
Tree-based variational inference for Poisson log-normal
models

Alexandre Chaussard‹, Anna Bonnet‹, Élisabeth Gassiat:, and Sylvain Le Corff‹

‹LPSM, Sorbonne Université.
:LMO, Université Paris-Saclay.

Abstract

When studying ecosystems, hierarchical trees are often used to organize entities based on proxim-
ity criteria, such as the taxonomy in microbiology, social classes in geography, or product types in re-
tail businesses, offering valuable insights into entity relationships. Despite their significance, current
count-data models do not leverage this structured information. In particular, the widely used Poisson
log-normal (PLN) model, known for its ability to model interactions between entities from count data,
lacks the possibility to incorporate such hierarchical tree structures, limiting its applicability in domains
characterized by such complexities. To address this matter, we introduce the PLN-Tree model as an
extension of the PLN model, specifically designed for modeling hierarchical count data. By integrat-
ing structured variational inference techniques, we propose an adapted training procedure and establish
identifiability results, enhancisng both theoretical foundations and practical interpretability. Addition-
ally, we extend our framework to classification tasks as a preprocessing pipeline, showcasing its ver-
satility. Experimental evaluations on synthetic datasets as well as real-world microbiome data (Pasolli
et al., 2016) demonstrate the superior performance of the PLN-Tree model in capturing hierarchical de-
pendencies and providing valuable insights into complex data structures, showing the practical interest of
knowledge graphs like the taxonomy in ecosystems modeling. Our implementation is freely available at
https://github.com/AlexandreChaussard/PLN-Tree.

1 Introduction

Count data appear in various domains such as ecology, metagenomics, retail, actuarial sciences, and social
sciences. One significant interest in analyzing count data lies in understanding the relationships between
entities within a specific environment, which can be framed as a network inference problem. Canonical
methods for this involve undirected graphical models, which represent conditional dependencies among
entities in an ecosystem, providing interpretable insights into community structures (Lauritzen, 1996; Harris,
2016). For continuous data, Gaussian graphical models (GGM) are widely used across multiple fields,
including genomics to explore gene expressions and identify therapeutically relevant genes (Altenbuchinger
et al., 2020), and to uncover functional pathways related to diseases (Yu et al., 2015). However, the Gaussian
assumption is not suitable for discrete count data, and the commonly used log-transforms are being sidelined
due to their lack of statistical groundings compared to modeling approaches O’Hara and Kotze (2010).
Numerous statistical models have thus been developed to analyze count data, such as those discussed by

1

https://github.com/AlexandreChaussard/PLN-Tree

Hilbe (2014); Inouye et al. (2017). Among the graphical models for count data, the Poisson Log-Normal
(PLN) model, originally proposed by Aitchison and Ho (1989), has become a standard, particularly after its
rediscovery by Chiquet et al. (2021) which led to significant theoretical and methodological developments
in interaction network inference for count data.

In practical applications, count data often exhibit hierarchical structures where observations are organized in
a tree graph reflecting compositional relationships between entities at different levels of the hierarchy, like
the taxonomy in ecology, the social classes in geography, or product types in marketing. In cases where
no natural hierarchical structure is established in the domain, or when alternative clustering insights are de-
sired, practitioners employ tree-inference approaches (Côme et al., 2021; Blei et al., 2003; Teh et al., 2004)
to organize and describe entities in a comprehensible graph that incorporates domain-specific knowledge.
In various applications, hierarchical data structures have been considered to enhance statistical models, re-
sulting in improved performances in most cases (Crawford and Greene, 2020; Oliver et al., 2023). However,
adhering strictly to predefined hierarchical structures can sometimes hinder model performance, as shown
by Bichat et al. (2020) in the context of controlling the false discovery rate for the detection of differentially
abundant microbial bacteria. This suggests the need for flexible modeling approaches that can exploit under-
lying tree graphs without being overly dependent on their structure. Yet, despite the potential interest of such
hierarchical structures for multivariate counts modeling, existing models like PLN do not explicitly account
for them, limiting their applicability in scenarios where hierarchical dependencies play a crucial role. To
address this limitation, we introduce the PLN-Tree model, an extension of the PLN framework tailored to
handle hierarchical count data represented by tree graphs. The PLN-Tree model leverages a top-down hid-
den Markov tree structure to capture hierarchical dependencies among counts, enabling more accurate and
interpretable modeling of count data in hierarchical settings. While the observed counts are controlled by the
underlying hierarchical structure in the PLN-Tree framework, the model maintains flexibility through a la-
tent Markov chain to parameterize the counts which is not confined to the tree structure. Like its PLN parent,
learning the PLN-Tree model through maximum-likelihood estimation is not tractable, requiring variational
inference techniques (Blei et al., 2017). Hence, leveraging the true form of the posterior distribution, we pro-
pose a structured variational inference method based on backward Markov chains (Campbell et al., 2021).
To ensure model scalability, we opt for a deep learning architectures by parameterizing the distributions with
neural networks, allowing for efficient inference of the variational approximation using amortized backward
inference (Chagneux et al., 2024). Furthermore, we introduce a residual variant of the amortized backward
neural network architecture, which demonstrates superior performance in our experiments.

To ensure the interpretability of the latent variables in practical applications, we investigate the identifiability
of the proposed model. Previous works on structured models, such as Gassiat et al. (2020); Hälvä et al.
(2021), have demonstrated the ability to uniquely identify latent data models in the presence of Markov
dependency structures. Thus, we establish the identifiability of a class of identifiability within the PLN-Tree
structured framework, ensuring its applicability in demanding contexts where accurate and interpretable
modeling of count data is crucial.

This paper is organized as follows. Section 2 provides background on the PLN framework and structured
variational inference techniques motivating our model. Section 3 introduces the proposed PLN-Tree models
and variational training procedures. It also displays identifiability results for tree-based PLN models. Fi-
nally, Section 4 provides synthetic and real-life applications, comparing the proposed backward variational
approximation with the mean-field variant and the original PLN. We namely demonstrate the practical utility
of PLN-Tree models through a data augmentation benchmark on real microbiome data from Pasolli et al.
(2016), highlighting its effectiveness in capturing hierarchical dependencies, proving the inherent interest
of the taxonomy in microbiome modeling. Extending beyond its generative features, we also illustrate the

2

potential of considering PLN-Tree models as preprocessing pipelines for a one-vs-all disease classification
task. Our implementation and experiments are freely available on our GitHub1.

2 Background

2.1 Poisson log-normal models

The Poisson-Log Normal model, introduced by Aitchison and Ho (1989) and thoroughly extended by Chi-
quet et al. (2021), is a standard network inference model that has become popular due to its ability to handle
over-dispersed count data and capture complex dependencies among variables. In its simplest form, for
a sample i, the PLN approach models the interactions through a Gaussian latent variable Zi P Rd, with
mean µ P Rd and precision matrix Ω P Rdˆd. The observed counts Xi P Rd are modeled by a Poisson
distribution such that pZi, Xiq1ďiďn are independent and, for 1 ď i ď n, conditionally on Zi and Xik,
1 ď k ‰ j ď d, Xij depends on Zij only:

latent space Zi „ N
`

µ, Ω´1˘

,

observed space Xij | Zij indep. Xi | Zi „ PpexppZiqq .

In the PLN model, the precision matrix Ω yields the interaction network, as entailed by the faithful cor-
relation property provided in Chiquet et al. (2021). On the other hand, the mean parameter µ enables to
model the fixed effects in the environment, such as the natural disproportion of species in an ecosystem.
Individual-related environmental effects can also be accounted for in µ by making it a function of covari-
ates, or by adding sampling effort information through an offset, which can have a significant impact on the
faithfulness of the reconstructed network, as shown numerically in Chiquet et al. (2019).

Performing maximum likelihood estimation in such latent data models is challenging as the conditional dis-
tribution of the latent variables given the observations is not tractable. Variational estimation (Blei et al.,
2017) is an appealing alternative to computationally intensive Monte Carlo methods by approximating the
true posterior using a family of variational distributions, yielding the Evidence Lower Bound (ELBO) as a
suboptimal optimization objective (Kingma et al., 2019). Consequently, Chiquet et al. (2021) proposed an
inference method for the PLN models based on variational inference called VEM, which consists in max-
imizing the ELBO in an alternate optimization resembling the Expectation-Maximization (EM) algorithm
(Dempster et al., 1977), except that the true posterior is replaced by its variational counterpart. In Chiquet
et al. (2019), the variational approximation corresponds to the Gaussian mean-field approximation, where
each sample is parameterized by a unique mean and diagonal covariance matrix, unlike usual neural network
parameterizations (Kingma et al., 2019). This specific form enables fast inference, as it yields exact maxi-
mization steps of the true parameters given the variational parameters, making the inference process highly
stable, efficient, and computationally expedient. However, it affects the model scalability to larger datasets
as the number of parameters increases linearly with the number of samples.

In Chiquet et al. (2019), the network inference model also comes with a sparsity-informed penalty inspired
by the graphical LASSO (Friedman et al., 2008), which introduces a hyperparameter that controls the spar-
sity of the reconstructed network, which is highly relevant for interpretability. Yet, tuning the penalty is a
complex task, as thoroughly explored in Banerjee et al. (2008); Chiquet et al. (2019), and thus will not be

1https://github.com/AlexandreChaussard/PLN-Tree

3

https://github.com/AlexandreChaussard/PLN-Tree

studied in our framework. Additionally, various PLN variants have been proposed in Chiquet et al. (2021),
such as PLN-PCA, PLN mixtures, and PLN-LDA. Although these variants can be naturally extended to our
PLN-Tree framework, we opt not to explore them in this paper.

2.2 Variational inference for structured data

As underscored in the previous section, addressing the parameter inference problem for PLN models requires
applying variational inference techniques, which requires to choose a variational family.

In scenarios devoid of specific structural constraints like PLN, the Gaussian mean-field approximation
emerges as the prevalent choice for variational families. This approach entails modeling each latent co-
ordinate with independent Gaussian densities, offering the advantage of explicit ELBO computation when
the latent prior is Gaussian. The mean-field approximation has demonstrated efficacy across various appli-
cations, such as the Poisson Log-Normal network inference model (Chiquet et al., 2019) and in Variational
Auto-Encoders (VAE) (Kingma et al., 2019). However, its inherent lack of expressivity and dependency
modeling has encouraged the development of alternative variational families, including Gaussian mixture
models with VAMPrior (Tomczak and Welling, 2018) and normalizing flows within the latent space to en-
hance posterior expressiveness (Kobyzev et al., 2020).

In this context, we set the focus to another class of variational approximations that explicitly incorporate data
structures. These structured variational approximations can be formulated based on prior assumptions, as
seen in approaches like NVAE (Vahdat and Kautz, 2020), or by deriving insights from the true posterior dis-
tribution, like auto-regressive models Marino et al. (2018) or hidden Markov models Campbell et al. (2021).
While prior-based assumptions are pertinent to methodological advancements, structuring the variational
approximation based on the true posterior aligns more closely with statistical principles while encourag-
ing model interpretability (Arrieta et al., 2020). Notably, when the latent process follows a hidden Markov
model, an enhanced variational approximation beyond the mean-field approach can be derived, as demon-
strated by Johnson et al. (2016), further illustrated and extended in Lin et al. (2018); Hälvä et al. (2021);
Schneider et al. (2023). Our work is closely related to advancements in this area, particularly in the context
of hidden Markov models, where recent studies like Campbell et al. (2021); Chagneux et al. (2024) have
highlighted the utility of backward variational inference, showcasing both empirical improvements and the-
oretical guarantees. Leveraging amortized inference techniques using recurrent networks, Chagneux et al.
(2024) suggests a computationally efficient implementation of a variational approximation that partially cap-
tures the backward structure, thus enhancing experimental results over mean-field alternatives. Moreover,
the theoretical underpinnings laid out in Chagneux et al. (2024); Gassiat and Le Corff (2024) and Campbell
et al. (2021) regarding backward variational inference in Markov chains offer compelling motivations for its
application in our specific context.

3 Tree-based variational inference

3.1 PLN-Tree model and parameters inference

Notations Let T be a finite rooted tree with L layers, where each layer ℓ ď L comprises Kℓ nodes. A
branch contains at least one node in each layer, so that every branch has a depth equal to L. At layer ℓ ď L,

4

147

72

12

3 9

60

60 0

75

42

12 30

13

13

20

8 0 12

X1 “ pX1
1, X1

2q

qX1
2 “ pX2

3, X2
4, X2

5qqX1
1

Figure 1: Example of a hierarchical count data with L “ 4. Nodes of the same color are independent of the
other nodes conditionally to their parent node and their respective latent variables.

the random variable associated with node k ď Kℓ is denoted by Vℓ
k. For layer ℓ ď L ´ 1 and node k ď Kℓ,

the vector of children of the random variable Vℓ
k is indexed by Ck

ℓ and represented as qVℓ
k “ pVℓ`1

j qjPCk
ℓ

.
We generally denote the hierarchical counts by X and the associated latent variables by Z. A graphical
representation is provided in Figure 1.

If the distribution of a random variable V has a density parameterized by θ with respect to a reference
measure, it is denoted by pV

θ,. In cases of clarity, we may express the density as pθpVq. If θ is a vector, its
k-th coordinate is denoted by θk, while for a diagonal matrix θ, the k-th diagonal term is denoted as θk.
For a function fθ parameterized by θ and taking values in Rd, the k-th coordinate of any of its outputs is
denoted by fθ,kp.q. The sequence of random variables pV1, . . . , VLq is represented as V1:L. For V P Rd,
the exponential of V is defined as exppVq “ pexppVjqq1ďjďd, and the multivariate Poisson distribution with
parameters V P Rd

ą0 is denoted by PpVq “ bd
j“1PpVjq. We denote by Sd the simplex of dimension d,

then if V P Sd, we denote the multinomial distribution with total count n and probabilities V by M pn, Vq.

Tree compositionality constraint Hierarchical count data can be constructed from a repeated clustering
of entities in the community, up to having one group left, from bottom to top. Then, placing the observed
counts at the lowest level of the tree and summing them with their respective siblings in an iterative pro-
cess, we obtain a hierarchical count data sample. Therefore, hierarchical count data are subject to a tree
compositionality constraint

@ℓ ă L, @k ď Kℓ, Xℓ
k “

ÿ

jPCk
ℓ

Xℓ`1
j , (1)

which needs to be accounted for in the modelization, thereby preventing an independent modeling of the
layers. Furthermore, this constraint motivates a top-down propagation dynamic of the counts in the observed
space, as a bottom-up would rely solely on the final layer to determine the entire hierarchical count data,
thus failing to incorporate the tree structure in the modelization.

5

Model The PLN framework models tabular count data, which only applies to one layer of the tree at a
time. Therefore, learning one PLN model at each layer does not satisfy the tree compositionality constraint
since it models independent layers. Consequently, we propose a new model tailored to hierarchical structures
named PLN-Tree.

H1 – The pZi, Xiq1ďiďn are independent, and for 1 ď ℓ ď L´1, conditionally on tpZu
i , Xv

i qu 1ďuďL
1ďv‰ℓďL

,

the random variables p qXℓ
ikq1ďkďKℓ

are independent and the conditional law of qXℓ
ik depends only

on qZℓ
ik and Xℓ

ik.

– The latent process pZℓq1ďℓďL is a Markov chain with initial distribution Z1 „ N pµ1, Σ1q and
such that for all 1 ď ℓ ď L ´ 1, the conditional distribution of Zℓ`1 given Zℓ is Gaussian with
mean µθℓ`1 pZℓq and variance Σθℓ`1 pZℓq. Formally, the latent process writes

Z1 „ N pµ1, Σ1q ,

@ℓ ă L, Zℓ`1 | Zℓ „ N
`

µθℓ`1 pZℓq, Σθℓ`1 pZℓq
˘

.

– Conditionally on Z1, X1 „ PpeZ1
q and for all 1 ď ℓ ď L´1, 1 ď k ď Kℓ, conditionally on Xℓ

k

and qZℓ
k, qXℓ

k has a multinomial distribution with parameters σpqZℓ
kq and Xℓ

k, where σp.q denotes
the softmax function. Formally, the observed counts process writes

X1 | Z1 „ PpeZ1
q ,

@ℓ ă L, k ď Kℓ, qXℓ
k | Xℓ

k, qZℓ
k „ M

´

Xℓ
k, σpqZℓ

kq

¯

.

The latent dynamic incorporates the tree structure through its Markov chain property while remaining flex-
ible enough to model the interactions between all the nodes of a given layer, not just the siblings. Con-
versely, the observed counts are constrained to satisfy the tree compositionality constraint (1). In particular,
the multinomial conditional distribution of the observations qXℓ

k for 1 ď ℓ ď L ´ 1 is the conditional
distribution of independent Poisson random variables with parameters exppqZℓ

kq conditioned on the event
{
ř

jPCℓ
k

Xℓ`1
j “ Xℓ

k}.

Variational inference Under H1, the posterior distribution is a backward Markov chain. Since we approx-
imate this quantity using a variational approximation, we suggest variational families that account for the
backward structure of the true conditional distribution of the latent variables given the observations.

H2 The variational density is given by a backward Gaussian Markov Chain:

qφ,1:LpZ|Xq “ qφ,LpZL|X1:Lq

L´1
ź

ℓ“1
qφ,ℓ|ℓ`1pZℓ|Zℓ`1, X1:ℓq ,

where qφ,Lp¨|X1:Lq is the Gaussian density with mean mφL pX1:Lq and variance SφL pX1:Lq and
qφ,ℓ|ℓ`1p¨|Zℓ`1, X1:ℓq is the Gaussian density with mean mφℓ pZℓ`1, X1:ℓq and variance Sφℓ pZℓ`1, X1:ℓq.

The ELBO of the backward variational model can then be computed as proposed below.

6

Proposition 3.1. Assume that H1 and H2 hold. Then, the ELBO of the PLN-Tree model writes

Lpθ, φq “

L
ÿ

ℓ“1

1
2Eqφ,1:L

”

log |Ωθℓ pZℓ´1q| ´ trp pΣℓΩθℓ pZℓ´1qq ` log |Sφℓ pZℓ`1, X1:ℓq|

ı

`

Kℓ
ÿ

k“1

´

Xℓ
kEqφ,1:L

“

mφℓ,kpZℓ`1, X1:ℓq
‰

´ 1ℓ“1Eqφ,1:L

”

Mk
ℓ|ℓ`1pZℓ`1q

ı¯

´ 1ℓą1

Kℓ´1
ÿ

k“1
Xℓ´1

k Eqφ,1:L

»

–log
ÿ

jPCℓ´1
k

eZℓ
j

fi

fl ´ 1ℓ“L

Kℓ
ÿ

k“1
log Xℓ

k! ´
1
2Kℓ ,

such that Ωθ1 pZ0q “ Ω1, µθ1 pZ0q “ µ1, SφL pZL`1, X1:Lq “ SφL pX1:Lq, mφL pZL`1, X1:Lq “

mφL pX1:Lq, and for all 1 ď ℓ ď L ´ 1, 1 ď k ď Kℓ ,

pΣℓ “
`

µθℓ
pZℓ´1q ´ mφℓ pZℓ`1, X1:ℓq

˘ `

µθℓ
pZℓ´1q ´ mφℓ pZℓ`1, X1:ℓq

˘J

` Sφℓ pZℓ`1, X1:ℓq ,
(2)

Mk
ℓ|ℓ`1pZℓ`1q “ exp

ˆ

Sφℓ,kpZℓ`1, X1:ℓq

2 ` mφℓ,kpZℓ`1, X1:ℓq

˙

.

Proof. The proof is postponed to Appendix B.1.

Numerically, handling the inputs of the neural networks parameterizing the variational distributions is a
challenging task due to the increasing dimension of the chains pX1:ℓq1ďℓďL, and the value it takes relatively
to the latent variables. To address this scalability issue, Chagneux et al. (2024) suggests performing amor-
tized inference by encoding the chain of counts using a recurrent neural network. It enables us to control the
number of parameters while neutralizing the increasing dimension of the input. Moreover, considering the
current observation’s pivotal influence on the latent variable distribution at layer ℓ, we introduce a residual
connection yielding Xℓ as input of the current variational parameters. Combined with the amortized setting,
this approach yields the residual amortized backward architecture illustrated in figure 2. Problem-specific
networks must then be tuned, as thoroughly explored in our experiments in Section 4. While we focus on
the residual amortized backward for its superior empirical performances in our experiment, other notewor-
thy methods could be employed for the variational parameters in certain cases, like the regular amortized
backward, or a weak amortized variant taking only the current observation as input and the next latent.

X1:ℓ RNN Eℓ
Ť

Neural network mφℓ pZℓ`1, Eℓ, Xℓq

Xℓ

Zℓ`1

Figure 2: Residual amortized backward architecture for the variational mean at layer ℓ ď L.

7

Offset modeling Collecting count data within multiple ecosystems usually comes with a variable sampling
effort in practice. This offset in the average total count often originates from the counting protocols in each
environment or the difficulty of exploring an environment. In genomics for instance, the total count relates
to the sequencing depth of the genome, which correlates with the counts of rarer species, introducing a bias
in the data with higher total count (Lee et al., 2014; Xu et al., 2017). Consequently, the total count conveys
information about the data capture protocol rather than the environments studied, and therefore it should
not become a decisive feature in that context. Procedures like resampling, also called rarefaction, allow to
overcome most of the offset effects while preprocessing the data (Weinroth et al., 2022; Schloss, 2024), at
the cost of partial data loss. When using the raw count data, it is then recommended to model the offset in
order to avoid spurious correlations (Chiquet et al., 2019). In the PLN model from Chiquet et al. (2021), the
offset is modeled through a plug-in estimator from the abundances that shifts the latent variables mean by
Oi “ log

řK
k“1 Xik. For the PLN-Tree framework, we propose to model the offset using a latent variable O

satisfying H3.

H3 – The pOi, Zi, Xiq1ďiďn are i.i.d., and for ℓ ď L ´ 1, conditionally on tpO, Zu, Xvqu 1ďuďL
1ďv‰ℓďL

,

the random variables p qXℓ
kq1ďkďKℓ

are independent and the conditional law of qXℓ
k depends only

on qZℓ
k and and Xℓ

k.

– The distribution of the offset O is a Gaussian mixture, and conditionally on X, the offset O and
the latent variables Z are independent.

– The latent process pZℓq1ďℓďL is a Markov chain with initial distribution Z1 „ N pµ1, Σ1q and
such that for all 1 ď ℓ ď L ´ 1, the conditional distribution of Zℓ`1 given Zℓ is Gaussian with
mean µθℓ`1 pZℓq and variance Σθℓ`1 pZℓq.

– Conditionally on Z1, X1 has a Poisson distribution with parameter exppZ1 ` Oq and for all
1 ď ℓ ď L ´ 1, 1 ď k ď Kℓ, conditionally on Xℓ

k and qZℓ
k, qXℓ

k has a multinomial distribution
with parameters σpqZℓ

kq and Xℓ
k.

Since the softmax is invariant by constant translation, adding the offset in the lower layers of the observed
dynamics has no impact on the modelization. By inheritance of the PLN-Tree model, the true posterior
is still intractable. It is then approximated using a variational approximation that satisfies the following
assumptions.

H4 – Inheriting the property of the true posterior, under the variational approximation, O and Z are
independent conditionally to X.

– The variational approximation qO
φpO|Xq is a Gaussian with mean mopXq and variance s2

opXq.

– The latent posterior qZ
φ,1:LpZ|Xq is a backward Markov chain as defined in H2.

The ELBO of the offset-modeled PLN-Tree is derived directly from the PLN-Tree model.

Lemma 3.2. Assume that H3 and H4 hold. Denote by L|Opθ, φq the ELBO of the generative model from
proposition 3.1 with shifted latent means µ ` O and mφp.q ` O, then the ELBO of the offset-modeled
PLN-Tree is given by

Loffsetpθ, φq “ L|Opθ, φq ` 2EqO
φ

rlog pθpOqs `
1
2 log s2

opXq `
1 ` log 2π

2 .

8

Proof. The proof is postponed to Appendix B.2.

Learning the PLN-Tree model can be accelerated by exploiting the variational EM algorithm from Chiquet
et al. (2021) applied at the first layer, which holds an explicit optimum in θ when φ is known, so that at
iteration h ` 1

µ
ph`1q

1 “
1
n

n
ÿ

i“1
m

φ
phq

1
pX1:L

i q ,

Ωph`1q

1 “

˜

1
n

n
ÿ

i“1

´

µ
ph`1q

1 ´ m
φ

phq

1
pX1:L

i q

¯ ´

µ
ph`1q

1 ´ m
φ

phq

1
pX1:L

i q

¯J

` S
φ

phq

1
pX1:L

i q

¸´1

.

3.2 Identifiability of Poisson-Log Normal models

In a nutshell, identifiability ensures we can uniquely determine a model given the data, and thus infer the
law of the latent variables solely from the law of the observations. In real-world applications, it was shown
that the lack of identifiability can severely undermine performances (D’Amour et al., 2022), and precludes
the interpretability of the inferred networks. Fortunately, in many applications such as in Hälvä et al. (2021);
Gassiat et al. (2020), the dependency structure of the data can disentangle parameters using inductive biases.
This section presents two identifiability results related to the PLN model and the PLN-Tree extension.

Lemma 3.3 shows the identifiability of the PLN models and the identifiability of the first layer of the PLN-
Tree model, which is illustrated in Section 4.1.

Lemma 3.3. Let Z “ pZℓq1ďℓďL be a random variable supported on pR˚
`qL. Consider the observations

X “ pXℓq1ďℓďL such that for all 1 ď ℓ ď L, the conditional distribution of Xℓ given Z is Xℓ „ PpZℓq.
Then, the law of Z is identifiable from the law of X.

Proof. Proof is postponed to Appendix C.2.1

PLN-Tree identifiability The previous result does not cover the whole scope of the PLN-Tree framework
as it models independent layers conditionally to their respective latent variables. Instead, Theorem 3.4
establishes the identifiability of the PLN-Tree model up to a softmax transform, which is illustrated in
Section 4.1.

Theorem 3.4. Let T a given tree, Z “ pZ1, Z2, Z3q be random variables such that Z1 ą 0, Z2 P SK2 , for
all k ď K2, qZ2

k P S#C2
k . Suppose the observations X “ pX1, X2, X3q are such that:

• conditionally on Z1, X1 has a Poisson distribution with parameter Z1;

• conditionally on pX1, Z2q, X2 „ M
`

X1, Z2˘

;

• conditionally on pX2, Z3q, for all 1 ď k ď K2, qX2
k „ M

´

X2
k, qZ2

k

¯

, and qX2
k is independent of

p qX2
j qj‰k.

Then, the law of pZ1, Z2, Z3q is identifiable from the law of pX1, X2, X3q.

9

Proof. Proof is postponed to Appendix C.2.5.

However, since the softmax function is constant along diagonals, obtaining the identifiability of pZ1, . . . , ZLq

is not a given if we do not set a constraint on the parameters space. Combining the previous result with
Lemma C.4 shows we can identify the law of the latent variables up to a linear projection. Assuming the
distribution of the latent variables is Gaussian, a direct application of the previous result yields the identifi-
ability of every parent-children distribution of the PLN-Tree framework providing the parameters belong to
a defined projection space.

Corollary 3.5. Let pZ1, Z2q and pZ̃1, Z̃2q in Rm ˆ Rd be such that conditionally on Z1 (resp. Z̃1), Z2 is
Gaussian with mean µpZ1q (resp. µ̃pZ̃1q) and covariance ΣpZ1q (resp. Σ̃pZ̃1q). Define P “ Id ´ 1

d 1dˆd

the projector on Vect p1dq
K. Assume pZ1, σpZ2qq has the same law as pZ̃1, σpZ̃2qq, then

Pµpzq “ Pµ̃pzq and PΣpzqP “ PΣ̃pzqP , PZ1 ´ a.s. ,

where PZ1 is the law of Z1.

Proof. Proof is postponed to Appendix C.2.4.

For all ℓ ě 2, denoting by Pℓ “ diagptPℓ
ku1ďkďKℓ´1 q with

Pℓ
k “ I#Cℓ´1

k
´

1
#Cℓ´1

k

1#Cℓ´1
k

ˆ#Cℓ´1
k

,

we obtain from Theorem C.2.5 and Corollary 3.5 that all PLN-Tree model parameterized by the latent
variables pZ1, P2Z2, . . . , PLZLq are identifiable. This result is also illustrated in the experiments of Sec-
tion 4.1.

4 Experiments

The goal of this section is to show the practical interest of considering the underlying tree graph structure
behind hierarchical count data over unstructured approaches. In a first place, we consider two generative
benchmarks on artificial datasets. The first synthetic dataset is generated along a PLN-Tree model and
showcases the identifiability of the model, as well as the variational approximation performances and its
limits in an ideal inference framework. Then, we generate hierarchical count data using a Markovian Dirich-
let procedure as an extension of the simulation protocol proposed in Chiquet et al. (2019). This second
experiment enables us to benchmark PLN-Tree against PLN in a fair yet controlled setup. Finally, we assess
the model performance in comparison with PLN on real-life metagenomics data from microbiome samples
of several disease-affected patients (Pasolli et al., 2016) from a data augmentation perspective, as well as a
preprocessing for classification tasks.

Benchmarked models To assess the performance of the PLN-Tree model as a generative model, we would
like to benchmark it against the PLN approach on data augmentation problems. However, the PLN frame-
work is restricted to tabular data, allowing the modeling of only one layer of hierarchical count data at a
time, thus yielding inconsistent samples regarding the hierarchical compositional constraint (1). Thankfully,

10

by leveraging this constraint, PLN models can generate valid hierarchical count data by sampling solely the
final layer of the tree. This generative procedure, denoted as PLN (fill), involves sampling the abundances
of the last layer and then exploiting the compositional constraint to derive the values of the parent nodes,
allowing us to obtain hierarchical count data that satisfies (1). For comprehensiveness, we still compute the
regular PLN model at each layer of the hierarchical tree as a reference baseline, but we separate it from
the other models for its consistency issues. In our experiments, the PLN baselines are computed using the
pyPLNmodels2 Python implementation from Chiquet et al. (2021). Finally, in this benchmark, we com-
pare the efficiency of the proposed backward approximation H2 against the regular Gaussian mean-field
(Blei et al., 2017), denoted as PLN-Tree (MF). Thus, the PLN-Tree tag is retained for backward variational
approximation modeling.

Metrics for model evaluation In the context of variational deep generative models, comparing the qual-
ity of estimated parameters is often impractical due to variations in model architectures, which adds up to
identifiability concerns in neural networks. Instead, we assess the generative performance of trained models
by their ability to faithfully replicate the dataset distribution. To achieve this in our context, we use alpha
diversity metrics, commonly employed in ecosystem studies (see Appendix A), which provide insights into
species richness and evenness, thereby characterizing the diversity within an ecosystem (Gotelli and Col-
well, 2001). Among these metrics, the Shannon entropy (A.1) and the Simpson index (A.2) indices are
widely employed . The Shannon index quantifies the uncertainty in predicting the entities in the ecosystem
(degree of surprise), while the Simpson index represents the probability that two entities chosen at random
represent the same entity. Both estimators are qualified as robust, but they quantify complementary aspects
of the ecosystems (Nagendra, 2002). Our objective is to ensure that the generated data closely approxi-
mates the alpha diversity distribution of the original dataset, as measured by the Wasserstein distance. Other
distances or divergences are considered in the appendix for each experiment, such as the Kullback-Leibler
divergence, Kolmogorov-Smirnov statistic, and total variation distance. Additionally, to compare the distri-
bution of the generated data with the original data, we evaluate the empirical Wasserstein distance between
generated samples and the initial dataset in normalized forms at each layer using the emd2 function from
POT (Flamary et al., 2021). Finally, we employ correlation measures between the original data and their
reconstructions to assess the quality of the variational approximations at the reconstruction task.

Selection of the variational architectures To provide a comprehensive and equitable evaluation of the
PLN-Tree variants, we determine efficient architectures for the variational approximations tailored to each
experimental scenario. To that end, we propose several network architectures and assess their generative
capabilities, leveraging the above evaluation metrics. The model demonstrating superior overall performance
is identified by averaging its rank across all computed metrics. The considered architectures and numerical
considerations are detailed in Appendix D. Since the models are trained using variational approximations,
convergence may result in different model parameters depending on the initialization. Specifically, the
analysis of training variability in Appendix D.1.2 reveals that the mean-field approximation is less stable
compared to the proposed residual backward approach, but this does not affect the performance ranking of
the two methods. Consequently, training is conducted once for each model, and performance variability is
assessed based on the generations.

2https://github.com/PLN-team/pyPLNmodels

11

https://github.com/PLN-team/pyPLNmodels

4.1 Synthetic data

4.1.1 PLN-Tree retrieval

To evaluate the efficiency of the proposed backward variational approximation H2 and demonstrate the iden-
tifiability results discussed in Section 3.2, we conduct an initial study on data generated from a PLN-Tree
model. We begin by defining a tree T (see Fig. 7), a reference PLN-Tree model with parameters θ˚, and a
synthetic dataset pX, Zq generated using the dynamic specified in H1 with θ “ θ˚ (see Fig. 8), consisting
of n “ 2000 samples. In our experiments, we ensure that the latent dynamic is parameterized by identifiable
parameters as detailed in Section 3.2. Upon selecting candidate architectures (see Appendix D.1), we con-
duct the training procedure for each model until convergence. Then, we generate data by sampling M “ 25
times 2000 samples from the trained models and aggregate the results to address sampling variability.

Model performance analysis We start our evaluation by analyzing the performance on the synthetic
dataset using alpha diversity metrics, summarized in Table 1 using Wasserstein distance (see other statis-
tics in Table 13). As anticipated, the PLN-Tree models exhibit superior performance compared to the PLN
variants, with the backward variational approximation outperforming the mean-field variant despite being in
an amortized setting. Upon delving into the layers of the tree, we observe a gradual decrease in performance
across all criteria in the PLN models, attributable to the Markov tree propagation of the counts, a factor not
accounted for by the PLN approach. Additionally, Table 2 demonstrates that PLN-Tree-based approaches
consistently approximate the distribution of the counts at each depth of the tree, contrasting with the PLN
approaches, which exhibits a progressive performance decline as we descend the tree matching with the
alpha diversities observations. Looking at the encoders performance in Table 3, it appears the backward
approximation conserves more information than the mean-field approach in an ideal PLN-Tree framework
on unseen samples, illustrating the upside of considering the backward Markov structure of the true posterior
for model inference.

Alpha diversity PLN-Tree PLN-Tree (MF) PLN (fill) PLN

Wasserstein Distance (ˆ102)

Shannon ℓ “ 1 1.57 (0.50) 11.23 (0.73) 14.64 (1.15) 1.40 (0.61)
Shannon ℓ “ 2 3.67 (1.33) 5.14 (1.20) 32.04 (1.62) 26.28 (1.31)
Shannon ℓ “ 3 5.82 (1.51) 7.86 (1.47) 35.03 (1.68) 34.03 (1.68)
Simpson ℓ “ 1 0.62 (0.21) 2.69 (0.27) 4.91 (0.41) 0.53 (0.24)
Simpson ℓ “ 2 0.71 (0.24) 1.40 (0.31) 7.35 (0.41) 6.05 (0.36)
Simpson ℓ “ 3 0.85 (0.24) 1.55 (0.34) 7.21 (0.41) 7.21 (0.41)

Table 1: Wasserstein distance between alpha diversities distributions from synthetic data sampled under the
original PLN-Tree model and simulated data under each model trained, averaged over the samplings, with
standard deviation. Since PLN does not verify the tree compositionality constraint, it is placed aside as
a reference. The best-performing model in each row is indicated in bold, and PLN is underlined when it
outperforms others.

12

PLN-Tree identifiability We conduct Principal Component Analysis (PCA) (Hotelling, 1933) on the true
latent variables and the latent variables of the trained models at each layer, as depicted in Figure 3. When
the inferred counts closely approximate the true counts at a given layer, we observe congruence in the
distributions of latent variables across layers, as evident for ℓ “ 1 and ℓ “ 2 in Figure 3, illustrating our
identifiability results of Section 3.2. However, for ℓ “ 3, the model fails to capture sufficient information
from the true count distribution, resulting in disparate latent distributions. This discrepancy may be attributed
to limitations in the proposed variational inference framework.

4.1.2 Artificial data from Markovian Dirichlet

In order to provide fair comparisons of the performances of each model in a controlled setup, we simulate
hierarchical count data from a process unrelated to PLN framework, extended from the synthetic experiments
protocol of Chiquet et al. (2019). First, we define a hierarchical tree T that fixes the dataset structure. Then,
the steps of the generative process are defined as follows.

• Base network generation. Sample an adjacency matrix G P MK1ˆK1 using a random graph model
like Erdos-Rényi (no particular structure), preferential attachment (scale-free property) or affiliation
models (community structure). Choose u, v ą 0 to control the partial correlation and conditioning of
the network at the first layer, and deduce a precision matrix Ω “ vG ` diagp|minpeigpvGqq| ` uq.
In our experiments, v “ 0.3 and u “ 0.1.

• First counts generations. Draw counts a P NK1 such that logpaq „ N pµ, Ωq. Compute a probabil-
ity vector π “ σpaq and draw a sampling effort N “ exppOq from a negative binomial distribution.
We obtain the counts of the first layer using a multinomial distribution X1 „ M pN, πq.

• Counts propagation. For each k ď K1, compute α1
kpX1q P R

#C1
k

ą0 , where α1
kp.q is an arbitrary func-

tion, like a neural network with softplus output in our experiments. Sample weights ω1
k P S#C1

k from
a Dirichlet of parameters α1

kpX1q. Draw the counts of the children of the node k using a multinomial
with total count X1

k and probabilities ω1
k. Repeat that procedure for the next layers using the counts of

the previous layer.

In Figure 9, we present the chosen tree graph for our experiments. To derive the covariance matrix of the

PLN-Tree PLN-Tree (MF) PLN (fill) PLN

Wasserstein Distance (ˆ102)

ℓ “ 1 5.20 (0.62) 8.61 (0.11) 10.70 (0.34) 4.71 (0.15)
ℓ “ 2 13.01 (0.14) 16.37 (0.29) 17.59 (0.28) 16.42 (0.27)
ℓ “ 3 14.08 (0.13) 18.13 (0.32) 20.04 (0.03) 20.04 (0.03)

Table 2: Empirical Wasserstein distance between normalized synthetic data sampled under the original PLN-
Tree model and normalized simulated data under each modeled trained, for each layer, averaged over the
trainings, with standard deviation. Since PLN does not verify the tree compositionality constraint, it is placed
aside as a reference. The best-performing model in each row is indicated in bold, and PLN is underlined
when it outperforms others.

13

PLN-Tree PLN-Tree (MF)

ℓ “ 1 0.999 (0.002) 0.901 (0.209)
ℓ “ 2 0.993 (0.050) 0.910 (0.137)
ℓ “ 3 0.996 (0.020) 0.990 (0.028)

Table 3: Correlation between reconstructed counts and the test dataset (1000 samples) from the original
PLN-Tree model, averaged over the samples, with standard deviation.

2 0 2

2

0

2

= 1

8 0 8

8

0

8

= 2

40 0 40

40

0

40

= 3

2 0 2

2

0

2

1 0 1

1

0

1

1 0 1

1

0

1

2 0 2

2

0

2

8 0 8

8

0

8

25 0 25

25

0

25

log X1

Z1

Z1

log X2

(Z2)

Z2

log X3

(Z3)

Z3

log X1

Z1

Z1

log X2

(Z2)

Z2

log X3

(Z3)

Z3
PLN-Tree
Data

Figure 3: PCA at each depth of the tree, using the training data and the generated data from the PLN-Tree
model. The first row corresponds to the projection of the layer count data in log scale, the second row
corresponds to the projection of the latent variables as the multinomial parameters (softmax per group of
children, denoted by σT), the third row corresponds to the projection of the raw latent variables.

14

Alpha diversity PLN-Tree PLN-Tree (MF) PLN (fill) PLN

Wasserstein Distance (ˆ102)

Shannon ℓ “ 1 17.70 (0.47) 21.42 (0.59) 72.27 (1.70) 17.53 (0.59)
Shannon ℓ “ 2 22.23 (0.94) 29.10 (1.06) 111.53 (1.81) 92.89 (1.92)
Shannon ℓ “ 3 24.32 (0.83) 37.72 (1.14) 142.28 (1.99) 142.28 (1.99)
Simpson ℓ “ 1 5.69 (0.16) 5.84 (0.16) 21.74 (0.60) 5.65 (0.22)
Simpson ℓ “ 2 5.21 (0.17) 5.90 (0.19) 26.70 (0.59) 20.76 (0.64)
Simpson ℓ “ 3 3.91 (0.11) 5.16 (0.16) 28.55 (0.59) 28.55 (0.59)

Table 4: Wasserstein distance on the distribution of alpha diversities at each layer computed between syn-
thetic data sampled under the Markov Dirichlet model and simulated data under each modeled trained,
averaged over the trainings, with standard deviation. Since PLN does not verify the tree compositionality
constraint, it is placed aside as a reference. The best-performing model in each row is indicated in bold, and
PLN is underlined when it outperforms others.

PLN-Tree PLN-Tree (MF) PLN (fill) PLN

Wasserstein distance (ˆ102)

ℓ “ 1 11.51 (0.25) 12.47 (0.30) 25.50 (0.59) 10.93 (0.19)
ℓ “ 2 19.68 (0.25) 22.02 (0.36) 43.26 (0.61) 45.56 (0.90)
ℓ “ 3 24.33 (0.24) 27.15 (0.30) 51.84 (0.57) 51.84 (0.57)

Table 5: Empirical Wasserstein distance between normalized synthetic data sampled under the Markov
Dirichlet model and normalized simulated data under each modeled trained, for each layer, averaged over
the trainings, with standard deviation. Since PLN does not verify the tree compositionality constraint, it
is placed aside as a reference. The best-performing model in each row is indicated in bold, and PLN is
underlined when it outperforms others.

first layer, we generate a random adjacency matrix using the Erdos-Rényi graph model. In our architecture,
for all layers ℓ up to L and nodes k up to Kℓ, αℓ

k is structured as a one-layer network with softplus output and
a random weight matrix. We set the sampling effort to N “ 20000, and we sample n “ 2000 hierarchical
count data points, constituting our synthetic dataset. Following the selection of candidate architectures
(detailed in Appendix D.2), we conduct a single training procedure for each model. Subsequently, we sample
data from the trained models M “ 10 times and aggregate the results to address sampling variability.

We provide a summary of the model performances in Table 4, Table 5, (see Table 15 for other distances),
and Table 6. Notably, the PLN-Tree models exhibit superior performance compared to the PLN approach,
which does not account for the underlying Markovian tree structure of the data. Similar to our previous
synthetic experiment, we observe that as we traverse deeper into the tree structure, the performance of PLN
models deteriorates significantly. When looking at the alpha diversities in Table 15, the backward variational
approach demonstrates superior performance compared to the mean-field approach, which is supported by its
higher efficiency at the reconstruction task on unseen samples summarized in Table 6. This experiment then
demonstrates the practical interest of considering the structure of the true posterior when doing variational
inference to learn the model.

15

PLN-Tree PLN-Tree (MF)

ℓ “ 1 0.995 (0.062) 0.967 (0.103)
ℓ “ 2 0.989 (0.065) 0.967 (0.078)
ℓ “ 3 0.987 (0.075) 0.973 (0.087)

Table 6: Correlation between reconstructed abundances and the test dataset from the Markov Dirichlet model
(1000 samples), averaged over the samples, with standard deviation.

Label Nb of training samples Nb of test samples Total

IBD (Crohn) 20 5 25
Colorectal Cancer 38 10 48
Leaness 71 18 89
Liver Cirrhosis 94 24 118
IBD (UC) 118 30 148
Obesity 131 33 164
Type 2 Diabetes 178 45 223

Total 650 165 815

Table 7: Metagenomics dataset considered in our experiments, extracted from Pasolli et al. (2016). The
samples are drawn randomly for each label to satisfy these counts.

4.2 Metagenomics dataset: application to the gut microbiome

Description of the dataset and preprocessing We assess the efficacy of the PLN-Tree model using a
metagenomics dataset introduced in Pasolli et al. (2016). This dataset comprises microbial compositions
from both control individuals and patients with various diseases, totaling 3610 samples. Our analysis focuses
exclusively on the gut microbial compositions of disease-associated patients, as recapitulated in Table 7.
Each sample is characterized by hierarchical proportion data, with the base tree representing the taxonomy
of Archaea, Eukaryota, and Bacteria. Sequencing was conducted using MetaPhlAn2, optimized for bacterial
sequencing (Truong et al., 2015), thus restricting our study to bacteria. Besides, we limit our analysis to
the layers of the taxonomy exploration comprised between the second and fifth layers, which respectively
correspond to the "class" and the "family". To convert the proportions of taxa within each patient’s gut into
count data, we sample counts from a multinomial distribution with a total count of expp12q and gut sample
compositions as probabilities, as generally done in microbiome rarefaction procedures to standardize count
data (Schloss, 2024). Additionally, we implement prevalence filtering using a threshold of 1 ˆ e´12 to filter
very rare Operational Taxonomic Units (OTUs).

4.2.1 Data augmentation with PLN-based methods

In Appendix D.3, we provide a summary of the tested and selected architectures for the PLN-Tree models.
Each compared model is trained once, while sampling is repeated M “ 25 with 2000 samples to account
for sampling variability in the model evaluation.

16

1

2

3

4

5

6

7

8

9101112

13

14

15

16

17

18

19

2021222324

25

26

27

28

29

30

31

32

33

3435363738

39

404142

43

44

454647484950515253

54

55

56

57

58

5960

61

62

63

6465

66

67

68

6970717273

74

75

76

77

78

79

80

81

82

8384

85

86

8788

89

90

91

92

93

94

95

9697

98

99

100

101102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

0

1

6

7

13

14

15

16

17

18

19

2021222324

31

32

33

3638

43

44

45474849505152

54

55

56

57

58

5960

66

67

68

71

78

79

80

85

91

92

98

99

100

101

103

104

105

106

111

112

113

114

0
Total count 162754

1

2

3

4

5

6

7

13

14

15

16

17

18

19

20212224

25

26

27

31

32

33

3638

43

44

45474849505152

54

55

56

57

58

5960

66

67

68

69717273

78

79

80

85

89

90

91

92

111

112

113

114

0
Total count 162754

1

6

7

13

14

15

16

17

18

19

20212224

31

32

33

343638

43

44

4546474849515253

54

55

56

57

58

60

61

62

63

64

66

67

68

697071

78

79

80

85

89

90

103

104

105

106

0
Total count 162754

1

6

7

8

1011

15

16

17

18

19

202224

31

32

33

3438

43

44

4547484952

54

55

56

61

62

63

64

66

78

79

80

85

89

90

93

94

0
Total count 162754

0.0

0.2

0.4

0.6

0.8

1.0

Ab
un

da
nc

e
(%

)

Figure 4: Graph of the taxonomy considered in the metagenomics experiments (top), and four samples from
the dataset (bottom).

17

PLN-Tree PLN-Tree (MF) PLN (fill) PLN

Wasserstein distance (ˆ102)

ℓ “ 1 5.89 (0.29) 4.67 (0.25) 15.57 (0.59) 8.38 (0.36)
ℓ “ 2 8.83 (0.28) 7.55 (0.14) 20.65 (0.71) 15.49 (0.63)
ℓ “ 3 9.27 (0.27) 7.76 (0.12) 20.86 (0.70) 18.34 (0.83)
ℓ “ 4 17.00 (0.22) 15.59 (0.13) 29.29 (0.72) 29.29 (0.72)

Table 8: Empirical Wasserstein distance between normalized metagenomics data and normalized simu-
lated data under each modeled trained, for each layer, averaged over the trainings, with standard deviation.
Since PLN does not verify the tree compositionality constraint, it is placed aside as a reference. The best-
performing model in each row is indicated in bold.

Alpha diversity PLN-Tree PLN-Tree (MF) PLN (fill) PLN

Wasserstein distance (ˆ102)

Shannon ℓ “ 1 1.73 (0.44) 3.00 (0.44) 16.49 (1.14) 4.00 (0.50)
Shannon ℓ “ 2 2.22 (0.73) 5.70 (0.97) 23.21 (1.64) 8.37 (1.21)
Shannon ℓ “ 3 2.29 (0.63) 6.58 (1.02) 23.96 (1.67) 9.28 (1.43)
Shannon ℓ “ 4 2.08 (0.62) 20.39 (1.08) 55.32 (2.38) 55.32 (2.38)
Simpson ℓ “ 1 0.84 (0.14) 0.71 (0.12) 7.18 (0.48) 1.71 (0.23)
Simpson ℓ “ 2 0.92 (0.24) 0.73 (0.19) 7.49 (0.57) 2.55 (0.33)
Simpson ℓ “ 3 0.91 (0.23) 0.72 (0.19) 7.46 (0.57) 2.88 (0.29)
Simpson ℓ “ 4 0.53 (0.13) 2.41 (0.21) 12.91 (0.67) 12.91 (0.67)

Table 9: Wasserstein distance on alpha diversities distributions computed between metagenomics data and
simulated data under each modeled trained, averaged over the trainings, with standard deviation. Since PLN
does not verify the tree compositionality constraint, it is placed aside as a reference. The best-performing
model in each row is indicated in bold.

Exploiting the taxonomy improves the performances We provide a summary of the model performances
in Tables 8 and 9, while Figure 6 illustrates the variability of the generations for each model. Notably, the
tree-based models exhibit superior performance compared to the PLN approach, which does not account
for the taxonomy. Specifically, as we delve deeper into the tree structure, the performance of PLN models
declines, while the PLN-Tree models maintain consistency with depth. These findings suggest that taxonomy
provides pertinent insights into the distribution of bacteria and their interactions within the host ecosystem,
bearing significant biological implications. However, as shown in Figure 6, PLN-Tree approaches struggle
with modeling zero-valued abundances (see Bacteria 2, 61, 107 for instance), particularly when using the
mean-field approximation. This issue, which accumulates across layers due to the top-down dynamic of
the model, could be addressed using zero-inflation techniques, similar to the approach taken for PLN in
Batardière et al. (2024).

Variational approximation performances Analysis of Table 17 underscores the consistently superior
performance of the residual amortized backward approximation compared to the mean-field approach. This

18

PLN-Tree PLN-Tree (MF)

ℓ “ 1 0.971 (0.113) 0.850 (0.184)
ℓ “ 2 0.971 (0.084) 0.843 (0.185)
ℓ “ 3 0.826 (0.243) 0.804 (0.258)
ℓ “ 4 0.917 (0.165) 0.736 (0.212)

Table 10: Correlation between reconstructed abundances and the test samples from the metagenomics dataset
(see Table 7), averaged over the samples, with standard deviation.

observation is further supported by the reconstruction task results summarized in Table 10, where structured
variational inference exhibits a distinct advantage over the conventional mean-field method in this practi-
cal context. Even when the mean-field approximation outperforms the backward approach, as evidenced
by the sample distributions in Table 8, the backward approach remains competitive, indicating its overall
effectiveness as the preferred variational approximation method on the metagenomics dataset.

4.2.2 Data preprocessing using PLN-Tree for classification tasks

The metagenomics dataset from Pasolli et al. (2016) involves a one-vs-all disease classification problem us-
ing microbiome proportion data, which are highly sparse and compositional, presenting challenges for direct
use in machine learning algorithms (Rodriguez, 2022). To mitigate these constraints, several preprocessing
techniques have been proposed, including the additive, centered, and isometric log-ratio transforms, which
are commonly used for standard preprocessing (Greenacre, 2021) even though they struggle in highly sparse
context and lack theoretical groundings O’Hara and Kotze (2010). More recently, Chiquet et al. (2018) intro-
duced the use of the PLN model to perform PCA in the latent space, demonstrating that latent variables can
facilitate machine learning tasks. Therefore, PLN-based approaches can serve as preprocessing pipelines
by encoding observations into a latent space, using these latent variables as input data for machine learn-
ing models instead of the raw observations. Given the significant improvements in data generation when
accounting for underlying hierarchical structures, we aim to investigate whether exploiting the taxonomy
through PLN-Tree can also yield meaningful features for solving classification problems. To benchmark the
effect of PLN-based preprocessing on the metagenomics dataset, we focus on the T2D-vs-all classification
problem, as well as the IBD-vs-all scenario in Appendix D.3.2. The dataset description is provided in Table
7, the considered taxonomic levels remain the same as in the previous experiment.

Building tabular latent variables with PLN-Tree In the PLN-Tree framework, the latent variable of the
first layer models the total count, while the next variables account for how the counts progressively distribute
over the layers in the observed space. To design a tabular latent input accounting for both the counts and
how they propagate, we suggest a feature-engineered latent feature called Latent Tree Counts (LTC). Define
V1 “ exppZ1q and for all ℓ ă L, k ď Kℓ,

qVℓ
k “ σpqZℓ

kq ˆ Vℓ
k .

19

Benchmark procedure We seek to compare the influence of the preprocessing techniques using the con-
ventional PLN model and the PLN-Tree log-LTC transform, against the raw normalized data employed in
the study Pasolli et al. (2016). To that end, we train the PLN-based models on the entire dataset using the
previously selected architectures, thereby obtaining an encoder for each model, which enables the mapping
of raw counts to latent features of interest. In the case of the PLN-Tree models, we also apply the log-
LTC transform to the latent features. Then, we select several tabular classifiers with fixed architectures (see
Appendix D.3.2) and proceed to a 50 stratified K-Fold cross-validation for each model, which allows to
account for the training variability on the performances, using 80% of the most precise taxa-abundance data
to train the models (family level). In this experiment, we assume the availability of the full dataset, using
all available data to train the encoders for preprocessing. In practical applications, preprocessing models are
typically trained on an existing dataset and then applied to new data, raising questions about the generaliza-
tion capabilities of the encoders. We partially explored this generalization in a prior correlation analysis for
PLN-Tree variants (see Table 10), demonstrating the superiority of the residual backward approximation.
However, regular PLN models do not support encoding samples outside of the training dataset, as one pair
of variational parameters is learned per sample (see Chiquet et al. (2019)). Given the small sample sizes
of the test datasets and to prevent model biases, we train each compared model on the entire dataset. This
approach mitigates the advantages of the residual backward PLN-Tree method over the mean-field variant,
and its scalability in this context compared to the regular PLN model.

T2D-vs-all experiment We consider the classification task of patients with type 2 diabetes against patients
with other diseases. In Table 11, we present the performance of various classifiers using the raw data, as
well as data preprocessed with PLN latents or the log-LTC transform from PLN-Tree models, employing
either the residual backward amortized variational approximation or the mean-field approximation. Overall,
our results indicate that preprocessing with PLN-based models generally enhances performances, except
for random forests in this application. The regular PLN and PLN-Tree preprocessing using the backward
approximation exhibit similar performance, as their metrics mostly overlap within the variance region. We
also observe similar performances between the backward PLN-Tree and its mean-field counterpart, with
a slight advantage for the backward approach, indicating that both methods enable an efficient scalable
preprocessing of microbiome data. The IBD-vs-all experiment conducted in Appendix D.3.2 highlights
similar results. Overall, these results indicate a slight advantage in considering the underlying taxonomy to
provide relevant latent variables for disease classification. Further exploration of deep recursive architectures
appears promising for enhancing these results by leveraging PLN-Tree latent variables given their Markov
nature.

20

Raw data log-LTC (PLN-Tree) log-LTC (MF) PLN

Logistic Regression

Balanced Accuracy 0.632 (0.042) 0.737 (0.038) 0.730 (0.037) 0.716 (0.037)
Precision 0.701 (0.032) 0.781 (0.029) 0.775 (0.028) 0.765 (0.028)
Recall 0.645 (0.039) 0.748 (0.029) 0.742 (0.026) 0.727 (0.032)
F1 score 0.661 (0.036) 0.757 (0.028) 0.751 (0.026) 0.738 (0.030)
ROC AUC 0.677 (0.045) 0.795 (0.035) 0.781 (0.035) 0.791 (0.037)
ROC Precision-Recall 0.438 (0.061) 0.570 (0.063) 0.543 (0.055) 0.601 (0.069)

Linear SVM

Balanced Accuracy 0.586 (0.042) 0.738 (0.034) 0.732 (0.036) 0.714 (0.033)
Precision 0.673 (0.035) 0.782 (0.026) 0.777 (0.028) 0.763 (0.025)
Recall 0.584 (0.061) 0.748 (0.029) 0.737 (0.030) 0.720 (0.031)
F1 score 0.598 (0.062) 0.757 (0.027) 0.748 (0.029) 0.732 (0.029)
ROC AUC 0.545 (0.127) 0.797 (0.034) 0.782 (0.034) 0.791 (0.036)
ROC Precision-Recall 0.336 (0.085) 0.581 (0.070) 0.534 (0.058) 0.597 (0.067)

Neural Network

Balanced Accuracy 0.704 (0.036) 0.751 (0.030) 0.701 (0.042) 0.727 (0.034)
Precision 0.773 (0.026) 0.812 (0.025) 0.771 (0.03) 0.795 (0.026)
Recall 0.777 (0.028) 0.816 (0.024) 0.769 (0.032) 0.802 (0.025)
F1 score 0.772 (0.027) 0.812 (0.024) 0.765 (0.03) 0.795 (0.026)
ROC AUC 0.782 (0.036) 0.842 (0.029) 0.787 (0.04) 0.854 (0.024)
ROC Precision-Recall 0.620 (0.062) 0.694 (0.061) 0.622 (0.071) 0.692 (0.051)

Random Forest

Balanced Accuracy 0.673 (0.032) 0.639 (0.030) 0.672 (0.031) 0.610 (0.027)
Precision 0.827 (0.026) 0.798 (0.030) 0.787 (0.028) 0.790 (0.033)
Recall 0.811 (0.019) 0.789 (0.018) 0.794 (0.021) 0.776 (0.016)
F1 score 0.781 (0.026) 0.751 (0.025) 0.772 (0.025) 0.727 (0.024)
ROC AUC 0.903 (0.022) 0.861 (0.026) 0.829 (0.028) 0.887 (0.026)
ROC Precision-Recall 0.790 (0.052) 0.727 (0.057) 0.660 (0.061) 0.736 (0.069)

Table 11: Classification T2D-vs-all performances for several classifiers on the metagenomics dataset using
different preprocessing strategies, averaged over training, with standard deviation. We perform 50 stratified
K-folds using 80% of the dataset, using only the "family" level of the taxonomy.

21

5 Discussion

In this paper, we introduced the PLN-Tree model as an extension of the Poisson log-normal framework,
designed to accommodate hierarchical count data. To learn the parameters of the PLN-Tree model, we pro-
posed a structured variational inference approximation to effectively learn model parameters by exploiting
the true form of the posterior distribution using deep learning parameterizations, showing highly competitive
performances against the regular mean-field approximation. Additionally, we established the identifiability
properties of the PLN-Tree model, providing insights into its theoretical foundations and validating its prac-
tical reliability.

To assess the performance of the PLN-Tree model, we conducted comprehensive experiments on both syn-
thetic and real-world datasets, benchmarking it against the established PLN framework on data augmentation
and classification tasks. By using the underlying tree structure, our results underscored the efficacy and con-
sistency of the PLN-Tree model in capturing the diversity of the data at all depths, contrary to the regular
PLN approach. This highlights the relevance of hierarchical structures organizing entities, such as the taxon-
omy, in modeling complex biological systems like the microbiome. Furthermore, we illustrated the potential
of PLN-Tree models as a preprocessing pipeline to facilitate machine learning tasks on microbiome data,
showing the versatility of the model. Overall, our contribution offers valuable insights into the practical
utility of considering knowledge graphs in modeling approaches, particularly in domains characterized by
intricate data structures such as ecology or microbiology.

However, the PLN-Tree model has certain limitations. While it precisely models proportion-based alpha
diversities, it does not account for sparse structures effectively due to its propagation dynamics. Inspired by
the ZI-PLN model Batardière et al. (2024), a zero-inflated PLN-Tree variant could address this limitation
and represent a promising direction for future research. Additionally, the proposed PLN-Tree model does
not include covariates for simplicity. However, adding covariates into the mean through a linear regression
model is a natural extension from the original PLN model (Chiquet et al., 2021). The modular nature of
the PLN-Tree model also allows for the injection of covariates at each layer to model their impact on the
latent dynamics. Exploring the effect of covariates on preprocessing using PLN-based models in practical
applications is an interesting research direction that could enhance classification results.

5.1 Acknowledgments

We would like to gratefully thank Harry Sokol, co-director of Alexandre Chaussard’s PhD program and
direct medical advisor for this work. We also acknowledge the Institute of Computing and Data Sciences
(ISCD) from Sorbonne Université for funding the PhD thesis of Alexandre Chaussard.

22

References
Aitchison, J. and Ho, C. (1989). The multivariate poisson-log normal distribution. Biometrika, 76(4):643–

653.

Altenbuchinger, M., Weihs, A., Quackenbush, J., Grabe, H. J., and Zacharias, H. U. (2020). Gaussian and
mixed graphical models as (multi-) omics data analysis tools. Biochimica et Biophysica Acta (BBA)-Gene
Regulatory Mechanisms, 1863(6):194418.

Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., García, S., Gil-López,
S., Molina, D., Benjamins, R., et al. (2020). Explainable artificial intelligence (xai): Concepts, tax-
onomies, opportunities and challenges toward responsible ai. Information fusion, 58:82–115.

Banerjee, O., El Ghaoui, L., and d’Aspremont, A. (2008). Model selection through sparse maximum like-
lihood estimation for multivariate gaussian or binary data. The Journal of Machine Learning Research,
9:485–516.

Batardière, B., Chiquet, J., Gindraud, F., and Mariadassou, M. (2024). Zero-inflation in the multivariate
poisson lognormal family. arXiv preprint arXiv:2405.14711.

Bichat, A., Plassais, J., Ambroise, C., and Mariadassou, M. (2020). Incorporating phylogenetic information
in microbiome differential abundance studies has no effect on detection power and fdr control. Frontiers
in microbiology, 11:489364.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017). Variational inference: A review for statisticians.
Journal of the American statistical Association, 112(518):859–877.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning
research, 3(Jan):993–1022.

Campbell, A., Shi, Y., Rainforth, T., and Doucet, A. (2021). Online variational filtering and parameter
learning. Advances in Neural Information Processing Systems, 34:18633–18645.

Chagneux, M., Gassiat, É., Gloaguen, P., and Le Corff, S. (2024). Additive smoothing error in backward
variational inference for general state-space models. Journal of Machine Learning Research, 25(28):1–33.

Chiquet, J., Mariadassou, M., and Robin, S. (2018). Variational inference for probabilistic poisson pca.
Annals of Applied Statistics.

Chiquet, J., Mariadassou, M., and Robin, S. (2021). The poisson-lognormal model as a versatile framework
for the joint analysis of species abundances. Frontiers in Ecology and Evolution, 9:588292.

Chiquet, J., Robin, S., and Mariadassou, M. (2019). Variational inference for sparse network reconstruction
from count data. In International Conference on Machine Learning, pages 1162–1171. PMLR.

Côme, E., Jouvin, N., Latouche, P., and Bouveyron, C. (2021). Hierarchical clustering with discrete latent
variable models and the integrated classification likelihood. Advances in Data Analysis and Classification,
15(4):957–986.

Crawford, J. and Greene, C. S. (2020). Incorporating biological structure into machine learning models in
biomedicine. Current opinion in biotechnology, 63:126–134.

23

D’Amour, A., Heller, K., Moldovan, D., Adlam, B., Alipanahi, B., Beutel, A., Chen, C., Deaton, J., Eisen-
stein, J., Hoffman, M. D., et al. (2022). Underspecification presents challenges for credibility in modern
machine learning. Journal of Machine Learning Research, 23(226):1–61.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the
em algorithm. Journal of the royal statistical society: series B (methodological), 39(1):1–22.

Flamary, R., Courty, N., Gramfort, A., Alaya, M. Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos,
A., Fatras, K., Fournier, N., et al. (2021). Pot: Python optimal transport. Journal of Machine Learning
Research, 22(78):1–8.

Friedman, J., Hastie, T., and Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical
lasso. Biostatistics, 9(3):432–441.

Gassiat, É. and Le Corff, S. (2024). Variational excess risk bound for general state space models. Transac-
tions on Machine Learning Research.

Gassiat, E., Le Corff, S., and Lehéricy, L. (2020). Identifiability and consistent estimation of nonparametric
translation hidden markov models with general state space. Journal of Machine Learning Research,
21(115):1–40.

Gotelli, N. J. and Colwell, R. K. (2001). Quantifying biodiversity: procedures and pitfalls in the measure-
ment and comparison of species richness. Ecology letters, 4(4):379–391.

Greenacre, M. (2021). Compositional data analysis. Annual Review of Statistics and its Application, 8:271–
299.

Hälvä, H., Le Corff, S., Lehéricy, L., So, J., Zhu, Y., Gassiat, E., and Hyvarinen, A. (2021). Disentan-
gling identifiable features from noisy data with structured nonlinear ica. Advances in Neural Information
Processing Systems, 34:1624–1633.

Harris, D. J. (2016). Inferring species interactions from co-occurrence data with markov networks. Ecology,
97(12):3308–3314.

Hilbe, J. M. (2014). Modeling count data. Cambridge University Press.

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of
educational psychology, 24(6):417.

Inouye, D. I., Yang, E., Allen, G. I., and Ravikumar, P. (2017). A review of multivariate distributions
for count data derived from the poisson distribution. Wiley Interdisciplinary Reviews: Computational
Statistics, 9(3):e1398.

Johnson, M. J., Duvenaud, D. K., Wiltschko, A., Adams, R. P., and Datta, S. R. (2016). Composing graph-
ical models with neural networks for structured representations and fast inference. Advances in neural
information processing systems, 29.

Jost, L. (2006). Entropy and diversity. Oikos, 113(2):363–375.

Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization. International Conference on
Learning Representations.

24

Kingma, D. P., Welling, M., et al. (2019). An introduction to variational autoencoders. Foundations and
Trends® in Machine Learning, 12(4):307–392.

Kobyzev, I., Prince, S. J., and Brubaker, M. A. (2020). Normalizing flows: An introduction and review of
current methods. IEEE transactions on pattern analysis and machine intelligence, 43(11):3964–3979.

Lauritzen, S. L. (1996). Graphical models, volume 17. Clarendon Press.

Lee, S., Abecasis, G. R., Boehnke, M., and Lin, X. (2014). Rare-variant association analysis: study designs
and statistical tests. The American Journal of Human Genetics, 95(1):5–23.

Lin, W., Khan, M. E., and Hubacher, N. (2018). Variational message passing with structured inference
networks. In International Conference on Learning Representations.

Marino, J., Cvitkovic, M., and Yue, Y. (2018). A general method for amortizing variational filtering. Ad-
vances in neural information processing systems, 31.

Nagendra, H. (2002). Opposite trends in response for the shannon and simpson indices of landscape diver-
sity. Applied geography, 22(2):175–186.

O’Hara, R. and Kotze, J. (2010). Do not log-transform count data. Nature Precedings, pages 1–1.

Oliver, A., Kay, M., and Lemay, D. G. (2023). Taxahfe: a machine learning approach to collapse microbiome
datasets using taxonomic structure. Bioinformatics Advances, 3(1):vbad165.

Pasolli, E., Truong, D. T., Malik, F., Waldron, L., and Segata, N. (2016). Machine learning meta-analysis of
large metagenomic datasets: tools and biological insights. PLoS computational biology, 12(7):e1004977.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., et al. (2019). Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems, 32.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine learning in python. the Journal of machine
Learning research, 12:2825–2830.

Rodriguez, E. G. (2022). Advances in Machine Learning for Compositional Data. Columbia University.

Schloss, P. D. (2024). Rarefaction is currently the best approach to control for uneven sequencing effort in
amplicon sequence analyses. Msphere, pages e00354–23.

Schneider, S., Lee, J. H., and Mathis, M. W. (2023). Learnable latent embeddings for joint behavioural and
neural analysis. Nature, 617(7960):360–368.

Teh, Y., Jordan, M., Beal, M., and Blei, D. (2004). Sharing clusters among related groups: Hierarchical
dirichlet processes. Advances in neural information processing systems, 17.

Thukral, A. K. (2017). A review on measurement of alpha diversity in biology. Agricultural Research
Journal, 54(1).

Tomczak, J. and Welling, M. (2018). Vae with a vampprior. In International conference on artificial intelli-
gence and statistics, pages 1214–1223. PMLR.

25

Truong, D. T., Franzosa, E. A., Tickle, T. L., Scholz, M., Weingart, G., Pasolli, E., Tett, A., Huttenhower,
C., and Segata, N. (2015). Metaphlan2 for enhanced metagenomic taxonomic profiling. Nature methods,
12(10):902–903.

Vahdat, A. and Kautz, J. (2020). Nvae: A deep hierarchical variational autoencoder. Advances in neural
information processing systems, 33:19667–19679.

Weinroth, M. D., Belk, A. D., Dean, C., Noyes, N., Dittoe, D. K., Rothrock Jr, M. J., Ricke, S. C., Myer,
P. R., Henniger, M. T., Ramírez, G. A., et al. (2022). Considerations and best practices in animal science
16s ribosomal rna gene sequencing microbiome studies. Journal of animal science, 100(2):skab346.

Xu, C., Wu, K., Zhang, J.-G., Shen, H., and Deng, H.-W. (2017). Low-, high-coverage, and two-stage dna
sequencing in the design of the genetic association study. Genetic epidemiology, 41(3):187–197.

Yu, X., Zeng, T., Wang, X., Li, G., and Chen, L. (2015). Unravelling personalized dysfunctional gene
network of complex diseases based on differential network model. Journal of translational medicine,
13:1–13.

26

A Alpha diversity metrics

Alpha diversities are a set of metrics used in ecology and biology to quantify the variety and distribution
of species within a particular ecosystem (Gotelli and Colwell, 2001; Thukral, 2017). These measures con-
sider the diversity within a single sample (a given ecosystem) without considering interactions with other
samples. There exist numerous indices to compute alpha diversity, which evaluate species richness and/or
evenness. Species richness refers to the total number of different species present in the sample, while even-
ness measures how evenly the entities are distributed among the species. High alpha diversity often indicates
a healthy ecosystem with a wide variety of species, while low alpha diversity suggests a less diverse or pos-
sibly disturbed ecosystem.

A.1 Shannon entropy

Originally introduced for information theory, the Shannon entropy is a widely used alpha diversity metric in
ecology to measure species diversity within a given community (Thukral, 2017). It considers both species
richness and evenness by considering the relative abundance of each species. The Shannon entropy calculates
the uncertainty or randomness in species composition, reflecting the information content of the community.
Higher values of Shannon entropy indicate greater diversity, where species are more evenly distributed,
while lower values suggest lower diversity or dominance by a few species. Denoting by ps the empirical
proportion of the species s in the ecosystem, the Shannon entropy is computed as

H “ ´

S
ÿ

s“1
ps log ps .

The interpretation of the Shannon entropy as an alpha diversity is described for instance in Jost (2006).

A.2 Simpson index

The Simpson alpha diversity metric assesses species diversity within a specific habitat (Thukral, 2017). It
focuses on the probability that two individuals randomly selected from the community belong to different
species. Letting ps the empirical proportion of species s in the ecosystem, the Simpson index is computed
as

S “

S
ÿ

s“1
p2

s .

This metric emphasizes the importance of species evenness in a community, giving more weight to rare
species. The interpretation of the Simpson index as an alpha diversity is given by its reciprocal as the
Inverse Simpson index (Jost, 2006).

27

B ELBO derivation for PLN-Tree

B.1 Proof of Proposition 3.1

The prior distribution of Z is denoted by pθ,1:LpZq “ pθ,1pZ1qpθ,ℓ|ℓ´1pZℓ`1|Zℓq. By definition of the
ELBO,

Lpθ, φq “ Eqφ,1:L rlog pθ,1:LpX|Zqs ´ DKL
“

qφ,1:L}pθ,1:L
‰

.

Using the Markov tree structure of the observed counts yields

Eqφ,1:L rlog pθ,1:LpX|Zqs “ Eqφ,1:L

“

log pθ,1pX1|Z1q
‰

`

L´1
ÿ

ℓ“1

Kℓ
ÿ

k“1
Eqφ,1:L

”

log pθ,ℓ`1|ℓp qXℓ
k|qZℓ

k, Xℓ
kq

ı

.

The first layer is modeled by a Poisson lognormal distribution, thus it can be expressed as

Eqφ,1:L

“

log pθ,1pX1|Z1q
‰

“

K1
ÿ

k“1
X1

kEqφ,1:L

“

mφ1,kpZ2, X1q
‰

´ Eqφ,1:L

„

exp
ˆ

Sφ1,kpZ2, X1q

2 ` mφℓ,kpZ2, X1qq

˙ȷ

´ logpX1
k!q .

The propagation of the counts along the tree conditionally to the respective latent variables and the parent
counts is given by a multinomial distribution, which enables to explicit the second term as

L´1
ÿ

ℓ“1

Kℓ
ÿ

k“1
Eqφ,1:L

”

log pθ,ℓ`1|ℓp qXℓ
k|qZℓ

k, Xℓ
kq

ı

“

K1
ÿ

k“1
logpX1

k!q ´

KL
ÿ

k“1
logpXL

k !q

`

L´1
ÿ

ℓ“1

Kℓ
ÿ

k“1

$

&

%

ÿ

jPCℓ
k

Xℓ`1
j Eqφ,1:L

“

Zℓ`1
j

‰

´ Xℓ
kEqφ,1:L

»

–log

¨

˝

ÿ

jPCℓ
k

eZℓ`1
j

˛

‚

fi

fl

,

.

-

.

Combining those results and applying the tower property to the latent expectations yields

Eqφ,1:L rlog pθ,1:LpX|Zqs “

L
ÿ

ℓ“1

Kℓ
ÿ

k“1

ˆ

Xℓ
k

`

1ℓăLEqφ,1:L

“

mφℓ,kpZℓ`1, X1:ℓq
‰

` 1ℓ“LmφL,kpX1:Lq
˘

´ 1ℓ“1Eqφ,1:L

„

exp
ˆ

Sφℓ,kpZℓ`1, X1:ℓq

2 ` mφℓ,kpZℓ`1, X1:ℓq

˙ȷ ˙

´ 1ℓą1

Kℓ´1
ÿ

k“1
Xℓ´1

k Eqφ,1:L

»

–log

¨

˝

ÿ

jPCℓ´1
k

eZℓ
j

˛

‚

fi

fl

´ 1ℓ“L

Kℓ
ÿ

k“1
logpXℓ

k!q `
1
2Kℓ .

28

The divergence term can be expressed as

DKL
“

qφ,1:L}pθ,1:L
‰

“ Eqφ,1:L

«

log
˜

qφ,1|2pZ1 | Z2, X1:2q

pθ,1pZ1q

L´1
ź

ℓ“2

qφ,ℓ|ℓ`1pZℓ | Zℓ`1, X1:ℓq

pθ,ℓ|ℓ´1pZℓ | Zℓ´1q

qφ,LpZL | X1:Lq

pθ,L|L´1pZL | ZL´1q

¸ff

“ Eqφ,1:L

“

DKL
“

qφ,1|2}pθ,1
‰‰

`

L´1
ÿ

ℓ“2
Eqφ,1:L

”

DKL

”

qφ,ℓ|ℓ`1}pθ,ℓ|ℓ´1

ıı

` Eqφ,1:L

”

DKL

”

qφ,L}pθ,L|L´1

ıı

.

For 1 ă ℓ ă L, the Kullback-Leibler divergence writes

DKL

”

qφ,ℓ|ℓ`1}pθ,ℓ|ℓ´1

ı

“ ´
1
2

“

log |Ωθℓ pZℓ´1q| ` log |Sφℓ pZℓ`1, X1:ℓq| ` Kℓ

‰

`
1
2tr

ˆ

pΣℓΩθℓ pZℓ´1q

˙

,

where pΣℓ is defined in (2). Following the same steps for the other terms yields

DKL
“

qφ,1:L}pθ,1:L
‰

“ ´
1
2

L
ÿ

ℓ“1
Eqφ,1:L

”

log |Ωθℓ pZℓ´1q| ` log |Sφℓ pZℓ`1, X1:ℓq| ´ tr
´

pΣℓΩθℓ pZℓ´1q

¯ı

` Kℓ ,

which concludes the proof.

B.2 Proof of Lemma 3.2

By definition,
Loffsetpθ, φq “ Eqφ,1:L rlog pθpX, Z, Oqs ´ DKL

”

qφ,1:L}p
pO,Zq

θ,

ı

.

Conditioning pX, Zq by O yields

Loffsetpθ, φq “ L|Opθ, φq ` EqO
φ

rlog pθpOqs ` DKL
“

qO
φ}pO

θ,

‰

.

Using the KL divergence definition

DKL
“

qO
φ}pO

θ,

‰

“ ´HqO
φ

´ EqO
φ

rlog pθpOqs ,

since HqO
φ is Gaussian, its entropy is given by 1

2 logp2πes2
opXqq, which concludes the proof.

C Identifiability results

C.1 PLN identifiability

Lemma C.1. Let Z and Z̃ be supported on R˚
`, and X „ PpZq and X̃ „ PpZq. Then, if X and X̃ have the

same distribution, Z and Z̃ have the same distribution.

29

Proof. Let h be a measurable function, then we have

E rhpXqs “ E rE rhpXq | Zss “ E

«

ÿ

xPN

e´Z Zx

x! hpxq

ff

.

For all t P R, taking hpxq “ tx yields

E rhpXqs “ E

«

e´Z
ÿ

xPN

pZtqx

x!

ff

“ E
”

ept´1qZ
ı

“ MZpt ´ 1q .

Since X and X̃ have the same law, then we have for all u ď 0, MZpuq “ MZ̃puq. Write Y “ expp´Zq

and Ỹ “ expp´Z̃q. The random variables Ỹ and Y are compactly supported so by the Stone-Weierstrass
theorem their distribution is characterized by their moments pE

“

Yk
‰

qkě0 and pErỸksqkě0. Therefore Ỹ
and Y have the same law, which concludes the proof.

Lemma C.2. Let Z and Z̃ be two real random variables, and X „ PpeZq and X̃ „ PpeZ̃q. Then, if X and
X̃ have the same distribution, Z and Z̃ have the same distribution.

Proof. By Lemma C.1, eZ and eZ̃ have the same distribution which is enough to conclude the proof.

C.2 PLN-Tree identifiability

C.2.1 Proof of Lemma 3.3

Let hpX1, . . . , XLq “
śL

ℓ“1 hℓpXℓq where thℓu1ďℓďL are measurable functions. Then,

E
“

hpX1, . . . , XLq
‰

“ E
“

E
“

hpX1, . . . , XLq | Z
‰‰

“ E

«

L
ź

ℓ“1
E

“

hℓpXℓq | Zℓ
‰

ff

“ E

«

L
ź

ℓ“1

ÿ

xPN

e´Zℓ pZℓqx

x! hℓpxq

ff

.

Choosing hℓpxq “ tx
ℓ , yields

E
“

hpX1, . . . , XLq
‰

“ E

«

L
ź

ℓ“1
eptℓ´1qZℓ

ff

.

By setting u “ ttℓ ´ 1u1ďℓďL, we obtain

E
“

hpX1, . . . , XLq
‰

“ E
”

euJZ
ı

“ MZpuq .

The proof is concluded by the same arguments as in Lemma C.2.

30

C.2.2 Identifiability of parent-children distributions at the first layer

Lemma C.3. Let Z “ pZ1, Z2q be random variables such that Z1 ą 0, Z2 P SK , where SK denotes the
simplex inRK . Assume that the observations X “ pX1, X2q are such that conditionally on Z1, X1 „ PpZ1q

and conditionally on pX1, Z2q, X2 „ M
`

X1, Z2˘

. Then, the law of pZ1, Z2q is identifiable from the law of
pX1, X2q.

Proof. Let h be a measurable function. For all x1 ě 1, let x1SK “ tpx2
1, . . . , x2

Kq P RK |
řK

k“1 x2
k “ x1u,

then

E
“

hpX1, X2q
‰

“ E
“

E
“

hpX1, X2q | Z
‰‰

“ E

«

ÿ

x1PN

ÿ

x2Px1SK

e´Z1
K

ź

k“1

pZ1Z2
kqx2

k

x2
k! hpx1, x2q

ff

.

Using that Z2 lies in the simplex yields

E
“

hpX1, X2q
‰

“ E

«

ÿ

x2PNK

K
ź

k“1
e´Z1Z2

k
pZ1Z2

kqx2
k

x2
k! h

˜

K
ÿ

k

x2
k, x2

¸ff

.

Therefore, pX2
1, . . . , X2

Kq are conditionally independent with Poisson distribution with parameters pZ1Z2
kq1ďkďK .

Hence, by Lemma 3.3, the law of pZ1Z2
1, . . . , Z1Z2

Kq is identifiable. Since Z2 lies in the simplex, condition-
ally on U “ Z1Z2, Z1 has a Dirac distribution with mass at

řK
k“1 Uk. Then, as the law of Z1 is identifiable

from the law of X1 by Lemma C.2, the law of pZ1, Z2q is identifiable from the law of pZ1, Z1Z2q, which
concludes the proof.

C.2.3 Identifiability through softmax transform

Lemma C.4. Let Z, Z̃ be two random variables inRd. Define P “ Id´1dˆd{d the projector on Vect p1dq
K.

Then, if σpZq and σpZ̃q have the same distribution, PZ and PZ̃ have the same distribution and conversely.

Proof. We start with the direct sense of the equivalence. Let B P BpSdq, since σp¨q is surjective on Sd there
exists C P Rd such that σpCq “ B. Then, assuming σpZq has the same law as σpZ̃q,

PpσpZq P Bq “ PpσpZ̃q P Bq ,

so that
PpσpZq P σpCqq “ PpσpZ̃q P σpCqq .

On the event tσpZq P σpCqu, there exists c P C such that σpZq “ σpcq, which yields

Z “ c ` Kpc, Zq1d ,

with Kpc, Zq “ logp
řd

k“1 eZk
L

řd
k“1 eck q. Since P is the projector on Vect p1dq

K, we have P1d “ 0,
which yields PZ “ Pc P PC, the projection of C on Vect p1dq

K and therefore tσpZq P σpCqu Ă tPZ P

PCu. We obtain similarly tPZ P PCu Ă tσpZq P σpCqu so that

PpPZ P PCq “ PpσpZq P σpCqq “ PpσpZ̃q P σpCqq “ PpPZ̃ P PCq ,

which concludes the direct sense of the equivalence. The converse statement is obtained similarly.

31

C.2.4 Proof Corollary 3.5

Since conditionally to Z1 (resp. Z̃1), Z2 (resp. Z̃2) is Gaussian, observing that P “ PJ, the law of PZ2

(resp. PZ̃2) is given by N pPµpZ1q, PΣpZ1qPq (resp. N pPµ̃pZ̃1q, PΣ̃pZ̃1qPq), which concludes the
proof.

C.2.5 Proof of Theorem 3.4

By Lemma 3.3 and Lemma C.3 we obtain the identifiability of the Poisson layer and the identifiability of
all parent-children distributions between the Poisson layer and the second Multinomial one. By conditional
independence of the group of children conditionally to their respective latent variables and their parents,
we only have to show the identifiability of any parent-children distributions for ℓ ě 2. To represent the
tree compositionality constraint, we denote the events tX2

k “
ř

jPC2
k

X3
j ukďK2 by tX2 “ pX3u. The joint

distribution then writes

ppX2, X3|X1, Z2, Z3q “ 1X2“ pX3ppX2|Z2, X1q

K2
ź

k“1
pp qX2

k|qZ2
k, X2

kq

“ 1X2“ pX3
X1!

śK2
k“1

ś

jPC2
k

X3
j !

„ K2
ź

k“1
pZ2

kqX2
k

ȷ

.

„ K2
ź

k“1

ź

jPC2
k

pZ3
j qX3

j

ȷ

.

Using that tC2
kukďK2 is a partition of t1, . . . , K3u yields

ppX2, X3 | X1, Z2, Z3q “ 1X2“ pX3
X1!

śK3
k“1 X3

k!

„ K2
ź

k“1
pZ2

kqX2
k

ȷ

.

„ K3
ź

k“1
pZ3

kqX3
k

ȷ

.

For all k ď K2, the compositionality constraint yields

K2
ź

k“1
pZ2

kqX2
k “

K2
ź

k“1

ź

jPC2
k

pZ2
kqX3

j “

K3
ź

k“1
ppZ3

kqX3
k ,

and therefore

ppX2, X3 | X1, Z2, Z3q “ 1X2“ pX3
X1!

śK3
k“1 X3

k

K3
ź

k“1
pZ3

k
pZ3

kqX3
k ,

yielding that the conditional distribution of X3 is multinomial. Hence, by Lemma C.2.2 the law of pZ1, pZ3
k

pZ3
kqkďK3 q

is identifiable, or equivalently pZ1, pZ2
k

qZ2
kqkďK2 q is identifiable. Since for all 1 ď k ď K2, qZ2

k lies in
the simplex, using the same argument as for the proof of Lemma C.2.2 enables us to identify the law of
pZ1, pZ2

k, qZ2
kqkďK2 q, which concludes the proof.

D Experimental setup

Latent prior architectures The latent prior is a Markov chain made of Gaussian transition kernels pa-
rameterized by neural networks, such that at layer 1 ă ℓ ď L, the mean µθℓ p.q P RKℓ and precision matrix

32

Ωθℓ p.q P RKℓˆKℓ use Zℓ´1 P RKℓ´1 as input. In our experiments, the mean and covariance share the
same network architecture but consist of two separate networks. At layer 1 ă ℓ ď L, we fix the number of
neurons in all hidden layers to Kℓ´1, and only adjust the number of hidden layers. Finally, we initialize the
parameters of the first layers based on PLN initialization such that for all k ď K1,

µ1,k “
1
n

n
ÿ

i“1
log X1

ik

and
Σ1 “

1
n ´ 1 plog X1 ´ 1nˆK1µ1qJplog X1 ´ 1nˆK1µ1q ,

the other parameters are initialized at random.

Mean-field architectures In the mean-field approximation, the parametrization of the Gaussian kernels
at layer ℓ ď L is made of two neural networks with inputs X. In our experiments, the input of the net-
works at layer ℓ is limited to Xℓ (see Blei et al. (2017)). At layer ℓ, the mean mφℓ pXℓq and the diagonal
covariance matrix Sφℓ pXℓq have the same network architecture but consists of two different fully connected
neural networks with output of dimension Kℓ. In our experiments, the architecture of the networks is solely
parameterized by the number of hidden layers, while the number of neurons at each hidden layer is fixed to
Kℓ at depth ℓ of the tree.

Backward Markov architectures The backward variational approximation is a backward Markov chain
with Gaussian transition kernels, such that at layer L the mean and diagonal covariance matrix use X1:L as
inputs, and for layer ℓ ă L, the mean and diagonal covariance matrix use pX1:ℓ, Zℓ`1q as inputs (see H2).
Due to the computational burdens of the chain X1:ℓ, Chagneux et al. (2024) suggest performing amortized
inference by encoding the chain using a recurrent neural network architecture into E1:ℓ. Consequently, the
backward architecture consists of an embedding block common to all layers, and for each layer 1 ď ℓ ă

L a fully connected network for each parameter of the Gaussian taking as input E1:ℓ and Zℓ`1. In our
experiments, we define the embedder using a GRU or LSTM from the PyTorch library (Paszke et al., 2019),
and we design the fully connected network at each layers by their number of hidden layers solely, fixing the
intermediate hidden neurons to the input size.

Model optimization and numerical considerations The computation of the ELBO presents several nu-
merical challenges that arise due to the need for exponentiation of parameters and inversion of the precision
matrix. To mitigate issues related to numerical overflow, we impose constraints on the variational param-
eters. Specifically, we restrict the means to the interval r´100, 25s and the variance terms to r10´8, 10s.
Additionally, to ensure the invertibility of the considered matrices, we introduce a bias of λ “ 10´4 to
the diagonal. Subsequently, we opt to employ the Adam optimizer (Kingma and Ba, 2014) for training our
neural networks with learning rate 10´3 using PyTorch implementation (Paszke et al., 2019). This choice
is motivated by its demonstrated stability and efficacy, surpassing alternative optimization techniques in our
experiments.

33

D.1 PLN-Tree generated data experiments

D.1.1 Model selection experiments

In this experiment, the latent prior optimal architecture is already known from the original model. Con-
sequently, we only optimize the hyperparameters of the variational approximation. The training dataset
consists of 2000 samples from a PLN-Tree model. For each model, we sample 3000 samples 5 times and
select the model with the best overall performances regarding the alpha diversity criteria.

Mean-field architectures We try 3 architectures of mean-field variational approximations, where the
amount of hidden layers in the variation approximation spans in t1, 2, 3u. The results indicate the optimal
architecture is given for 1 hidden layer.

Backward Markov architectures The tested architectures are summarized in Table 12. The performances
of each architecture orientate the choice of the optimal architecture towards the Model 4.

Parameter Model 1 Model 2 Model 3 Model 4

Embedder type GRU GRU GRU GRU
Hidden layers size 32 32 32 32
Number of hidden layers 2 2 3 3
Embedding size 64 64 64 120

Number of layers (Gaussian parameters) 1 2 1 2

Table 12: Tested backward variational architectures in the PLN-Tree synthetic data experiments.

D.1.2 Performance benchmark

For each selected model, we perform multiple training runs and present the resulting objective values in
Figure 5. We observe that the mean-field approximation does not converge to the same value of the ELBO
value across different runs (see Figure 5a), indicating variability in performance. Conversely, our method
consistently converges to the same ELBO values (see Figure 5b), demonstrating stable performance and
consistently outperforming the mean-field approach. Thus, in all our experiments, we do not explore the
training variability of the mean-field model, and only account for the sampling variability.

For the performance benchmark of the selected models, we sample 2000 samples 25 times for each model
and show the average result with standard deviation between brackets.

34

0 2000 4000 6000 8000 10000
number of iterations

101

102

103

104

105

106
(

,
)

(a) Mean-field approximation

0 2500 5000 7500 10000 12500 15000 17500 20000
number of iterations

100

101

102

103

104

105

106

(
,

)

(b) Residual amortized backward approximation

Figure 5: ELBO convergence over iterations for PLN-Tree models on the PLN-Tree generated dataset,
repeated 5 times, performed for mean-field and residual amortized backward variational approximations.
Negative values are eluded in log scale.

Alpha diversity PLN-Tree PLN-Tree (MF) PLN (fill) PLN

Wasserstein Distance (ˆ102)

Shannon ℓ “ 1 1.57 (0.50) 11.23 (0.73) 14.64 (1.15) 1.40 (0.61)
Shannon ℓ “ 2 3.67 (1.33) 5.14 (1.20) 32.04 (1.62) 26.28 (1.31)
Shannon ℓ “ 3 5.82 (1.51) 7.86 (1.47) 35.03 (1.68) 34.03 (1.68)
Simpson ℓ “ 1 0.62 (0.21) 2.69 (0.27) 4.91 (0.41) 0.53 (0.24)
Simpson ℓ “ 2 0.71 (0.24) 1.40 (0.31) 7.35 (0.41) 6.05 (0.36)
Simpson ℓ “ 3 0.85 (0.24) 1.55 (0.34) 7.21 (0.41) 7.21 (0.41)

Kolmogorov Smirnov (ˆ10´2)

Shannon ℓ “ 1 2.60 (0.70) 14.69 (1.06) 11.0 (0.99) 2.59 (0.78)
Shannon ℓ “ 2 4.63 (1.29) 4.42 (1.00) 20.68 (0.87) 18.32 (0.94)
Shannon ℓ “ 3 5.34 (1.08) 5.54 (0.99) 20.2 (1.15) 20.2 (1.15)
Simpson ℓ “ 1 2.65 (0.69) 11.14 (0.93) 9.87 (0.78) 2.67 (0.86)
Simpson ℓ “ 2 4.37 (1.24) 4.18 (0.89) 19.14 (0.97) 16.96 (0.94)
Simpson ℓ “ 3 4.99 (0.92) 4.58 (0.79) 18.92 (0.98) 18.92 (0.98)

Total variation (ˆ10´2)

Shannon ℓ “ 1 1.14 (0.29) 5.67 (0.41) 4.41 (0.39) 1.16 (0.30)
Shannon ℓ “ 2 1.21 (0.32) 1.24 (0.21) 5.34 (0.24) 4.76 (0.25)
Shannon ℓ “ 3 1.19 (0.22) 1.31 (0.17) 4.32 (0.23) 4.32 (0.23)
Simpson ℓ “ 1 3.13 (0.71) 10.84 (0.94) 11.38 (0.91) 3.31 (0.87)
Simpson ℓ “ 2 4.29 (0.94) 4.66 (0.97) 19.53 (0.91) 17.17 (0.97)
Simpson ℓ “ 3 4.92 (0.73) 4.48 (0.74) 18.63 (0.94) 18.63 (0.94)

Kullback-Leibler Divergence (ˆ10´2)

Shannon ℓ “ 1 0.24 (0.11) 4.83 (0.50) 14.17 (1.22) 10.62 (0.82)
Shannon ℓ “ 2 0.57 (0.26) 0.80 (0.23) 14.39 (1.15) 14.39 (1.15)
Shannon ℓ “ 3 1.07 (0.36) 1.63 (0.45) 4.56 (0.50) 0.23 (0.13)
Simpson ℓ “ 1 0.23 (0.11) 2.40 (0.31) 4.56 (0.50) 0.23 (0.13)
Simpson ℓ “ 2 0.47 (0.19) 0.80 (0.28) 10.64 (0.91) 7.99 (0.74)
Simpson ℓ “ 3 0.68 (0.20) 0.84 (0.26) 10.57 (0.87) 10.57 (0.87)

Table 13: Distribution metrics on alpha diversities computed between synthetic data sampled under the
original PLN-Tree model and simulated data under each modeled trained, averaged over the trainings, with
standard deviation.

35

D.2 Synthetic data with Markov Dirichlet experiments

D.2.1 Model selection experiments

Dataset description and selection procedure The training dataset consists of 2000 samples from a Markov
Dirichlet model. For each model, when compared to this dataset, we sample 3000 samples 5 times and select
the model with the best overall performances regarding the alpha diversity criteria.

Mean-field architectures In this experiment, the number of hidden layers in the latent priors spans in
t1, 2, 3u, while the number of hidden layers in the mean-field approximations spans in t1, 2u. Trying all
combinations, we obtain the best-performing architecture in our experiment has 2 hidden layers in the latent
prior, and 1 hidden layer in the variational approximation parameters.

Backward Markov architectures For the backward architectures, the number of layers tested in the latent
priors spans in t1, 2u. The various tested architectures for the embedders are summarized in Table 14. The
architecture of the best-performing model is yielded for 1 layers in the latent prior with the embedding
architecture E8.

Name Embedding size Hidden layers Nb neurons

E1 16 2 32
E2 32 2 32
E3 32 3 32
E4 32 2 64
E5 32 3 64
E6 60 2 64
E7 60 3 64
E8 60 3 120

Table 14: Tested backward variational architectures in the Embedder in the Markov Dirichlet synthetic
experiments. All embedders are GRU, stacked with a 2 layers neural network to model the parameters.

D.2.2 Performance benchmark

For the performance benchmark of the selected models, we sample 2000 samples 25 times for each model
and show the average result with standard deviation between brackets.

36

Alpha diversity PLN-Tree PLN-Tree (MF) PLN (fill) PLN

Wasserstein Distance (ˆ102)

Shannon ℓ “ 1 17.70 (0.47) 21.42 (0.59) 72.27 (1.70) 17.53 (0.59)
Shannon ℓ “ 2 22.23 (0.94) 29.10 (1.06) 111.53 (1.81) 92.89 (1.92)
Shannon ℓ “ 3 24.32 (0.83) 37.72 (1.14) 142.28 (1.99) 142.28 (1.99)
Simpson ℓ “ 1 5.69 (0.16) 5.84 (0.16) 21.74 (0.60) 5.65 (0.22)
Simpson ℓ “ 2 5.21 (0.17) 5.90 (0.19) 26.70 (0.59) 20.76 (0.64)
Simpson ℓ “ 3 3.91 (0.11) 5.16 (0.16) 28.55 (0.59) 28.55 (0.59)

Kolmogorov Smirnov (ˆ102)

Shannon ℓ “ 1 16.81 (0.93) 24.28 (0.9) 45.12 (1.02) 16.17 (0.91)
Shannon ℓ “ 2 19.29 (1.06) 25.94 (0.97) 58.83 (0.88) 54.14 (0.55)
Shannon ℓ “ 3 20.80 (0.75) 30.50 (0.98) 66.62 (0.71) 66.62 (0.71)
Simpson ℓ “ 1 13.95 (0.94) 20.93 (0.9) 39.77 (1.10) 13.41 (0.89)
Simpson ℓ “ 2 18.35 (1.03) 23.47 (0.97) 55.42 (0.87) 49.37 (0.64)
Simpson ℓ “ 3 22.00 (0.87) 30.43 (0.82) 62.10 (0.71) 62.10 (0.71)

Total variation (ˆ102)

Shannon ℓ “ 1 7.75 (0.29) 9.78 (0.35) 14.87 (0.33) 7.55 (0.33)
Shannon ℓ “ 2 6.67 (0.30) 8.08 (0.28) 15.59 (0.21) 14.23 (0.17)
Shannon ℓ “ 3 5.60 (0.16) 7.47 (0.24) 14.93 (0.14) 14.93 (0.14)
Simpson ℓ “ 1 19.33 (0.68) 23.72 (1.02) 38.32 (1.02) 18.92 (0.84)
Simpson ℓ “ 2 20.11 (0.89) 24.60 (1.01) 50.64 (0.79) 43.88 (0.73)
Simpson ℓ “ 3 19.21 (0.64) 26.42 (0.96) 56.78 (0.66) 56.78 (0.66)

Kullback-Leilbler divergence (ˆ102)

Shannon ℓ “ 1 20.72 (2.42) 23.72 (1.70) 60.51 (3.14) 19.21 (3.23)
Shannon ℓ “ 2 28.77 (5.75) 33.04 (3.33) 153.73 (8.38) 120.30 (5.20)
Shannon ℓ “ 3 25.02 (4.03) 40.96 (3.73) 226.13 (11.96) 226.13 (11.96)
Simpson ℓ “ 1 15.21 (1.71) 15.75 (1.38) 39.04 (2.18) 14.15 (2.50)
Simpson ℓ “ 2 26.26 (8.32) 26.84 (5.95) 81.47 (3.49) 57.97 (2.07)
Simpson ℓ “ 3 21.68 (7.61) 29.71 (7.99) 106.28 (3.40) 106.28 (3.40)

Table 15: Distribution metrics on alpha diversities computed between synthetic data sampled under the
Markov Dirichlet model and simulated data under each modeled trained, averaged over the trainings, with
standard deviation.

D.3 Metagenomics dataset experiments

D.3.1 Model selection experiments

Selection procedure For each model, when compared to the metagenomics dataset, we sample 3000 sam-
ples 5 times and select the model with the best overall performances regarding the alpha diversity criteria.

37

Mean-field architectures We try all combinations of the number of hidden layers for the latent prior and
the variational approximation taking values in t1, 2, 3u. The best-performing architecture in our experiment
has 1 hidden layers in the latent prior, and 2 hidden layers in the variational approximation parameters.

Backward Markov architectures We decide on a grid of embedders summarized in Table 16, which we
combine with latent prior architecture with a number of hidden layers in t1, 2, 3u. In our experiment, the
best architecture is yielded by the embedding architecture E4.

Name Embedding size Hidden layers Nb neurons Parameters layers

E1 16 2 32 2
E2 32 2 32 2
E3 32 3 32 2
E4 32 2 64 2
E5 32 3 64 2
E6 32 3 64 3
E7 60 2 64 2
E8 60 3 64 2
E9 60 3 64 3
E10 60 3 120 2
E11 60 3 120 3

Table 16: Tested backward variational architectures in the Embedder in the metagenomics experiments. All
embedders are GRU.

38

Alpha diversity PLN-Tree PLN-Tree (MF) PLN (fill) PLN

Wasserstein distance (ˆ102)

Shannon ℓ “ 1 1.73 (0.44) 3.00 (0.44) 16.49 (1.14) 4.00 (0.50)
Shannon ℓ “ 2 2.22 (0.73) 5.70 (0.97) 23.21 (1.64) 8.37 (1.21)
Shannon ℓ “ 3 2.29 (0.63) 6.58 (1.02) 23.96 (1.67) 9.28 (1.43)
Shannon ℓ “ 4 2.08 (0.62) 20.39 (1.08) 55.32 (2.38) 55.32 (2.38)
Simpson ℓ “ 1 0.84 (0.14) 0.71 (0.12) 7.18 (0.48) 1.71 (0.23)
Simpson ℓ “ 2 0.92 (0.24) 0.73 (0.19) 7.49 (0.57) 2.55 (0.33)
Simpson ℓ “ 3 0.91 (0.23) 0.72 (0.19) 7.46 (0.57) 2.88 (0.29)
Simpson ℓ “ 4 0.53 (0.13) 2.41 (0.21) 12.91 (0.67) 12.91 (0.67)

Kolmogorov Smirnov (ˆ102)

Shannon ℓ “ 1 4.71 (1.44) 8.4 (1.35) 23.17 (1.26) 7.75 (1.07)
Shannon ℓ “ 2 3.42 (0.99) 10.3 (1.25) 22.14 (1.58) 9.35 (1.14)
Shannon ℓ “ 3 3.48 (0.68) 10.66 (1.32) 22.07 (1.47) 10.30 (1.00)
Shannon ℓ “ 4 3.64 (1.06) 22.66 (1.3) 36.65 (1.50) 36.65 (1.50)
Simpson ℓ “ 1 4.8 (0.93) 4.17 (0.58) 21.25 (1.47) 7.19 (1.20)
Simpson ℓ “ 2 4.46 (1.06) 5.6 (1.46) 19.64 (1.45) 8.15 (1.11)
Simpson ℓ “ 3 4.17 (1.03) 5.7 (1.53) 19.53 (1.42) 8.79 (0.90)
Simpson ℓ “ 4 4.09 (1.06) 12.26 (1.46) 32.07 (1.69) 32.07 (1.69)

Total variation (ˆ102)

Shannon ℓ “ 1 2.34 (0.63) 4.51 (0.75) 10.00 (0.63) 3.17 (0.38)
Shannon ℓ “ 2 1.42 (0.34) 3.87 (0.52) 7.47 (0.63) 3.00 (0.31)
Shannon ℓ “ 3 1.36 (0.24) 3.81 (0.48) 7.19 (0.59) 3.18 (0.36)
Shannon ℓ “ 4 0.82 (0.27) 6.3 (0.42) 8.94 (0.38) 8.94 (0.38)
Simpson ℓ “ 1 6.71 (1.18) 8.17 (1.8) 27.59 (1.80) 9.09 (1.07)
Simpson ℓ “ 2 5.51 (0.89) 7.41 (1.61) 22.23 (1.60) 10.43 (1.32)
Simpson ℓ “ 3 5.63 (0.93) 7.35 (1.64) 21.83 (1.56) 12.21 (1.16)
Simpson ℓ “ 4 3.75 (1.15) 14.88 (1.72) 34.56 (1.58) 34.56 (1.58)

Kullback-Leilbler divergence (ˆ102)

Shannon ℓ “ 1 0.88 (0.32) 2.32 (0.82) 15.98 (1.33) 2.14 (0.42)
Shannon ℓ “ 2 0.86 (0.32) 2.68 (0.71) 15.33 (1.59) 4.08 (0.55)
Shannon ℓ “ 3 0.71 (0.29) 2.87 (0.75) 15.30 (1.57) 4.64 (0.56)
Shannon ℓ “ 4 0.57 (0.22) 18.02 (4.71) 35.01 (2.64) 35.01 (2.64)
Simpson ℓ “ 1 1.04 (0.33) 1.54 (0.68) 15.57 (1.40) 2.26 (0.40)
Simpson ℓ “ 2 0.96 (0.28) 1.14 (0.50) 13.61 (1.42) 3.70 (0.59)
Simpson ℓ “ 3 0.97 (0.32) 1.11 (0.51) 13.58 (1.41) 4.56 (0.58)
Simpson ℓ “ 4 0.81 (0.30) 9.70 (3.48) 29.66 (2.38) 29.66 (2.38)

Table 17: Distribution metrics on alpha diversities computed between metagenomics data and simulated data
under each modeled trained, averaged over the trainings, with standard deviation.

39

2 6 17 31 61 66 98 103 107 111 115

0

5

10

15

lo
g-

ab
un

da
nc

e
= 2

3 7 18 25 28 32 43 54 57 62 67 78 81 85 99 104 108 112 116

0

5

10

15

lo
g-

ab
un

da
nc

e

= 3

4 8 13 15 19 26 29 33 39 44 55 58 63 68 74 76 79 82 86 89 91 93 95 100 105 109 113 117

0

5

10

15

lo
g-

ab
un

da
nc

e

= 4

5 9 10 11 12 14 16 20 21 22 23 24 27 30 34 35 36 37 38 40 41 42 45 46 47 48 49 50 51 52 53 56 59 60 64 65 69 70 71 72 73 75 77 80 83 84 87 88 90 92 94 96 97 101
102
106
110
114
118

Bacteria

0

5

10

15

lo
g-

ab
un

da
nc

e

= 5

Data PLN-Tree PLN-Tree (MF) PLN PLN (fill)

Figure 6: Boxplot of log abundances of the metagenomics dataset and generated data from several PLN-
based models learned on this dataset, with 20000 points per model. Zero abundances are artificially shifted
to 10´1 to represent them in log scale. The bacteria are denoted by a unique integer on the x-axis, with
colors indicating the brotherhoods in the taxonomic tree at a given depth.

D.3.2 Classification using PLN-based preprocessing

For the classification benchmark on the metagenomics dataset, we consider four different types of inputs for
various classifiers: the raw data, the PLN latent variables, the backward PLN-Tree latent variables, and the
corresponding mean-field variant. Using the same taxa-abundance data as in the previous experiment, we
adopt the PLN-Tree architectures selected from our prior model selection on the metagenomics dataset. We
then proceed to the training of each model on the entire dataset, then proceed to encode the taxa-abundance
data into respective latent variables. We then select various classifiers (see Table 18) for which the un-
specified hyperparameters are selected from default Scikit-Learn proposals (Pedregosa et al., 2011). In this
experiment, we only consider the deepest layer of the input data

40

Model Parameters

Logistic Regression class weight: balanced
SVC probability: true, kernel: linear, C: 0.1, class weight: balanced
MLP hidden layers sizes: 256, 256, 124
Random Forests number of estimators: 100, class weight: balanced

Table 18: Considered classifiers in the metagenomics preprocessing experiment, with hyperparameters based
on Scikit-Learn implementation.

To further illustrate the impact of the preprocessing on the classifiers’ performances, we study the IBD-vs-
all problem in addition to the T2D-vs-all presented in the article. The results are presented in Table 19,
demonstrating similar interpretations to what is observed in the T2D-vs-all problem.

41

Raw data log-LTC (PLN-Tree) log-LTC (MF) PLN

Logistic Regression

Balanced Accuracy 0.673 (0.043) 0.767 (0.039) 0.713 (0.046) 0.746 (0.036)
Precision 0.770 (0.027) 0.827 (0.024) 0.795 (0.029) 0.815 (0.022)
Recall 0.680 (0.03) 0.777 (0.026) 0.716 (0.038) 0.765 (0.029)
F1 score 0.705 (0.027) 0.791 (0.023) 0.738 (0.034) 0.780 (0.026)
ROC AUC 0.735 (0.042) 0.835 (0.037) 0.786 (0.037) 0.814 (0.031)
ROC Precision-Recall 0.410 (0.062) 0.587 (0.073) 0.539 (0.076) 0.586 (0.064)

Linear SVM

Balanced Accuracy 0.573 (0.055) 0.760 (0.043) 0.705 (0.044) 0.743 (0.033)
Precision 0.765 (0.113) 0.823 (0.026) 0.791 (0.028) 0.813 (0.02)
Recall 0.390 (0.132) 0.767 (0.031) 0.701 (0.038) 0.764 (0.028)
F1 score 0.361 (0.195) 0.783 (0.028) 0.725 (0.033) 0.779 (0.025)
ROC AUC 0.416 (0.186) 0.834 (0.037) 0.783 (0.036) 0.821 (0.03)
ROC Precision-Recall 0.215 (0.103) 0.589 (0.080) 0.534 (0.069) 0.610 (0.065)

Neural Network

Balanced Accuracy 0.726 (0.044) 0.748 (0.042) 0.704 (0.051) 0.739 (0.045)
Precision 0.826 (0.026) 0.838 (0.026) 0.812 (0.028) 0.837 (0.026)
Recall 0.830 (0.024) 0.841 (0.025) 0.813 (0.034) 0.844 (0.023)
F1 score 0.825 (0.023) 0.838 (0.025) 0.807 (0.031) 0.838 (0.025)
ROC AUC 0.839 (0.034) 0.865 (0.030) 0.813 (0.037) 0.847 (0.035)
ROC Precision-Recall 0.607 (0.062) 0.667 (0.070) 0.581 (0.066) 0.648 (0.073)

Random Forest

Balanced Accuracy 0.647 (0.035) 0.602 (0.033) 0.609 (0.034) 0.606 (0.031)
Precision 0.857 (0.021) 0.817 (0.03) 0.802 (0.035) 0.838 (0.025)
Recall 0.844 (0.016) 0.82 (0.015) 0.817 (0.017) 0.826 (0.014)
F1 score 0.810 (0.024) 0.776 (0.024) 0.779 (0.025) 0.781 (0.024)
ROC AUC 0.917 (0.021) 0.867 (0.028) 0.815 (0.037) 0.888 (0.022)
ROC Precision-Recall 0.794 (0.050) 0.655 (0.071) 0.579 (0.078) 0.730 (0.052)

Table 19: Classification IBD-vs-all performances for several classifiers on the metagenomics dataset using
different preprocessing strategies, averaged over training, with standard deviation.

42

E Additional experiments visualisations

1

6

20

7

21

8

222324

2

9

252627282930

3

10

31

11

32

4

12

33343536

13

373839

14

4041

15

4243

16

4445

17

46

5

18

47

19

48495051525354

0

Figure 7: Graph of the tree considered in the PLN-Tree synthetic experiments.

1

6

20

7

21

8

222324

2

9

26272930

3

10

31

11

32

4

12

34

13

3738

14

41

15

43

16

45

17

46

5

18

47

19

505253

0
Total count 28006

1

6

20

7

21

8

2223

2

9

262930

3

10

31

11

32

4

12

3334

13

3738

14

4041

15

43

16

45

17

46

5

18

47

19

53

0
Total count 45709

1

6

20

7

21

8

2223

2

9

262729

3

10

31

11

32

4

12

3435

13

3738

14

41

15

43

16

45

17

46

5

18

47

19

5053

0
Total count 46042

1

6

20

7

21

8

2223

2

9

2627282930

3

10

31

11

32

4

12

3435

13

373839

14

4041

15

43

16

4445

17

46

5

18

47

19

4950515253

0
Total count 36114

0.0

0.2

0.4

0.6

0.8

1.0

Ab
un

da
nc

e
(%

)
Figure 8: Synthetic hierarchical samples from the artificial dataset pX, Zq.

43

1

7

24252627

8

28

9

29

10

303132

2

11

3334

3

12

35363738

13

3940414243

14

4445

4

15

46

16

47

5

17

48495051

6

18

52535455

19

56

20

57

21

5859

22

606162

23

63

0

Figure 9: Graph of the tree considered in the Markov Dirichlet synthetic experiments.

44

	Introduction
	Background
	Poisson log-normal models
	Variational inference for structured data

	Tree-based variational inference
	PLN-Tree model and parameters inference
	Identifiability of Poisson-Log Normal models

	Experiments
	Synthetic data
	PLN-Tree retrieval
	Artificial data from Markovian Dirichlet

	Metagenomics dataset: application to the gut microbiome
	Data augmentation with PLN-based methods
	Data preprocessing using PLN-Tree for classification tasks

	Discussion
	Acknowledgments

	Alpha diversity metrics
	Shannon entropy
	Simpson index

	ELBO derivation for PLN-Tree
	Proof of Proposition 3.1
	Proof of Lemma 3.2

	Identifiability results
	PLN identifiability
	PLN-Tree identifiability
	Proof of Lemma 3.3
	Identifiability of parent-children distributions at the first layer
	Identifiability through softmax transform
	Proof Corollary 3.5
	Proof of Theorem 3.4

	Experimental setup
	PLN-Tree generated data experiments
	Model selection experiments
	Performance benchmark

	Synthetic data with Markov Dirichlet experiments
	Model selection experiments
	Performance benchmark

	Metagenomics dataset experiments
	Model selection experiments
	Classification using PLN-based preprocessing

	Additional experiments visualisations

