Université de Paris Saclay M1 MF 2021-2022

Feuille TD 1 - Exercices Algèbre - Groupes I

EXERCICE 1 — GROUPE SYMÉTRIQUE I. Soit \mathfrak{S}_n le groupe symétrique d'indice n.

- **1.** Quel est l'ordre maximal d'un élément de \mathfrak{S}_3 ? de \mathfrak{S}_4 ? de \mathfrak{S}_5 ? de \mathfrak{S}_n ?
- 2. Donner le treillis des sous-groupes de \mathfrak{S}_3 , en précisant à chaque fois lesquels des sous-groupes sont distingués. Répéter l'exercice avec le groupe alterné \mathfrak{A}_4 .
- 3. Soit G un groupe fini. Rappeler pourquoi il existe $n \in \mathbb{N}$ et un homomorphisme injectif de G dans \mathfrak{S}_n . En déduire qu'il existe $n \in \mathbb{N}$ et un homomorphisme injectif de G dans \mathfrak{A}_n et qu'il existe $n \in \mathbb{N}$ et un homomorphisme injectif de G dans $GL_n(k)$ pour tout corps k.
- **4.** Une partition de n est une suite $0 < \lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_r$ d'entiers tels que $\sum_{i=1}^r \lambda_i = n$. Montrer que les classes de conjugaison de \mathfrak{S}_n sont en bijection avec les partitions de n. Que dire des classes de conjugaison dans \mathfrak{A}_n ?

EXERCICE 2 — GROUPE DIÉDRAL. On considère les deux transformations suivantes du plan euclidien : la rotation ρ de centre O et d'angle $\frac{\pi}{2}$, et la symétrie σ par rapport à l'axe des abscisses. Le groupe diédral D_4 est le sous-groupe des isométries du plan engendré par ρ et σ .

- **1.** Calculer l'ordre de σ et de ρ . Décrire l'isométrie $\sigma \rho \sigma^{-1}$.
- 2. Montrer que D_4 contient 8 éléments; caractériser ces éléments géométriquement.
- **3.** Déterminer les classes de conjugaison dans D_4 .
- **4.** Donner le treillis des sous-groupes de D_4 , en précisant les sous-groupes distingués.

EXERCICE 3 — **QUATERNIONS ET GROUPES D'ORDRE 8.** On note H l'ensemble des matrices de $\mathcal{M}_2(\mathbf{C})$ de la forme

$$M_{a,b} := \begin{pmatrix} a & b \\ -\bar{b} & \bar{a} \end{pmatrix}.$$

On pose $H^* = H - \{0\}$.

- **1.** Montrer que H^* est un sous-groupe non commutatif de $\mathsf{GL}_2(\mathbf{C})$.
- 2. On note 1 la matrice identité, et on pose $I:=M_{i,0}$, $J=M_{0,1}$, $K=M_{0,i}$. Soit $\mathbf{H}_8=\{\pm \mathbf{1},\pm I,\pm J,\pm K\}$. Montrer que \mathbf{H}_8 est un sous-groupe non commutatif de cardinal 8 de H^* (on observera que IJ=K=-JI, avec des relations analogues par permutations circulaires de I,J,K).
- 3. Montrer que le centre et le sous-groupe dérivé de \mathbf{H}_8 sont tous deux égaux à $\{\pm 1\}$.
- **4.** Montrer que l'abélianisé de \mathbf{H}_8 est isomorphe à $(\mathbf{Z}/2\mathbf{Z})^2$.
- 5. Est-ce qu'un groupe dont tous les sous-groupes sont distingués est nécessairement abélien?

EXERCICE 4. Faire la liste, à isomorphisme près, des groupes de cardinal $\leqslant 7$.

EXERCICE 5 — EXPOSANT D'UN GROUPE. On définit *l'exposant* d'un groupe abélien fini G et on note $\exp(G)$, comme le plus petit entier $n\geqslant 1$ tel que $g^n=1$ pour tout $g\in G$.

- 1. Soient x et y deux éléments de G d'ordres respectifs $\omega(x)$ et $\omega(y)$ premiers entre eux. Montrer que xy est d'ordre $\omega(x)\omega(y)$.
- **2.** A-t-on sans hypothèse que l'ordre de xy est donné par $\operatorname{ppcm}(\omega(x),\omega(y))$?
- **3.** Montrer qu'il existe $z \in G$ tel que z soit d'ordre $\exp(G)$.
- 4. Retrouver alors qu'un sous-groupe fini du groupe multiplicatif d'un corps est cyclique.

EXERCICE 6.

- **1.** Soit G un groupe tel que $g^2=1$ pour tout $g\in G$. Montrer que G est abélien et donner des exemples de tels groupes.
- **2.** Pour quels entiers e, un groupe d'exposant e est-il nécessairement commutatif?

EXERCICE 7. On considère le groupe $G=\mathfrak{A}_4$. Soit D(G) son sous-groupe dérivé. Soit V_4 le sous-groupe de G constitué de l'identité et des doubles transpositions.

- **1.** Montrer que $V_4 \lhd G$, puis que $D(G) \subset V_4$ (on observera que G/V_4 est de cardinal 3).
- **2.** Montrer que $D(G) \neq \{1\}$ et que G ne possède pas de sous-groupe distingué de cardinal 2.
- **3.** En déduire que $D(G) = V_4$.
- 4. Montrer que si H est un sous-groupe d'indice 2 d'un groupe fini A, alors $H \triangleleft A$ (regarder les classes à gauche et à droite suivant G).

Université de Paris Saclay M1 MF 2021-2022

5. Soit H un sous-groupe de $G=\mathfrak{A}_4$. Montrer que si H est d'indice 2, alors $D(G)\subset H$ (on considérera G/H) et aboutir à une contradiction en utilisant 3. Ainsi G (qui est de cardinal 12) n'a pas de sous-groupe de cardinal 6.

6. Montrer au contraire que pour tout $d \in \mathbf{N}^{\times}$ tel que d divise 24, le groupe \mathfrak{S}_4 possède un sous-groupe de cardinal d.

EXERCICE 8. Soit $n \geqslant 5$. Trouver tous les morphismes de groupes de \mathfrak{S}_n dans $(\mathbf{Z}/12\mathbf{Z},+)$. Que se passe-t-il si on remplace $\mathbf{Z}/12\mathbf{Z}$ par un groupe abélien quelconque? Et si on prend n=4?

EXERCICE 9. Soit G un groupe admettant une partie génératrice finie. Montrer que G est fini ou dénombrable. Est-il vrai réciproquement que tout groupe dénombrable admet une partie génératrice finie?