T.D. numéro 4 Géométrie Algébrique

Exercice 1 Un morphisme de schémas $f: X \to Y$ est dit quasi-fini si f est de type fini et pour chaque point $y \in Y$, $f^{-1}(y)$ est un ensemble fini.

- (1) Montrer qu'un morphisme fini est quasi-fini.
- (2) Montrer qu'un morphisme fini est fermé, c'est à dire, il envoie tout fermé sur un fermé.
- (3) Montrer par un exemple qu'un morphisme surjectif et quasi-fini n'est pas nécessairement fini.

Exercice 2 Soit k un corps, et soit $\mathbf{A}_k^1 = \operatorname{Spec}(k[x])$ la droite affine sur k. Montrer que $\mathbf{A}_k^1 \times \mathbf{A}_k^1 \simeq \mathbf{A}_k^2$. Montrer que l'ensemble sous-jacent du produit n'est pas exactement le produit des ensembles sous jacents.

Exercice 3 Soient k un corps et s, t des indéterminées sur k. On considère Spec k, Spec k(s), et Spec k(t), qui sont des espaces constitués d'un seul point. On cherche à décrire le schéma produit Spec $k(s) \times_{\text{Spec } k} \text{Spec } k(t)$:

- (1) On a $k(s) = T^{-1}k[s]$, où T est l'ensemble multiplicatif des élements non nuls de k[s]. En déduire que $A = k(s) \otimes_k k(t)$ est la localisation $T'^{-1}k[s,t]$, où T' est l'ensemble multiplicatif des élements non nuls de la forme $P(s)Q(t) \in k[s,t]$, où P et Q sont des polynômes en une variable.
- (2) Soit m un idéal maximal de k[s,t]. Montrer qu'il existe $P(s) \in m \setminus \{0\}$. En déduire que $T' \cap m \neq \emptyset$.
- (3) Montrer que les idéaux maximaux de A sont de la forme gA, avec $g \in k[s,t] \setminus (k[s] \cup k[t])$ irréductible dans k[s,t].
- (4) Montrer que $\operatorname{Spec} k(s) \times_{\operatorname{Spec} k} \operatorname{Spec} k(t)$ est un ensemble infini.

Exercice 4 Soit K un corps de nombres. Soit \mathcal{O}_K l'anneau des entiers de K (l'ensemble des elements de K qui sont entier sur \mathbb{Z}). Montrer que tout ouvert de $\operatorname{Spec}\mathcal{O}_K$ est principal. En déduire que chaque sous-schéma ouvert de $\operatorname{Spec}\mathcal{O}_K$ est affine. (Indication: le nombre de classes de \mathcal{O}_K est fini).

Exercice 5 Soit $f: X \to Y$ un morphisme de schémas. Pour tout schéma T, soit $f(T): X(T) \to Y(T)$ l'application définie par $f(T)(g) = f \circ g$, où $g \in X(T)$.

- a) Montrer que f(T) est bijective pour chaque T si et seulement si f est un isomorphisme, où X(T) est l'ensemble des morphismes de T dans X.
- b) On suppose de plus que X et Y sont des schémas qui ont la propriété que l'intersection de deux ouverts affines est affine. On suppose que f(T) est bijective pour tout T affine. Montrer que f est encore un isomorphisme.

Exercice 6 : Schémas de Jacobson

Si I est un idéal d'un anneau, on note \sqrt{I} son radical.

1. Soit $X = \operatorname{Spec} A$ un schéma affine. Soit Z = V(I) un fermé de X, où I est un idéal de A avec $\sqrt{I} = I$. On note Z_0 l'ensemble des points fermés de Z et $\overline{Z_0}$ l'adhérence de Z_0 .

a) Soit J l'intersection des idéaux maximaux de A qui contiennent I. Montrer que $\sqrt{J} = J$.

b) Montrer que $\overline{Z_0} = V(J)$.

c) En déduire que $\overline{Z_0}=Z$ si et seulement s'il existe une famille (\mathcal{M}_r) d'idéaux maximaux de A telle que

$$I = \bigcap_r \mathcal{M}_r$$

2. On dit qu'un anneau A est un anneau de Jacobson si tout idéal premier de A peut s'écrire comme une intersection d'idéaux maximaux. On dit qu'un schéma X est de Jacobson si pour tout fermé Z de X, on a $\overline{Z_0} = Z$, où Z_0 désigne l'ensemble des points fermés de Z. Montrer que SpecA est de Jacobson si et seulement si A est un anneau de Jacobson.

3. Soit X un schéma de type fini sur un corps k. Montrer que X est de Jacobson.

Exercice 7 : Produits fibrés

Soit S un schéma. Soient X et Y des S-schémas dont on note respectivement $f: X \to S$ et $g: Y \to S$ les morphismes structuraux.

1. On suppose que le produit fibré $X \times_S Y$ est non vide. Montrer qu'il existe $x \in X$ et $y \in Y$ tels que f(x) = g(y).

2. On suppose réciproquement qu'il existe $x \in X$ et $y \in Y$ tels que f(x) = g(y) et on pose s = f(x) = g(y).

a) Montrer qu'on peut trouver un corps K tel qu'il existe des morphismes $f_1: \operatorname{Spec} K \to X$ et $g_1: \operatorname{Spec} K \to Y$ vérifiant : $f \circ f_1 = g \circ g_1$.

b) En déduire que $X \times_S Y$ est non vide.