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Lecture 1 Matrix calculus

• Definition of a matrix
We suppose given two intergers n and m greater than 1. A matrix A with n lines and m
columns is a table composed by nm numbers ai j . The integer i is the index of the line

(1 ≤ i ≤ n) and j is the index of column (1 ≤ j ≤ m). We note A =


a11 · · · a1 j · · · a1m
...

...
...

ai1 · · · ai j · · · aim
...

...
...

an1 · · · an j · · · anm


or more simply A =

(
ai j

)
1≤i≤n,1≤ j≤m. The number ai j is the “element of matrix (i, j) of the

matrix A”.
For n = m = 1, a matrix is a simple number.

For n = 2 and m = 1, the matrix A =

(
a
b

)
is called a column matrix; we speak also of a

“column vector” when m = 1.
If n = 1 and m = 2, we have by example A =

(
α β

)
and the matrix A is in that case a “line

vector”.
If n = m = 2, the matrix A is a square matrix of order two: A =

(
a b
c d

)
.

We denote by Mnm the set of matrices with n lines and m columns if there is no ambiguïty for
the numbers that compose the elements of matrices. If it is necessary to specify in which set
belong the elements, we have the notation Mnm(R) in the case of real matrices and Mnm(C)
for complex matrices.
For square matrices, we simplify the la notation and Mn ≡ Mnn.
In Mnm, the null matrix, denoted simply by 0, is uniquely composed with zéros : 0i j = 0 for
each line i and each column j.

• Equality of two matrices
The matrices A and B are equal when the three following properties are satisfied:
(i) the number n of lines of the matrix A is equal to the number of lines of the matrix B
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(ii) the number m of columns of the matrix A is equal to the number of columns of the matrix B
(iii) for each i and j such that 1 ≤ i ≤ n and 1 ≤ j ≤ m, the elements of matrices ai j and bi j

are equal: ai j = bi j for each line i and each column j.
We observe that we can not compare two matrices that do not have the same dimensions.

• Sum of two matrices
We can add two matrices that all have the same number of lines and the same number of
columns. If A ∈ Mnm and B ∈ Mnm, then A+B ∈ Mnm and the element of matrix (i, j)
of the matrix A+B is equal to ai j +bi j .
The addition of matrices is commutative: we have A+B = B+A as long as the sum A+B can
be defined.

• Product of a number by a matrix
If λ is a number and A ∈Mnm a matrix with n lines and m columns, then λ A is a matrix with
n lines and m columns. The corresponding matrix element (i, j) is equal to λ ai j for all the
values of indices i and j such that 1 ≤ i ≤ n and 1 ≤ j ≤ m.
We have always (λ +µ)A = (λ A)+(µ A), (λ µ)A = λ (µ A) and λ (A+B) = (λ A)+(λ B).
In practice, we use this multiplication by a scalar in order to factorize a number. For example

for a square matrix of order two, we have
(

2a 2b
2c 2d

)
= 2

(
a b
c d

)
.

• Transposition
If A ∈ Mnm, its transpose At belongst to the space Mmn : we just have to exchange the lines
and the columns of the matrix A. If the element of matrix (i, j) of A is equal to ai j , then the
element ( j, i) of At is equal to ai j .
We remark that the transpose of the transpose of a given matrix is identical to the initial matrix:
(At)t = A.

• Product of two matrices
We suppose given two matrices A ∈ Mnm and B ∈ Mmp : the number of columns of the ma-
trix A is equal to the number of lines of the matrix B. In this case, and uniquely in this case,
we can compute the product AB of the matrix A by the matrix B. The matrix element (i, k) of
the matrix AB is equal to (AB)ik = ∑

m
j=1 ai j b jk = ai1b1k +ai2b2k + ...+aimbmk . In general, even

if the product existes, the product BA does not exists.

For example with A =

a
b
c

 and B =
(
α β

)
, the product AB exists and we have

AB =

aα aβ

bα bβ

cα cβ

 ∈ M32 whereas BA does not exist because the number of columns of the

matrix B [2] is not equal to the number of lines of the matrix A [3]. Consider also the very

common example with A =

(
a b
c d

)
and X =

(
x
y

)
. We have AX =

(
ax+by
cx+dy

)
. We remark

that the product X A is not defined because the number [1] of columns of X is not equal to the
number [2] of lines of A.
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Even if the two products AB and BA can be computed, they define in general two matrices of
different orders. Consider for example A =

(
α β

)
(matrix with one line and two columns)

and B =

(
a
b

)
(matrix with two lines and one column). Then AB = (α a+ β b) is a matrix

with a single line and a single column, id est a number: AB = (α a+β b). On the other side,

BA =

(
aα aβ

bα bβ

)
is a matrix with two lines and two columns.

Once the operations described in the following lines have a sense, we have, for the matrices A,
B and C and the numbers λ and µ , the following identities: A(B+C) = AB+AC,
(A+B)C = AC+BC, A(λ B) = (λ A)B = λ (AB) and (λ µ)A = λ (µ A).

• Associativity of the product of matrices
We suppose given three matrices A ∈ Mnm, B ∈ Mmp and C ∈ Mpq. When we consider the
product AB, we find a matrix with n lines and p columns. We can in consequence multiply
this matrix AB to the right by the matrix C and the product of matrices (AB)C is well defined
in Mnq. In a analogous way, we can multiply B by C and define the product BC of these two
matrices: it is a matrix with m lines and q columns. Then we can multiply this matrix to the
left by the matrix A: the resulting matrix A(BC) is correctly defined ans it belongs again to the
set Mnq. The associativity of the product of matrices express that (AB)C = A(BC) : we can
put the parentheses as we wish if we have to consider the product of three matrices.

• Produit of square matrices and non-commutativity
Recall that a square matrix has the same number of lines and columns, also called the order
of the matrix. If A and B are two square matrices with the same order, the product AB is
always defined and it is a square matrix of order n. It is also the case for the product BA. In
consequence, if A and B are two square matrices of order n, we can evaluate the two products
AB and BA. They differ in general. The order of the product affects in general the result; the
product of square matrices is not commutative.
For example, we have with n = 2:(
−1 1
3 0

) (
0 1
2 0

)
=

(
2 −1
0 3

)
̸=
(

3 0
−2 2

)
=

(
0 1
2 0

) (
−1 1
3 0

)
and(

0 1
0 0

) (
0 1
1 0

)
=

(
1 0
0 0

)
̸=
(

0 0
0 1

)
=

(
0 1
1 0

) (
0 1
0 0

)
.

• Identity matrix
The identity matrix I has all its entries equal to zero, except the diagonal elements ( j = i); in
this case, I j j = 1. If we introduce the Kronecker symbol δi j such that δii = 1 and δi j = 0 if
i ̸= j, we have Ii j = δi j. As the number 1 for the usual multiplication of numbers, the identity
matrix is a neutral element for the matrix multiplication: we have A I= IA=A for any arbibrary
square matrix A.

• Inverse of a square matrix
We suppose given a square matrix of order n. If we can find a square matrix X such that
AX = X A = I, the matrix A is invertible. We set usually X = A-1. Moreover, the matrix X is
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not null because in this case, we would have 0 = I.
If the square matrix A is invertible, the inverse matrix A-1 is unique.

We have for example
(
−1 1
3 0

)-1

=

(
0 1

3
1 1

3

)
,
(

0 −1
1 0

)-1

=

(
0 1
−1 0

)
and

(
1 0
a 1

)-1

=

(
1 0
−a 1

)
.

• Determinant of a square matrix
The determinant of a square matrix A of order n is a number denoted by det A that satisfies the
six following conditions:
(i) If n = 1, then det A = A.

(ii) Invariance by transposition: det At = det A.
(iii) Reduction of the order. If α is a number, B a square matrix of order (n−1) and

A =


α 0 · · · 0
⋆
... B
⋆

 or A =


α ⋆ · · · ⋆

0
... B
0

, then det A = α det B.

(iv) If we exchange two lines [respectively two columns] of the matrix, we change the sign of
the determinant.
(v) If we multiply all the elements of a line [respectively a column] by a given scalar λ , we
multiply the determinant by λ .
(vi) We can add or substract to a given line [respectively a given column] any linear com-
bination of the other lines [respectively the other columns] without changing the value of the
determinant.

We deduce that whatever the dimension, the determinant of the identity matrix I is equal to 1:
det I = 1.

• Notation for the determinant of a square matrix

If A =


a11 · · · a1 j · · · a1m
...

...
...

ai1 · · · ai j · · · aim
...

...
...

an1 · · · an j · · · anm

, then detA is denoted by

∣∣∣∣∣∣∣∣∣∣∣∣

a11 · · · a1 j · · · a1m
...

...
...

ai1 · · · ai j · · · aim
...

...
...

an1 · · · an j · · · anm

∣∣∣∣∣∣∣∣∣∣∣∣
.

• Determinant of the product of two square matrices
If A and B are two square matrices of order n, the determinant of the produit is equal to the
produc of the determinants: det (AB) = (det A)(det B).

Moreover, if the matrix P is invertible, we have det (P−1) =
1

det P
.

• A fundamental theorem
Let A be a square matrix of order n≥ 1. The matrix A is invertible if and only if its determinant
is not equal to zero
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Exercices
• Determinant of a matrix of order two
In this exercice, we propose to prove the property that

a b
c d

= ad −bc.

a) Prove that this property is satisfied when a = 0.
b) If we suppose that a ̸= 0, prove that the property is still satisfied.
c) Conclude for the general case.
d) Observe that the proposed relation is compatible with the fact that the determinant is
invariant by transposition.

• Inverse of a square matrix of order two

We consider a general two by two matrix A =

(
a b
c d

)
. In this exercice we determine com-

pletely its inverse A′ such that A.A′ = A′.A = I. We introduce four unknown numbers: α , β ,

γ , δ and we set A′ =

(
α β

γ δ

)
.

a) Evaluate the product A.A′.
b) Prove that if A.A′ = A′.A = I, then the coefficients α , β , γ , δ are solution of a set of two
linear systemes of two equations with two unknowns.
c) Show that if moreover detA ̸= 0, we can solve this pair of two linear systems and determine
the matrix A′.
d) Prove that the matrix A′ explicited at the previous question satisfies also the relation
A′.A = I.
e) If the matrix A is not null and if detA = 0, explicit a non null two by two matrix B such
that A.B = 0.

• A commutator
We consider the following matrix with 2 lines and 2 columns: J =

(
0 1
1 0

)
.

a) Determine the set C of all matrices X with 2 lines and 2 columns that commute with the
matrix J : X ∈C if and only if X J = J X .
b) Show that if X ∈C, there exists two real numbers α and β such that X = α I+βJ.

• Tridiagonal matrices
For three real numbers a, b and c and we set T (a, b, c) =

1 0 0
a 1 0
b c 1

. It is a square matrix of
order 3: T (a, b, c) ∈ M3(R).
a) Show that the product T (a, b, c)T (a′, b′, c′) can be written under the form T (α, β , γ).
b) What is the value of the numbers α , β and γ as a function of the 6 numbers a, a′, b, b′,
c and c′ ?
c) Show that the matrix T (a, b, c) is invertible and explicit the inverse matrix T (a, b, c)−1.

• A fourth order determinant

Show that ∆ ≡

1 2 −1 3
−1 1 4 2
0 2 3 2
8 10 −11 2

is equal to −24.
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• A third order determinant

We set ∆ ≡
a b c
a2 b2 c2

a3 b3 c3
.

a) Show that if a = b, then ∆ = 0.
b) Same question if b = c or if c = a.
c) Compute the value of ∆ as a function of a, b and c. [abc(a−b)(b− c)(c−a)]

• An other fourth order determinant

Show that the determinant defined by D ≡

1 a a2 a3

a a2 a3 1
a2 a3 1 a
a3 1 a a2

is equal to
(
a4 −1

)3.
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