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Lecture 2 Linear algebra

e A fundamental example

We introduce the set P; of all affine functions. We say the a map f from R to R belongs to
the space Py if and only if there exits @ and b in R such that for each r € R, f(¢) =at+b. In
other words P, = {f: R — R,3a,b € R, Vr € R, f(t) = at + b}.

The sum f + g of two affine functions is again an affine function. If g(¢) = ot + 3, the map
f+g is defined by the relation (f+g)(t) = f(¢) +g(¢). Then (f+g)(t) = (a+ )t + (b+B)
and the sum f + g is again an affine function. The addition of two functions of P; is a new
function in the space P;.

The external multiplication of a scalar A by an element f € P; is defined by the relation
(A.f)(t) = A f(r) for each r € R. We observe that the result of this external product af a
scalar by an affine function is again an affine function because (A.f)(¢) = (Aa)t+ (A b) for
every argument ¢ € R.

e  Vector space

A vector space (E, +, -) is the datum of a set of vectors E, an addition E x E — E associating
a unique vector x +y to each pair (x,y) € E2, and an external multiplication of a scalar by a
vector R x E — E: for each A € R and an arbitrary x € E the vector vecteur A - x belongs to
the space E.

The addition in the vector space E defines an commutative group: we have the associativity:
(x+y)+z=x+ (y+z), the commutativity: x+y = y+x, the existence of a neutral element:
x+0=0-+x=x and each vector has en opposite: x+ (—x) = (—x) +x = 0. Moreover, the
external multiplication by a scalar is coherent with the addition and the usual multiplication by
numbers: 1-x=x, A +pu)-x=(A-x)+(u-x), A-(x+y)=(A-x)+(A-y) and

A-(p-x) = (Au)-x.

A space vector allows a lot of calculus. In particular, it extends for spaces of functions the
common properties of vectors in the ordinary three-dimensional euclidian space.

For any integer n > 1, the set R” is a vector space on the field of numbers with the usual
addition, component by component. We have an analogous property in C" with numbers chosen
as complex numbers. If m > 1 is an other integer, the set .#,,(R) of matrices with n lines and
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m columns is also a vector space on the associated field of numbers. The space P; introduced
previously is also a vector space on real numbers. The associated elements can be named as
“vectors”, even if they are functions!

e Linear combination

We suppose given an integer n > 1 and a family xi, ..., x,, of vectors in the vector space E.
We suppose also given a family A, ..., A, of numbers. A linear combination of these vectors
associated with this family of numbers is a vector x € E that can be written under the form
xX=M-x1+... +A4,-x, :Z;?:llij.

For example, if fj is the constant function equal to 1 in the space P; (this means that fy(f) =1
for each r € R), and if f; is the linear function R > ¢t — ¢t € R, the linear combination of
these two vectors associated with the real numbers b and a is the resulting linear combination
f =0b fo+afi;itis simply the affine function R > ¢ at+b € R.

e  Vector subspace

We suppose given a vector space (E,+,-) and a subset F C E of this space. This set is a
vector subspace if and only if the addition in E and the external multiplication by numbers,
well defined in F C E allows the triple (F, +, -) to be a vector space.

A necessary and sufficient condition for a subset F' of the vector space E to be a vector subspace
is first that F containts 0, the neutral element for the addition in E and secondly that any linear
combination of vectors in F belongs again in the subset F. This last condition can be also
formulated as follows: for each pair of vectors x and y in F, the sum x4y belongs to a F' and
for each scalar A and each vector x € F, the product A -x belongs again in F.

For example, the set Fy of constant functions is a vector subspace of space P;. Similarly, the
set F| of all linear functions is also a vector subspace of space Pj.

e Vector subspace generated by a finite family of vectors

We suppose given a finite family xy,..., x, of vectors in the vector space E. The set

< X1,...,Xx, > of all linear combinations of the form Z;?:l Aj-xj is a subspace of the vector
space E. By definition, it is the vector subspace < xi,...,x, > generated by this family of n
vectors. We have: <xj,...,x, >={¥j_14;-xj, A1, ..., Ay € R}

We have for example with the notations introduced previously < fo >= Fp and < f; >= F].

e Basis if a vector space with a finite dimension

We consider a vector space E and an integer n > 1. A basis (ey, e,..., e,) of the space E
is a family of vectors such every vector x € E as a linear combination in < ej,...,e, > in
a unique way: x = 27: 1Xj-ej. The scalar coefficients xp, ..., x, exist and are unique: Vx €
E,Ax;,....,x, e R, x= Z?:ﬂj -ej. The coefficients xi, ..., x, are called the coordinates of
the vector x relatively to the basis (eg, e2,..., €,).

For example, in the space P; introduced previously, the family (fy, f1) is a basis.

e Dimension of a vector space
If the vector space E admits a basis composed with exactly n vecteurs, we say that the space E
if of dimension n: we write dimE = n.
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We have for example dimP; = 2, dimR” = n and dim.#,,,, = nm. If n = m = 2, we have

o a b 1 0 01 00 00 .
the decomposition (c d) =a (O O)+b (O O)+c ( ) O)—f—d (0 1) that explicits a

basis of spae .4, = ).

e Linear map

We consider two vector spaces E and F and amap u : E — F': for each x € E, there exists a
unique vector y = u(x) image of x by the map u. We say that the map u is linear if and only
if the two following conditions of compatibility are satisfied. Compatibility with the addition:
Vx,y € E,u(x+y) = u(x) 4+ u(y), and compatibility with the external multiplication:

VA € R, u(A.x) = A.u(x). Examples of such linear maps are proposed in the first exercice of
this chapter.

We denote by .Z(E, F) the set of all linear maps from E to F. This set if a vector space with an
addition defined by Vx € E, (u+v)(x) = u(x) +v(x) and an external multiplication satisfying
VA eR,VxeE, (A.u)(x) =A.u(x). If F =E, we reduce the notation with Z(E) = .Z(E, E),
space of endomorphisms of the vector space E.

e  Matrix of a linear map relatively to a set of bases

We consider a vector space E of finite dimension n and we introduce a basis (e, e2,..., ;)
of this space. We suppose given also a vector space F of dimension p and we introduce
a basis (f1, f2,..., fp) of the vector space F. For j=1,...,n, the vector u(e;) € F can
be secomposed in a unique way in the basis (f, f2,..., fp): there exists unique coefficients
aij, azj,...,ap; in such a way that u(e;) = Y7, a;j- f;. We regroup these np coefficients into
a matrix M, = (ai j) 1<i<p.1<j<n with p lines and n columns. This matrix is the matrix of the
linear map u relatively to the bases (e, e2,...,e,) of E and (f1, f2,..., fp) of F. We can

a aip ---oapj - Ain
azy axp - Azj ccc Ay
write it in the following way: M, =
aijp  ap v Gij ottt dig
apl ap2 PR apj .. apn
e  OQutput of a given vector
With the previous notations, we regroup the components xi, xo, ..., X, of the vector
X = Z;?:lxj -e; in the basis (e, e2,..., e,) of E into a single vector X with one column and
X1
. X2
n lines: X =
Xn

Analogously, the coordinates yj, y2, ..., y, of the vector y = u(x) =Y . y;- f; in the basis
gously. Y,y Yp y i=1Y
(fi, f2,..., fp) of F are presented with a vector ¥ with one column and p liges :
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Y1
y2
Y=1".
Yp
Then the coordinates y; = Z’}: 1a;jx; can be expressed with the help of the product of the matrix
Y1 arp aiz - aiy o Qg X1
Y2 azy dazy -+ dzj - 4 X2
M, withthevector X: Y=| | =| ° ) ' ’ -l | =M,-X.
Yi ajr 4p -t 4ij st dip Xj
yp apl apz e apj cee apn xn

The coordinates Y of the image vector u(x) are obtained by the mutiplication of the matrice
M, of operator u by the coordinates X of the vector x € E.

e  Composition of linear maps and product of matrices

We consider now three vector spaces D, E and F with various dimensions ¢, n and p and two
linear maps v:D — E from D to E and u: E — F from E to F. Thus we have the following
diagam D — E — F that allows to define the composed map uov: (uov)(&) = u(v(€)) for
an arbitrary vector £ € D. The compoosition u.v of these two linear maps is also a linear map.
We consider a basis (d,ds, ...,d,) of the space D and do not forget the two previous fam-
ilies (e, e2,...,e,) and (f1, f2,..., fp) in the spaces E and F respectively. We suppose
that v(dy) = Yj_  bjre;. Then in the bases (di) and (e;), the map v is represented by a ma-
trix M, with n lines and ¢ columns that can be written M, = (bj), <j<ni<k<q- We have
(uov)(dr) = X1, (Z7z1aijbjk)ﬁ an this means that relatively to the bases (di) et (f;), the
map u.v obtained by compostion admits a matrix M, , = (c;x) with p lines and ¢ columns
with ¢j, = ZL] ajjbj for 1 <i<p and 1 <k <g. We note that the matrix M,,, is equal to
the product of the matrices M,, and M,: M,,_, = M, M,, which means

Cll DEPEY Clk DEEY Clq all DY alj PR aln bll ... blk ... blq
Cil DEPEEY Cik DY Ciq pr— ail DY al'j PR ain . bjl ... bjk ... qu
cpl .o Cpk DY Cpq apl DY apj .o apn bnl ... bnk .. bnq

In this product of two matrices, M,,_., = M, M,,, we remark that the number n of columns of the
left matrix (these M,,) is equal to the number of lines n of the matrix on the right (here M,). In
the other cases, the product M,, M,, cannot be defined.
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Exercices

e  Matrix of linear operators

We introduce the space P; of affine functions, the functions fy and f; defined by the relations
fo(t)=1 and fi(¢r) =1t for any arbitrary r € R. We consider also the vector space F =R. Let u
the map that to each f € Py of the form f(z) = at+ b associates the number a: u(f) =a. With
the same notations for the function f, we define also the map v such that v(f) = b.

a) Recall why the family (fp, f1) is a basis of the space P;.

b) Propose a basis for the space F.

¢) What are the dimensions of P, and F?

d) Prove that the map u is linear from P; to F.

e) What is the matrix M, of the linear map u relatively to the bases proposed in questions a)
and b) ?

f)  Prove that the map v is linear from P, to F: v € Z (P, F).

g) What is the matrix M, of the linear map v relatively to the bases used in the previous
questions?

e  Matrix of an other linear operator

With the notations introduced in the previous exercice for the space P, and the basis (fy, f1).,
we introduce the map w defined on P; and taking its values in P; by the relation
w(bfo+afi)=(2a+3Db) fi.

a) For f € Py, the vector w(f) is also a vector in Py, and w(f) is an affine function. For an
arbitrary ¢ € R, what is the value of the number (w(f))(r) if f(r) = at +b?

b)  Precise the value of w(fp).

c) Same question for w(fi).

d) Prove that the application w : Py — P is linear.

e) What is the matrix M,, of the linear map w relatively the the basis (fy, f1)?

e A family of three vectors in R?

We set uy = (1,0), up = (—3, \/75) and uz = (— 3, —‘/75)

a) Prove that these 3 vectors are linearly dependent.

b)  Explicit a linear combination of these 3 vectors that is equal to zero with nontrivial coeffi-
cients.

e An example of composition of linear maps

We note by = (1,0), by = (0, 1) the canonical bases of R?, ¢; = (1,0, 0), e; = (0, 1, 0),
e3= (0,0, 1) the canonical bases of R® and €, = (1,0, 0,0), & = (0, 1,0,0), & = (0,0, 1,0),
& =(0,0,0, 1) the canonical bases of R*.

We consider the linear map f with domain R? and codomain R* defined by the relations
fler) =4€ +2&, flex) =8& — &3 and f(e3) = &.

We consider also the linear map g from R* to R? defined by g(e1) = (1, 1), g(&) = (0, 1),
g(83) = (15 O) and g(84) = (_15 _1)'

a)  What is the order and the expression of the matrix My of the operator f relatively to the
bases (61, e, 63) and (81, &, &3, 84) ?
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b) Same questions for the matrix M, of the linear map g relatively to the bases (€1, &, €3, &)
and (bl, bz).

¢) What are the domain and the codomain of the map g.f?

d) Compute the output vectors (g.f)(e;j) for j=1, 2, 3 in the basis (b1, b>).

e) Deduce from the previous question the matrix Mg, of the mapping g, f relatively to the
two given bases.

f)  Verify that we have the relation My r = Mg My.

e Bases of R?
We introduce the following three vectors u; = (1, 1, 1), up = (0, a, 1)" and uz = (0,0, b)" of
the space R, parameterized by the real numbers a and b.
a)  Explicit a necessary and sufficient condition to exprees that the family (uy, uy, u3) is a
basis R3.
b)  Same questions for the three vectors v = (0, a, b)', v = (a, 0, b)' and v3 = (a, b, 0)".
e A linear system
2x—y+3z = 1

a) Solve the following linear system x+2y—z = 2
3x+y+2z = 1.
2 -1 3

b) What is the kernel of the matrix A={|1 2 —-1]7?
31 2

c¢) Check your result of the last question.

e An example of diagonalization

1 0 1 —1
a) Prove that the inverse P~! of the matrix P can be written P~ = %P.
b) Compute the products P~ A et AP.

‘We consider the two matrices A = (0 1) and P = (1 I ) .

1
c) With two different computations, prove the relation P~'AP = < 0 01) .

e Inverse of a product

We consider two square invertible matrices A and B of order n.
a) Recall the properties satisfied by A~! and B~!.

b) Show that (AB)~!' =B~'A~L

¢) Whatis the value of (BA)~!?

e A zero divisor

We consider the matrix A = <0 1) .

00
a) Show that A #0.
b) What is the value of A2=A xA?

e The question of inversion of square matrices of order 2

b) € 4> (R). Weset 6 =ad—bc.

We consider a 2 X 2 general matrix A = (a J
c

6
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a) Prove that if § # 0, we can solve every linear system of the type AX =Y, where Y is an
arbitrary column matrix with two lines.

b) If § # 0, compute the inverse matrix A~!.

¢) Show thatif & = 0, there exists a matrix B € .#,(R) such that AB=BA =0.

d) If A#0 is amatrix in .#(R) such that ad — bc = 0, prove that it admits at least a zero
divisor that will be explicited.



