output of a given vector
With the previous notations, we regroup the components x1, x2, . . . , xn of the vector
x = ∑

n
j=1 x j · e j in the basis (e1, e2, . . . , en) of E into a single vector X with one column and

n lines: X =


x1

x2
...

xn

 .

Analogously, the coordinates y1, y2, . . . , yp of the vector y = u(x) = ∑
p
i=1 yi · fi in the basis

( f1, f2, . . . , fp) of F are presented with a vector Y with one column and p liges :

Y =


y1

y2
...

yp

.

Then the coordinates yi =∑
n
j=1 ai j x j can be expressed with the help of the product of the matrix

Mu with the vector X : Y =



y1

y2
...
yi
...

yp


=



a11 a12 · · · a1 j · · · a1n

a21 a22 · · · a2 j · · · a2n
...

...
...

...
ai1 ai2 · · · ai j · · · ain
...

...
...

...
ap1 ap2 · · · ap j · · · apn


·



x1

x2
...

x j
...

xn


= Mu · X .
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The coordinates Y of the image vector u(x) are obtained by the mutiplication of the matrice
Mu of operator u by the coordinates X of the vector x ∈ E: Y = Mu X .

With the previous linear map w ∈ L (P1) and the vector x = 4 f0 − f1, we have X =

(
4
−1

)
.

We can perform the product and Y = Mw X =

(
0 0
3 2

)
.

(
4
−1

)
=

(
0

10

)
. Thus w(x) = 10 f1.

• Bijectivity
Racall that a map u from E to F is bijective if and only if for each y∈ F , the equation u(x) = y
has unique solution x that belongs to the domain E.

Theorem. Let E be a vector space of finite dimension: dimE = n with n ∈ N, and let u be a
linear map from E to E (u ∈ L (E)). Then u is bijective if and only if one of the following
conditions is satisfied: (i) u is injective, (ii) Ker u = {0}, (iii) u is surjective, (iv) Im u = E,
(v) u transforms a given basis of E into a new basis of E, (vi) the matrix Mu of the operator u
relatively to a given basis is invertible in Mn.

The linear map w ∈ L (P1) introduced previously is not bijectie. We have for example Ker u
of dimension 1. We remark also that the matrix Mw is clearly not invertible.

The linear map θ ∈ L (P1) defined by P1 ∋ f = b f0 + a f1 7−→ θ( f ) = a f0 + b f1 ∈ P1 is

bijective. Its matrix Mθ is equal to
(

0 1
1 0

)
and is invertible.

• Change of basis
Let E be the vector space < e1, e2, . . . , en > of dimension n. Then the family (e1, e2, . . . , en) is
a basis of E. Each vector x∈E can be decomposed as a linear combination of the vectors of this
basis: x = ∑

n
j=1 x j e j and the coordinates x j are uniquely defined. We introduce a new family

of vectors ẽ1, ẽ2, . . . , ẽn defined by their decomposition in the previous basis: ẽk = ∑
n
j=1 Pjk e j.

The coefficients Pjk for 1 ≤ j, k ≤ n compose a square matrix P with n lines and n columns,
called the transfer matrix. The components of the new vector ẽk define the kth column of the
transfer matrix. We have the following result.
Theorem. The family of vectors (ẽ1, ẽ2, . . . , ẽn) is a basis of the space E if and only if the
transfer matrix P is invertible.
If we wish to write the new coordinates x̃k of the previous vector x ∈ E, we have the relation
PX̃ = X between the column vector X of the old coordinates x j and the column vector X̃ of
the new coordinates x̃k : x = ∑

n
j=1 x j e j = ∑

n
k=1 x̃k ẽk. To explicit the coordinates in the new

basis, it is necessary to solve a linear system associated with the transfer matrix.

• Change of matrix of a linear map when changing the basis of the vector space
With the standard hypothesis of a finite dimensional vector space E of dimension n ∈ N,
we consider a linear map u ∈ L (E) and the associated matrix Mu relatively a given basis
(e1, e2, . . . , en). When we change the basis of E for a new basis (ẽ1, ẽ2, . . . , ẽn) of the same
space, we introduce an invertible transfer matrix P. Then the matrix M̃u of the linear map u in
the new basis is related to the previous data according to the relation M̃u = P−1 Mu P.
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Exercices
• A change of basis in the space of affine functions
We denote by P1 the space of affine functions. The basis functions f0 and f1 are defined by the
relations f0(t) = 1 and f1(t) = t for any arbitrary t ∈ R. We consider the two new functions
ϕ0 and ϕ1 defined by the relations ϕ0(t) = 1+ t and ϕ1(t) = 1− t for an arbitrary t ∈ R.
a) Express the two vectors ϕ0 and ϕ1 as linear combinations of f0 and f1.
b) What is the transfer matrix P between the family ( f0, f1) and the new family (ϕ0, ϕ1)?
c) Prove that the family (ϕ0, ϕ1) is a basis of the space P1.
d) What are the coordinates of the affine function f defined by f (t) = at+b (for an arbitrary
real number t ∈ R) in the basis (ϕ0, ϕ1)?

• Changing the basis of a linear map
We still denote by P1 the space of affine functions and by ( f0, f1) and (ϕ0, ϕ1) the bases
defined previously. The operator w (or the linear map w) is defined by the relation
w(b f0 +a f1) = (2a+3b) f1.
a) Recall the value of the matrix Mw of the linear map w relatively to the basis ( f0, f1).
b) With a relation introduced in this chapter, precise the value of the matrix M̃w in the new
basis (ϕ0, ϕ1).
c) Express the vectors w(ϕ0) and w(ϕ1) in the basis (ϕ0, ϕ1) and recover the result of the
previous question.

• Changing the basis for an other linear map
We still denote by P1 the space of affine functions and by ( f0, f1) and (ϕ0, ϕ1) the bases
introduced during the first exercice. The operator θ is defined by the relation
θ(b f0 +a f1) = a f0 +b f1.
a) Recall the value of the matrix Mθ of the linear map w relatively to the basis ( f0, f1).
b) Prove that the map θ is a bijection from P1 on the space P1.
c) With an algebraic relation introduced in this chapter, precise the value of the matrix M̃θ in
the new basis (ϕ0, ϕ1).
d) Express the vectors θ(ϕ0) and θ(ϕ1) in the basis (ϕ0, ϕ1) and recover the result of the
previous question.

• Determinant of a linear map.
Let E be of dimension n, u ∈ L (E) a linear map from E to E, Mu the matrix of this map u
relatively to a given basis and P the transfer matrix from the given basis and a new basis of E.
We denote by M̃u the matrix of u relatively the new basis.
a) Propose an algebraic relation between the matrices P, Mu and M̃u.
b) Prove that the determinant does not depend on the choice of the basis: detM̃u = detMu.
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