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Abstract

We give a parameterization of the moduli space of marked Gromov hyperbolic convex
domains of RP2 by the space of bounded holomorphic cubic differentials on the disk.

1 Introduction

A domain Ω in the real projective space RPn is properly convex when it reads as a bounded
convex open set in a suitable affine chart. The Hilbert distance on Ω is then defined by

dΩ(x, y) = | log[x, y, a, b]| ,

where [x, y, a, b] denotes the cross ratio of the quadruple (x, y, a, b), and a, b are the points of
intersection of the line (xy) and the boundary ∂Ω of Ω.

We are interested in those properly convex domain Ω ⊂ RPn for which the Hilbert geometry
(Ω, dΩ) is Gromov hyperbolic (see Gromov–Ghys–De la Harpe [13], or Definition 4.1). Benoist [1]
gave a necessary and sufficient condition for a properly convex domain to be Gromov hyperbolic
in terms of the regularity of its boundary, refining previous results by Karlsson and Noskov [15].
Another characterization, in terms of the area of its ideal triangles, is due to Colbois–Vernicos–
Verovic [9].

In this paper we will restrict ourselves to properly convex domains of the projective plane
RP2. First, we give a new necessary and sufficient condition for Gromov hyperbolicity. Namely,
a properly convex domain Ω ⊂ RP2 is Gromov hyperbolic if and only if the volume of the metric
balls in (Ω, dΩ) have a uniform exponential growth rate (Theorem 5.2). Second, we exhibit
a natural bijection between the moduli space of marked Gromov hyperbolic properly convex
domains of RP2 and the space of bounded holomorphic cubic differentials on the disk (Theorem
6.6).

These two results rely on the study of the affine metric hΩ, which is the complete Riemannian
metric induced on Ω by the affine sphere asymptotic to the boundary of the convex cone C ⊂ R3

above the domain Ω. It was proved in [6] by Calabi that (in any dimension) the Ricci curvature
of the affine metric on a properly convex domain of RPn is non positive. The key point of
this article is that a properly convex domain Ω ⊂ RP2 is Gromov hyperbolic if and only if the
curvature of its affine metric is bounded above by a negative constant (Corollary 4.10).

The paper is organized as follows. In Section 2 we briefly recall the definition of an affine
sphere, and of the affine metric hΩ on a properly convex domain Ω ⊂ RPn.
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When n = 2, the uniformization theorem ensures that this affine metric hΩ is conformal to
a flat metric he. By studying the curvature equation, which relates the curvature of hΩ to the
conformal factor between hΩ and he, we prove in Section 3 that the curvature of (Ω, hΩ) is non
positive, and that this curvature is strictly negative unless it is identically zero (Proposition
3.3). We then infer, with the help of Benzécri’s cocompactness theorem 4.6, that a properly
convex domain of RP2 is Gromov hyperbolic if and only if the curvature of its affine metric hΩ

is bounded above by a negative constant (Corollary 4.10). These arguments also prove that a
Gromov hyperbolic domain (Ω, hΩ) equipped with its affine metric is conformally quasi-isometric
to the hyperbolic disk (D, h0) (Proposition 4.9).

Using the Bishop-Günther volume estimates, and again Benzécri’s cocompactness theorem,
we characterize in Section 5 the Gromov hyperbolic properly convex domains of RP2 in terms
of their growth profile (Theorem 5.2 and Lemma 5.5 ).

The definition of the Pick form of an (oriented) properly convex domain Ω ⊂ RP2 is recalled
in Lemma 3.2. We mentionned earlier that, when Ω is Gromov hyperbolic, then (Ω, hΩ) is
uniformized by the disk. In this case, we may thus read the Pick form of Ω on the disk, and
obtain a bounded holomorphic cubic differential on D (Lemma 6.4). This construction leads in
the final Section 6 to the construction of a natural bijection between the moduli space of marked
Gromov hyperbolic properly convex domains of RP2, and the space of bounded holomorphic
cubic differentials on the disk (Theorem 6.6).

A previous result in this spirit was first obtained by Loftin [20] and Labourie [16] (see also
CP Wang [28]), who provided a bijection between the set of all properly convex structures on a
given oriented compact surface S with negative Euler characteristic, and the set of pairs (J, U)
where J is a complex structure on S and U is a cubic differential on (S, J).

This construction was later extended in Benoist–Hulin [2] to parameterize the set of convex
projective structures with finite volume on a given oriented surface S with non-abelian funda-
mental group.

Heuristically, we may think of the moduli space of marked Gromov hyperbolic properly convex
domains of RP2 as an analog of the universal Teichmüller space. Our parameterization is then
analogous to the parameterization of the universal Teichmüller space by bounded holomorphic
quadratic differentials conjectured by R. Schoen in [24]. See Gardiner–Harvey [12] and Sugawa
[25] for surveys on the universal Teichmüller space. See also Bonsante–Schlenker [4] and Tam–
Wan [26] for progress towards this conjecture.

2 Affine spheres

In this section, we briefly recall the definition and a few facts concerning affine spheres. For a
more thorough treatment and references, we refer to [2].

Let M ⊂ Rn+1 be an immersed hypersurface and E = M ×Rn+1 be the trivial vector bundle
of rank n + 1 over M . The standard affine (flat) connection on Rn+1 induces a flat connection
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∇ on E. Each choice of a transverse vector field ξ : M → Rn+1 induces a decomposition
E = TM ⊕ Lξ, where Lξ stands for the trivial line bundle over M spanned by ξ.

From now on, we assume that M ⊂ Rn+1 is locally strictly convex, that is M can locally be
written in an affine chart as the graph of a function with positive definite hessian.

Definition 2.1 The hypersurface M ⊂ Rn+1 is an affine sphere with center the origin and
affine curvature −1 if the three following conditions are satisfied :

• the vector field ξ : m ∈M → Om ∈ Rn+1 is transverse to M

• the flat connection ∇ reads on the decomposition E = TM ⊕ Lξ as{
∇XY = DXY + h(X,Y ) ξ ∈ TM ⊕ Lξ
∇Xξ = X ∈ TM ⊕ Lξ

(2.1)

where h is a positive definite 2-form on TM

• for any h-orthonormal frame (Y1, · · · , Yn) of TM , one has |det(Y1, · · · , Yn, ξ)| = 1

Observe that D is then a torsion free connection on TM : it is the Blashke connection. The
Riemannian metric h on TM is the affine metric on M . All these notions are preserved by the
group SL±n+1R of real matrices with determinant ±1.

Thanks to the following theorem due to Cheng–Yau and An-Min Li, affine spheres provide a
powerful tool for studying properly convex domains of RPn. Recall that an open subset Ω ⊂ RPn

is properly convex when it reads, in a suitable affine chart, as a bounded convex domain of Rn.

Theorem 2.2 (Cheng–Yau [7] and [8], An-Min Li [17])

1. Let Ω be a properly convex domain of RPn, and C ⊂ Rn+1 be one of the two open convex
cones above Ω.

(a) There exists a unique embedded affine sphere M ⊂ Rn+1 with center the origin and
affine curvature −1, which is asymptotic to the boundary of the cone C

(b) In particular, the canonical projection p : Rn+1\{0} → RPn induces a diffeomorphism
between M and Ω

(c) Moreover, the affine metric h on this affine sphere M is complete

2. Every affine sphere M ⊂ Rn+1 with center the origin and affine curvature −1, which is
complete for the affine metric, is asymptotic to the boundary of a cone above a properly
convex subset of RPn.

This result allows us to systematically identify each properly convex domain Ω ⊂ RPn with
the corresponding affine sphere M ⊂ Rn+1 with center the origin and affine curvature −1. The
affine metric h of M reads on Ω through the canonical projection p : M → Ω, and yields a
complete Riemannian metric hΩ on Ω which we also call the affine metric of the domain Ω.
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These affine spheres are related to the solutions of a real Monge–Ampère equation (see Cheng–
Yau [7], or [2] Theorem 2.5). In dimension 2, the a priori estimates which were used by Cheng
and Yau to solve the Monge–Ampère equation yield the following, that will be used in the next
section.

Definition 2.3 Define the Benzécri space E as the set of pairs (x,Ω), where Ω ⊂ RP2 is a
properly convex domain and x is a point in Ω.

Proposition 2.4 The Riemannian curvature KhΩ
(x) of the affine metric hΩ of Ω at the point

x depends continuously on the pair (x,Ω) ∈ E.

Proof Immediate consequence of [2, Corollary 3.3]. �

3 Curvature of 2-dimensional affine spheres

In this section, we provide estimates for the Riemannian curvature of 2-dimensional affine spheres
equipped with their affine metric.

3.1 The Pick form

We first recall the relationship between the Pick form and the curvature of the affine metric.

Let M ⊂ Rn+1 be an affine sphere with affine curvature −1. Denote by Dh the Levi-Civita
connection of the affine metric h on M , and set D = Dh+A, where D is the Blaschke connection.

Definition 3.1 The Pick tensor of M is the 3-tensor defined on TM by

C(X,Y, Z) = h(A(X)Y,Z) ,

where X,Y, Z are tangent vectors.

In any dimension, the tensors A and C satisfy certain symmetry conditions, and the full
Riemannian curvature tensor of h can be computed in terms of the tensor A (see Labourie [16],
or [2, Lemmas 4.3 and 4.4]). In dimension 2, these symmetries of C have a pleasant interpretation
in terms of the conformal structure of (M,h) (see Lemma 3.2 below).

Let M ⊂ R3 be a 2-dimensional affine sphere with affine curvature −1. Choose a (local)
orientation of M , and local isothermal coordinates (x, y) for the affine metric h on M , so that
z = x+ iy is a complex parameter for the complex manifold (M,J) associated to (M,h). Write
h = e2whe, where he = dx2 + dy2 denotes the Euclidean metric on R2. Then :

Lemma 3.2 1. The Pick tensor C is the real part of a (unique) holomorphic cubic differential
U = f(z) dz3 on (M,J), which is called the Pick form.
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2. The Riemannian curvature Kh of the affine metric h reads as

Kh = −1 + 2e−6w |f |2 .

In particular, Kh ≥ −1.

Proof 1. See for example [2, Lemma 4.8].

2. Since the connection ∇ is flat, it follows from the definition of the curvature that

Kh = −1− h([A(X1), A(X2)]X2, X1) ,

where (X1, X2) is any h-orthonormal basis of TM (a proof is given in [2, Lemma 4.3]). It
remains to express the second term on the right-hand side in terms of f and w. Recall that
C(X,Y, Z) = h(A(X)Y, Z). Define similarly a section Ae of T ∗M ⊗ EndTM associated to the
Euclidean metric he by letting C(X,Y, Z) = he(Ae(X)Y,Z). Writing the holomorphic function
f as f = P + iQ, the Pick tensor C = ReU reads as

C = P dx3 − P dx dy2 −Qdx2 dy +Qdy3 .

Thus, in the canonical basis (e1, e2) of R2, this yields

Ae(e1) =

(
P −Q
−Q −P

)
, Ae(e2) =

(
−Q −P
−P Q

)
hence [Ae(e1), Ae(e2)] = 2 |f |2

(
0 −1
1 0

)
.

The result follows by homogeneity, since h = e2whe, A = e−2wAe, and one can choose Xi = e−wei
(i = 1, 2). �

3.2 Curvature estimates

We have just seen that the Riemannian curvature Kh of the affine metric on a 2-dimensional
affine sphere has −1 as a lower bound. We now seek an upper bound for Kh.

Proposition 3.3 Let M ⊂ R3 be a 2-dimensional affine sphere with affine curvature −1, and
assume the affine metric h to be complete.

1. The curvature Kh of the affine metric h satisfies −1 ≤ Kh ≤ 0.

2. If the curvature Kh vanishes at one point, then it is identically zero. In this case, M is
the affine sphere above a projective triangle.

Remark 3.4 – Part 1 is due to Calabi in [6]. He proves more generally that the Ricci curvature
of the affine metric of an n-dimensional complete affine sphere with affine curvature −1 satisfies

−(n− 1)h ≤ Riccih ≤ 0 .

5



However we provide below a simple proof of Part 1, since this proof will be used for Part 2.
– Thanks to Theorem 2.2, what we actually prove here is that the curvature KhΩ

of the affine
metric on a properly convex domain Ω ⊂ RP2 satisfies

−1 ≤ KhΩ
< 0 ,

unless Ω is a projective triangle – in which case its affine metric is flat.

Before going into the proof of this proposition we note that, since the affine metric is assumed
to be complete, M is simply connected (Theorem 2.2). Choose an orientation on M and let J
denote the conformal class of h – thus J is a complex structure on M . Then (M,J) is uniformized
either by the disk or by the plane. In other words, the Riemann surface (M,J) associated to
(M,h) is isomorphic to Da = {z ∈ C | |z| < a}, with either a = 1 or a =∞.

Choose an isomorphism ϕ : (M,J) → Da of Riemann surfaces. In this global coordinate
system for M , the Pick form reads on Da as U = f(z) dz3, while the affine metric h reads as
h = e2whe, where he = dx2 + dy2 denotes the Euclidean metric on Da (z = x+ iy).

Proof of Proposition 3.3
1. We proved in Lemma 3.2 that the Riemannian curvature of the affine metric satisfies

Kh ≥ −1. It thus remains to prove that Kh is non positive. We work in the coordinate system
ϕ : M → Da. Since the Euclidean metric he is flat, the curvature equation for h = e2whe reads
as

∆hw = Kh .

Here ∆h denotes the Riemannian Laplace operator relative to h, with the sign convention that
∆h = −TraceDh∇h. Hence, it follows from Lemma 3.2 that

∆hw = −1 + 2e−6w |f |2 . (3.1)

We want to prove that 2e−6w |f |2 ≤ 1. We may thus assume that the holomorphic function f is
not identically zero. Define, on the domain O = {f 6= 0} ⊂ Da, a function τ by letting

2τ := 6w − 2 log |f | − log 2

so that e−2τ = 2e−6w |f |2. Our aim is to prove that τ is non negative. We observe that the
equality ∆hτ = 3 ∆hw holds on O, since the function log |f | is harmonic on this domain.

• Assume first that τ reaches its minimum value at some point x0 ∈ Da. The result follows
from Equation (3.1), since

0 ≥ ∆hτ(x0) = 3 ∆hw(x0) = 3 (−1 + e−2τ(x0)) .

• In case τ does not reach its minimum inf τ ∈ [−∞,∞[, we set F = (1+eτ )−1. The function
F is non negative on Da, and vanishes on {f = 0}. It is bounded above and does not reach
its maximum. Since the Riemannian manifold (Da, h) is complete and its curvature is
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bounded below (by −1), the generalized maximum principle of Yau [29] applies to F , and
yields a sequence xn ∈ Da of points with F (xn)→ supF (that is, with τ(xn)→ inf τ) and
limn→∞∆hF (xn) ∈ [0,∞]. A simple computation gives

∆hF =
−eτ

(1 + eτ )2
∆hτ + |∇hF |2 (eτ − e−τ ) .

Plugging Equation (3.1) into this equation yields

∆hF = 3
eτ

(1 + eτ )2
(1− e−2τ ) + |∇hF |2 (eτ − e−τ ) .

Assume that inf τ ∈ [−∞, 0[, and express this identity at the points xn. The first term on
the right-hand side has a limit in [−∞, 0[ when n goes to infinity, while the second term
is non positive when n is large enough. This gives a contradiction, since the sequence was
chosen so that limn→∞∆hF (xn) ∈ [0,∞].

2. We have proved so far that the function τ is non negative on O. We now prove that either τ
does not vanish, or that it is identically zero. It follows from (3.1) and the definition of τ that

−∆hτ = 3 (1− e−2τ ) ≤ 6 τ .

Let ∆e = −
(
∂2
x + ∂2

y

)
denote the Euclidean Laplace operator on Da. The conformal invariance

of the Laplace operator ensures that, for any p ∈ O, there exists a constant c > 0 and a
neighborhood of p in O where

(−∆eτ) ≤ c τ

holds. The fact that either τ > 0 or τ ≡ 0 will thus be an immediate consequence of the following
Lemma.

Lemma 3.5 Let τ : U ⊂ R2 → [0,∞[ be a smooth non negative function defined on an open
subset of R2. Assume that τ satisfies (−∆eτ) ≤ c τ , where c is a positive constant. Then, the
zero set {τ = 0} is open.

Remark 3.6 The same statement actually holds true in Rn (n ≥ 1). The proof is similar.

Proof Assume that the domain U contains the closed ball B̄(0, R), and that τ(0) = 0. We let

M(r) :=

∫ 2π

0
τ(r eiθ)

dθ

2π

denote the mean value of the function τ on the circle with center 0 and radius r, where 0 ≤ r ≤ R.
Then, the Green’s representation formula for τ(0) (see Hörmander [14, p.119]) reads as

τ(0) = M(r) +
1

2π

∫
B(0,r)

∆eτ(y) log
r

|y|
dy

7



(recall our sign convention for ∆e). Since τ vanishes at the origin, our hypothesis on ∆eτ yields

M(r) ≤ c

2π

∫
B(0,r)

τ(y) log
r

|y|
dy ,

hence

M(r) ≤ cR2

4
sup
[0,R]

M(t)

for every 0 ≤ r ≤ R. When R is small enough (namely when cR2 < 4), this proves that τ is
identically zero on the ball B̄(0, R). �

Proof of Proposition 3.3 (continued) We have just proved that, when the Riemannian
curvature of a complete 2-dimensional affine sphere (M,h) with affine curvature −1 vanishes at
one point, then (M,h) is flat. In this case, it follows from Li–Penn [18] or Magid–Ryan [21] that
M is the affine sphere above a projective triangle. �

4 Curvature of Gromov hyperbolic domains of RP2

In this section, we refine the previous curvature estimates and prove that the curvature of a
Gromov hyperbolic domain of RP2, equipped with its affine metric, is pinched between two
negative constants.

4.1 Gromov hyperbolicity

We first recall the definition of Gromov hyperbolicity. Then, we consider the natural action
of SL3R on RP2 and give alternative definitions of Gromov hyperbolicity for properly convex
domains of RP2 (Corollaries 4.5 and 4.7).

Definition 4.1 A geodesic metric space (E, d) is Gromov hyperbolic if there exists a constant
δ > 0 such that, for any geodesic triangle (xyz) in E, each edge [xy] is at distance at most δ of
the union [xz]∪ [zy] of the two others. In this case, the metric space E is said to be δ-hyperbolic.

Let Ω ⊂ RP2 be a properly convex domain. The Hilbert distance on Ω is defined by

dΩ(x, y) = | log[x, y, a, b]| ,

where a and b are the points where the line xy intersects the boundary of Ω, and [x, y, a, b] denotes
the cross-ratio of the quadruple (x, y, a, b). The Hilbert distance derives from the Finsler metric
defined for any point x ∈ Ω and any vector X ∈ TxΩ as

||X||F,Ω =
( 1

||x− a||
+

1

||x− b||
)
||X|| ,

where a and b are the points of intersection of ∂Ω with the line defined by (x;X), and || || is any
Euclidean norm on an affine chart with Ω ⊂ Rn (see eg the survey by Vernicos [27]). Observe
finally that any automorphism g ∈ SL3R of the projective plane obviously induces an isometry
g : (Ω, dΩ)→ (g(Ω), dg(Ω)).
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Definition 4.2 A properly convex domain Ω ⊂ RP2 is said to be δ-hyperbolic when the metric
space (Ω, dΩ), where dΩ denotes the Hilbert distance on Ω, is δ-hyperbolic.

Notation 4.3 We introduce
– the set X of properly convex domains of RP2

– the subset Xδ ⊂ X which consists of the domains Ω ∈ X which are δ-hyperbolic (δ > 0)

Proposition 4.4 (Benoist [1]) Let δ > 0. Then Xδ is a SL3R-invariant closed subset of X for
the Hausdorff topology on X.

A consequence is the following criterion for Gromov hyperbolicity.

Corollary 4.5 [1, Corollaires 2.9 and 2.13] Let Ω ∈ X be a properly convex domain. Then Ω
is not Gromov hyperbolic if and only if the orbit closure SL3R · Ω in X contains the projective
triangle T .

We introduced earlier the Benzécri space E , which is the set of pairs (x,Ω) where Ω ⊂ RP2

is a properly convex domain and x is a point in Ω (Definition 2.3). The following fundamental
compactness theorem is due to Benzécri. It will be used below to give an alternative definition
of Gromov hyperbolicity for properly convex domains of RP2 (Corollary 4.7) and will be used
again in Proposition 4.8 to refine, in the case of δ-hyperbolic domains, the curvature estimates
for the affine metric we obtained in Proposition 3.3.

Theorem 4.6 (Benzécri [3]) The natural action of SL3R on the space E, equipped with the
Hausdorff topology, is cocompact.

This compactness result allowed us to prove in [2] that the ratio of the Finsler metric and the
affine metric on any properly convex domain Ω ⊂ RP2 is uniformly bounded. More precisely,
there exists a uniform constant c > 0 such that, for any Ω ∈ X, the following holds

1/c hΩ ≤ || ||F,Ω ≤ c hΩ . (4.1)

Since Gromov hyperbolicity is a property which is invariant by quasi-isometries (Gromov–
Ghys–de la Harpe [13, chap.5 §2]), we infer immediately that :

Corollary 4.7 Let Ω ⊂ RP2 be a properly convex domain. Then Ω is Gromov hyperbolic (that
is, for the Hilbert metric dΩ) if and only if the Riemannian surface (Ω, hΩ) is Gromov hyperbolic,
where hΩ is the affine metric on Ω.

4.2 Further curvature estimates

Recall that the curvature KhΩ
of the affine metric hΩ on a properly convex domain Ω ⊂ RP2

satisfies −1 ≤ KhΩ
≤ 0 (Proposition 3.3 and Remark 3.4). We now prove, for δ-hyperbolic

properly convex domains, the following uniform pinching result.
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Proposition 4.8 Let δ > 0. There exists a constant kδ < 0 such that the curvature KhΩ
of the

affine metric on any δ-hyperbolic properly convex domain Ω ⊂ RP2 satisfies

−1 ≤ KhΩ
≤ kδ < 0 .

Proof We proceed by contradiction and assume that there exists δ > 0, a sequence Ωn ∈ Xδ of
δ-hyperbolic properly convex domains of RP2, and a sequence of points xn ∈ Ωn such that the
curvature KhΩn

(xn) of the affine metric hΩn at the point xn goes to zero when n → ∞. Using
Benzécri’s compactness Theorem 4.6, we may assume the sequence (xn,Ωn) to converge in E to
(x,Ω) for the Hausdorff topology.

Proposition 2.4 ensures that the curvature KhΩ
of the affine metric of Ω vanishes at the point

x, and it follows from Proposition 3.3 that the Riemannian manifold (Ω, hΩ) is flat. Since the
affine metric hΩ is complete, (Ω, hΩ) is isometric to (R2, can). We deduce from Corollary 4.7
that the limit domain Ω is not Gromov hyperbolic : a contradiction to Proposition 4.4. �

We infer below that, when Ω ∈ X is Gromov hyperbolic, then (Ω, hΩ) is uniformized by the
disk. More precisely, let Ω ⊂ RP2 be a properly convex domain and hΩ be the affine metric
on Ω. Choose an orientation on Ω, and let (as in paragraph 3.2) (Ω, J) denote the complex
manifold associated to (Ω, hΩ).

Proposition 4.9 Assume that the properly convex set Ω ⊂ RP2 is Gromov hyperbolic.

1. The Riemann surface (Ω, J) is isomorphic to the unit disk D = {z ∈ C | |z| < 1}.

2. Let hΩ,0 denote the (conformal) hyperbolic metric on (Ω, J). Then, the affine metric reads
as hΩ = e2vhΩ,0 where the conformal factor v is bounded.

Proof 1. It has been proved by Osserman [23] that a simply-connected Riemannian surface
(Ω, hΩ) with curvature bounded above by a negative constant is conformally equivalent to the
disk. Hence the result follows from Proposition 4.8.

2. Both the affine metric hΩ and the hyperbolic metric hΩ,0 are complete, and with curvature
pinched between two negative constants. This makes the second assertion a special case of Yau’s
version of the Schwarz Lemma [30]. See eg [2, Lemma 5.2] for a proof. �

Before concluding this section, we may observe that the previous discussion yields the following
criterion for Gromov hyperbolicity.

Corollary 4.10 A properly convex domain Ω ⊂ RP2 is Gromov hyperbolic if and only if the
curvature of its affine metric is bounded above by a negative constant.

Proof One implication is Proposition 4.8. For the converse, observe that (Ω, dΩ) is quasi-
isometric to the simply-connected Riemannian manifold (Ω, hΩ), which is complete and with
curvature bounded above by a negative constant, hence is Gromov hyperbolic. �
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5 Gromov hyperbolicity and growth profile

In this section, we use the previous curvature estimates to prove that a properly convex domain
of RP2 is Gromov hyperbolic if and only if its affine metric, or equivalently its Finsler metric,
has uniform exponential growth.

We may characterize the properly convex domains of RP2 which are Gromov hyperbolic in
terms of the growth profile of their Finsler metric. Let Ω ⊂ RP2 be a properly convex domain.
Recall that the Hilbert distance dΩ derives from a Finsler metric || ||F,Ω (see paragraph 4.1). To
this Finsler metric || ||F,Ω, we associate the Buseman measure µF,Ω on Ω, which is defined as
follows. Choose an affine chart such that Ω ⊂ R2, and endow the affine plane R2 with a Lebesgue
measure m. In this chart, the measure µF,Ω has density (1/m(BF,Ω(x, 1))) with respect to the
Lebesgue measure m, where BF,Ω(x, 1) = {X ∈ TxΩ , ||X||F,Ω < 1} denotes the unit ball at the
point x for the Finsler metric (see eg Marquis [22] or Vernicos [27]).

Definition 5.1 Let Ω ⊂ RP2 be a properly convex domain. The Finsler growth profile γΩ of Ω
is the function defined, for R > 0, as

γF,Ω(R) = inf
x∈Ω

µF,Ω(BF,Ω(x,R)) .

The following theorem gives a characterization, in terms of their Finsler growth profile, of
those properly convex domains of RP2 which are Gromov hyperbolic.

Theorem 5.2 Let Ω ⊂ RP2 be a properly convex domain. Then

1. either there exists a positive constant a such γF,Ω(R) ≥ eaR for any R ≥ 1

2. or there exists a positive constant b such that γF,Ω(R) ≤ bR2 for any R > 0

Moreover the domain Ω is Gromov hyperbolic if and only if the balls in (Ω, || ||F,Ω) have a
uniform exponential growth, that is, in case 1.

This theorem will easily follow from a similar alternative concerning the affine growth profile
(Lemma 5.5), that we define below.

Definition 5.3 Let Ω ⊂ RP2 be a properly convex domain. The affine growth profile γhΩ
of Ω

is the function defined for R > 0 by

γhΩ
(R) = inf

x∈Ω
volhΩ

(BhΩ
(x,R)) ,

where volhΩ
and BhΩ

(x,R) denote, respectively, the Riemannian measure and the Riemannian
ball with center x and radius R with respect to the affine metric hΩ.

Example 5.4 The triangle T ⊂ RP2, when equipped with its affine metric, is isometric to R2.
Hence its affine growth profile is

γhT (R) = π R2 .
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Lemma 5.5 Let Ω ⊂ RP2 be a properly convex domain.

1. Assume that Ω is Gromov hyperbolic. Then, there exists a positive constant a > 0 such
that γhΩ

(R) ≥ eaR for R ≥ 1.

2. Assume that Ω is not Gromov hyperbolic. Then, γhΩ
(R) = π R2 holds for R > 0.

Proof of Lemma 5.5 1. Let Ω ⊂ RP2 be δ-hyperbolic (δ > 0). It follows from Theorem 2.2 and
Proposition 4.8 that (Ω, hΩ) is a complete simply-connected Riemannian surface with curvature
Kh ≤ kδ < 0 bounded above by a negative constant. The Bishop–Günther volume estimates
(see for example [11, 3.98]) assert that, for any x ∈ Ω and R > 0, the volume volhΩ

(BhΩ
(x,R))

is larger than the volume of the ball of radius R in the 2-dimensional simply-connected model
manifold with constant negative curvature kδ. Hence the result.

2. Let Ω ⊂ RP2 be any properly convex domain. Since the curvature of hΩ is everywhere
non positive (Proposition 3.3), the Bishop–Günther volume estimates read, for any x ∈ Ω and
R > 0, as volhΩ

(BhΩ
(x,R)) ≥ π R2. Thus γhΩ

(R) ≥ π R2.
Now assume that Ω is not Gromov hyperbolic. Corollary 4.5 provides a sequence gn ∈ SL3R

such that the sequence of images gnΩ ∈ X converges to the projective triangle T in the Haus-
dorff topology. Fix a point x0 ∈ T , and let xn := g−1

n (x0) ∈ Ω, so that the sequence gn(xn,Ω)
converges to (x0, T ) in the Benzécri space E . As recalled earlier ([2, Corollary 3.3], see Propo-
sition 2.4), the affine metric hΩ at the point x ∈ Ω depends continuously on (x,Ω) ∈ E . Hence,
for any fixed R > 0, the sequence

volhΩ
(BhΩ

(xn, R)) = volhgn(Ω)
(Bhgn(Ω)

(x0, R))

converges to volhT (BhT (x0, R)) = πR2. This yields the reverse inequality γhΩ
(R) ≤ π R2. �

Proof of Theorem 5.2 As recalled earlier the affine metric and the Finsler metric on
a properly convex domain Ω ⊂ RP2 are uniformly equivalent. More precisely, there exists a
uniform constant c > 0 such that, for any Ω ∈ X

1/c hΩ ≤ || ||F,Ω ≤ c hΩ (4.1)

holds. Hence this assertion is an immediate consequence of Lemma 5.5. �

Remark There are several natural ways of defining a notion of volume on a Finsler manifold.
However for two such choices – corresponding to the measures µ1 and µ2 on the Finsler manifold
M – there will exist a constant α > 0 (actually depending only on the dimension of M) such
that

1/α µ1 ≤ µ2 ≤ α µ1

(see Burago–Burago–Ivanov [5, 5.5.3]). In particular, the ratio of two growth profiles on a
properly convex domain Ω ⊂ RP2, corresponding to two different choices of a volume on the
Finsler manifold (Ω, || ||F,Ω), will be bounded. Thus the above criterion for Gromov hyperbolicity
will hold true for any of these choices.
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6 Parameterization of marked hyperbolic domains of RP2

In this section, we exhibit a natural bijection between the moduli space of marked Gromov
hyperbolic convex domains of RP2 and the space of bounded holomorphic cubic differentials on
the disk.

6.1 Uniformization of marked hyperbolic domains

Let Ω ⊂ RP2 be a Gromov hyperbolic properly convex domain. We have seen in Proposition
4.9 that the affine metric hΩ is conformal to a (unique) complete hyperbolic metric hΩ,0. The
Riemannian surface (Ω, hΩ,0) is thus isometric to the hyperbolic disk (D, h0).

Two isometries (Ω, hΩ,0)
∼−→ (D, h0) differ by the action of an isometry of (D, h0). Recall

that an isometry of (D, h0) extends continuously to the closed disk D ⊂ C, and is determined
(whether orientation-preserving or not) by the distinct images in ∂D ⊂ C of three distinct points
of the boundary ∂D. Working with marked convex domains (Definition 6.2) will allow us to get
rid of the group Isom(D, h0).

Lemma 6.1 Let Ω ⊂ RP2 be a Gromov hyperbolic properly convex domain. Any isometry
ϕ : (Ω, hΩ,0)→ (D, h0) induces a bijection ∂ϕ : ∂Ω→ ∂D between the boundaries ∂Ω ⊂ RP2 and
∂D ⊂ C of these sets.

Proof Since the domain Ω is assumed to be Gromov hyperbolic, we know that Ω is strictly
convex (see Benoist [1]). Hence the geodesics for the Hilbert metric dΩ are segments (de la
Harpe [10, Proposition 2]), and the boundary ∂Ω identifies with the set of equivalence classes
of geodesic rays in (Ω, dΩ) – two geodesic rays being equivalent when within a finite distance of
each other. Similarly, the boundary ∂D identifies with the set of equivalence classes of geodesic
rays in (D, h0).

Let ϕ : (Ω, hΩ,0) → (D, h0) be an isometry. Then ϕ : (Ω, dΩ) → (D, h0) is a bijective quasi-
isometry between two Gromov hyperbolic geodesic metric spaces which are proper (namely,
their closed balls are compact). The lemma now follows from Gromov–Ghys–de la Harpe [13,
Chapitre 5 - Théorème 25]. �

Definition 6.2 – A marked properly convex domain in the projective plane is a quadruple
(Ω;x1, x2, x3), where Ω ⊂ RP2 is a properly convex domain and (x1, x2, x3) are three distinct
points on the boundary ∂Ω.

We systematically equip the marked domain (Ω;x1, x2, x3) with the orientation for which the
triple of points (x1, x2, x3) is positively ordered on ∂Ω, and let (Ω, J) denote the Riemann surface
underlying hΩ as in §3.2.
– We also mark the unit disk D by choosing eg the (positive) triple of points (1, i,−1) in ∂D.

Corollary 6.3 Let (Ω;x1, x2, x3) be a marked Gromov hyperbolic properly convex domain of
RP2. Then, there exists a unique uniformizing map ϕ : (Ω, J)→ D which is marking preserving,
namely such that ∂ϕ(x1) = 1, ∂ϕ(x2) = i and ∂ϕ(x3) = −1.

Proof Immediate consequence of Lemma 6.1 and the previous discussion. �
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6.2 Construction of the bijection

We associate to any marked Gromov hyperbolic properly convex domain of RP2 a bounded
holomorphic cubic differential on the unit disk D.

Let (Ω;x1, x2, x3) be a marked properly convex domain of RP2, where Ω is Gromov hyperbolic.
Theorem 2.2 identifies Ω with the corresponding affine sphere M . Both the affine metric h and
the Pick tensor C of M read on Ω to give the affine metric hΩ and the Pick tensor CΩ of Ω.

The Pick tensor CΩ writes as CΩ = ReUΩ, where the Pick form UΩ is a holomorphic cubic
differential on the Riemann surface (Ω, J) associated with (Ω;x1, x2, x3) (Lemma 3.2, Definition
6.2). Let ϕ : (Ω, J)→ D be the unique uniformizing map which is marking preserving (Corollary
6.3). The Pick form UΩ reads on D through ϕ as a holomorphic cubic differential

ϕ∗(UΩ) = f(z) dz3 , |z| < 1 .

Lemma-Definition 6.4 The holomorphic cubic differential ϕ∗(UΩ) = f(z) dz3 on D is bounded.
Namely, the function

z ∈ D→ |f(z)| (1− |z|)3 ∈ [0,∞[

is bounded.

Proof Associate to the Pick form UΩ the Pick measure µP := |UΩ|2/3 on Ω, which reads on D
through the chart ϕ as ϕ∗(µP ) = |f(z)|2/3 |dz|2.

As a consequence of Benzécri’s compactness theorem 4.6, we proved in [2, Lemma 5.7] the
existence of a universal constant C > 0 such that the ratio Λ := µP /µhΩ

of the Pick measure
by the Riemannian measure of the affine metric on any properly convex domain Ω ⊂ RP2 is
bounded above by C.

Since Ω is Gromov hyperbolic, the affine metric reads on D through ϕ as ϕ∗(hΩ) = e2vh0,

where h0 = 4|dz2|
(1−|z|2)2 is the hyperbolic metric on the disk and the conformal factor v is bounded

(Theorem 4.9). The result follows, since Λ reads on D as Λ = |f(z)|2/3(1− |z|2)2 e−2v

4 . �

Notation 6.5 We introduce
– the set YG of marked Gromov hyperbolic properly convex domains of RP2

– the set Cb of bounded holomorphic cubic differentials on the disk

Theorem 6.6 The map

T : (Ω;x1, x2, x3) ∈ YG → ϕ∗(UΩ) ∈ Cb ,

where (Ω, J) is the Riemann surface associated to (Ω;x1, x2, x3), UΩ is the Pick form on (Ω, J)
and ϕ : (Ω, J) → D is the unique marking preserving uniformizing map, goes to the quotient
under the natural action of AutRP2 = SL3R on YG and induces a bijection

τ : YG/SL3R→ Cb
between the moduli space of marked Gromov hyperbolic properly convex domains of RP2, and the
space of bounded holomorphic cubic differentials on the disk.

14



Proof Since affine spheres with center the origin and affine curvature −1 as well as their
Blaschke connection and affine metric are preserved by the action of SL3R, it follows from the
definition of the Pick tensor (Definition 3.1) that the map T goes to the quotient under the
action of SL3R on YG. In other words, the map τ is well-defined. To complete the proof of
Theorem 6.6, we provide in the next final paragraph an inverse map for τ . We proceed as in
Loftin [19], or [2, Section 6].

6.3 Construction of the inverse map for τ

Let U be a holomorphic cubic differential on the disk and h = e2v h0 be a conformal metric,

where h0 = 4|dz2|
(1−|z|2)2 denotes the hyperbolic metric on D. We first investigate the conditions

under which there will exist an immersion j : D ↪→ R3 of the disk as an affine sphere j(D) with
center the origin and affine curvature −1, and such that

– the affine metric on j(D) ' D is the conformal metric h
– the Pick form on the (naturally oriented) affine sphere j(D) ' D is the cubic differential U

Proposition 6.7 Let h = e2v h0 be a conformal metric and U = f(z) dz3 be a holomorphic
cubic differential on the disk.

1. The pair (h, U) consists of the affine metric and Pick form of an immersion j : D ↪→ R3 as
an affine sphere with center the origin and affine curvature −1 if and only if the conformal
factor v : D→ R is solution of Wang’s equation

∆0v = −e−2v + 1 + ke−4v , (6.1)

where ∆0 is the Laplace operator on D for the hyperbolic metric h0 and

k(z) =
1

32
(1− |z|2)6 |f(z)|2 (z ∈ D)

2. When Equation (6.1) is satisfied such an immersion j : D ↪→ R3, as an affine sphere with
affine metric h and Pick form U , is unique up to SL±3 R

Proof See Loftin [19] or [2, Corollary 6.3]. Recall our sign convention ∆0 = −TrDh0∇h0 . �

It results from the discussion of the previous paragraph that we will be only interested in
bounded holomorphic cubic differentials on the disk. In this case, we have the following existence
and uniqueness result for the solutions of Equation (6.1).

Proposition 6.8 Assume that U = f(z) dz3 is a bounded holomorphic cubic differential on the
disk. Then Wang’s equation (6.1) admits a unique bounded solution.

Proof Since the cubic differential U is assumed to be bounded, the function k is also bounded
on D. Moreover k is obviously non negative. The result follows from [2, Proposition 6.5] (see
also Loftin [19]), since (D, h0) is a complete Riemannian manifold with constant curvature. �
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We may now wrap up the proof of Theorem 6.6.

Proof of theorem 6.6 (continued) Let (Ω;x1, x2, x3) be a marked Gromov hyperbolic prop-
erly convex domain of RP2. As explained in the previous paragraphs 6.1 and 6.2, the affine
metric of Ω reads on D through the unique marking preserving uniformizing map ϕ : (Ω, J)→ D
as ϕ∗(hΩ) = e2vh0, where h0 is the hyperbolic metric on the disk and the conformal factor v
is bounded. And the Pick form on (Ω, J) reads as a bounded holomorphic cubic differential
ϕ∗(UΩ) on the disk.

Conversely, let U be a bounded holomorphic cubic differential on the disk. Proposition 6.8
yields a unique bounded solution v of Equation (6.1), and Proposition 6.7 ensures that the
pair (h, U), where h = e2vh0, consists of the affine metric and the Pick form of an immersion
j : D ↪→ R3 of the disk as an affine sphere with center the origin and affine curvature −1.

The solution v is bounded. It follows first that the metric h is complete, hence that the affine
sphere j(D) is asymptotic to a cone above a properly convex domain Ω ⊂ RP2 (Theorem 2.2).
Second, the domain (Ω, hΩ) equipped with its affine metric is isometric to (D, h), hence quasi-
isometric to the hyperbolic disk (D, h0) – which is Gromov hyperbolic. As mentionned earlier in
in §4.1, Gromov hyperbolicity is invariant under quasi-isometries, hence (Ω, hΩ) is also Gromov
hyperbolic. This means that the domain Ω is Gromov hyperbolic (Corollary 4.7).

Let p : R3\{0} → RP2 denote the canonical projection. Since the map p◦j : (D, h0)→ (Ω, dΩ)
is a quasi-isometry, it follows from the proof of Lemma 6.1 that it induces a bijection ∂(p ◦ j)
between the boundaries ∂D and ∂Ω. We mark the domain Ω by choosing the triple (x1, x2, x3),
where x1 = ∂(p ◦ j)(1), x2 = ∂(p ◦ j)(i) and x3 = ∂(p ◦ j)(−1).

Two immersions j1, j2 : D ↪→ R3 of the disk as an affine sphere, corresponding to the same
pair (h, U), differ by an element of SL±3 R (Proposition 6.7 again). Thus the affine spheres j1(D)
and j2(D) are asymptotic to cones over two properly convex domains Ω1,Ω2 ⊂ RP2 which differ
by the action of an element of SL3R, so that the above construction actually defines a map

ρ : Cb → YG/SL3R .

It follows from the construction that ρ is an inverse map for τ , which concludes the proof. �
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Laboratoire de Mathématiques – UMR 8628
Orsay 91405, France

yves.benoist@math.u-psud.fr

dominique.hulin@math.u-psud.fr

16



References

[1] Yves Benoist. Convexes hyperboliques et fonctions quasisymétriques. Publ. Math. IHES, (97):181–
237, 2003.

[2] Yves Benoist and Dominique Hulin. Cubic differentials and finite volume convex projective surfaces.
Geom. Top., 2013. To appear.

[3] Jean-Paul Benzécri. Sur les variétés localement affines et localement projectives. Bull. Soc. Math.
France, 88:229–332, 1960.

[4] Francesco Bonsante and Jean-Marc Schlenker. Maximal surfaces and the universal Teichmüller
space. Invent. Math., 182:279–333, 2010.

[5] Dmitri Burago, Yuri Burago, and Sergei Ivanov. A course in metric geometry. GSM 33. 2001.

[6] Eugenio Calabi. Complete affine hyperspheres I. In Symposia Mathematica, Vol. X, pages 19–38.
1972.

[7] Shiu Yuen Cheng and Shing Tung Yau. On the regularity of the Monge-Ampère equation
det(∂2u/∂xi∂sxj) = F (x, u). Comm. Pure Appl. Math., 30:41–68, 1977.

[8] Shiu Yuen Cheng and Shing Tung Yau. Complete affine hypersurfaces I. The completeness of affine
metrics. Comm. Pure Appl. Math., 39:839–866, 1986.

[9] B. Colbois, C. Vernicos, and P. Verovic. Area of ideal triangles and Gromov hyperbolicity in Hilbert
geometry. Illinois J. Math., 52:319–343, 2008.

[10] Pierre de la Harpe. On Hilbert’s metric for simplices. In Geometric group theory vol.1, volume 181
of London Math. Soc. Lecture Note Ser., pages 97–119. CUP, 1993.

[11] Sylvestre Gallot, Dominique Hulin, and Jacques Lafontaine. Riemannian geometry. Universitext.
Springer, 2004.

[12] Frederick P. Gardiner and William J. Harvey. Universal Teichmüller space. In Handbook of complex
analysis: geometric function theory, Vol. 1, pages 457–492. North-Holland, 2002.

[13] Etienne Ghys and Pierre de la Harpe, editors. Sur les groupes hyperboliques d’après Mikhael Gromov.
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[14] Lars Hörmander. Notions of convexity. Birkhäuser, 1994.
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