Corrigé de l'examen du cours "Théorie du corps de classes", M2, Orsay (2013)

David Harari

Exercice 1.

- 1. C'est vrai, d'après le théorème de dualité de Tate pour les corps p-adiques (Th. 5.10), vu que le dual de Cartier de \mathbf{Z}/n est $\operatorname{Hom}(\mathbf{Z}/n, \mu_n) = \mu_n$.
- **2.** C'est faux : si k est un corps p-adique, on peut prendre $K = k^{nr}$ (ou même $K = \bar{k}$). Alors Br K = 0 mais toute extension finie k' de k est encore un corps p-adique, donc vérifie Br $k' \simeq \mathbf{Q}/\mathbf{Z}$ (Th. 4.8.).
- 3. C'est faux. Soit G un groupe non trivial dont l'abélianisé est trivial, par exemple $G = \mathcal{S}_3$; soit $A = \mathbf{Q}/\mathbf{Z}$. Alors $H^1(G, \mathbf{Q}/\mathbf{Z}) = \operatorname{Hom}(G^{ab}, \mathbf{Q}/\mathbf{Z}) = 0$. Mais si H est un sous-groupe abélien non trivial de G (par exemple le sous-groupe engendré par un élément non trivial), on a $H^1(H, \mathbf{Q}/\mathbf{Z}) = \operatorname{Hom}(H, \mathbf{Q}/\mathbf{Z}) \neq 0$. Dans le cas de $G = \mathcal{S}_3$, on vérifie d'ailleurs directement que $\operatorname{Hom}(G, \mathbf{Z}/3) = 0$ (car G n'a pas de sous-groupe distingué d'indice 3) mais $\operatorname{Hom}(H, \mathbf{Z}/3) \neq 0$ pour le sous-groupe H engendré par un 3-cycle.
 - **4.** C'est vrai. Considérons la suite exacte, valable pour tout n > 0:

$$0 \to \mu_n \to \bar{k}^* \stackrel{\cdot n}{\to} \bar{k}^* \to 0.$$

La suite exacte de cohomologie donne alors une surjection $H^{i+1}(k,\mu_n) \to H^{i+1}(k,\bar{k}^*)[n]$, où le symbole [n] désigne la n-torsion. Comme μ_n est fini et $\operatorname{cd}(k) \leq i$, on a $H^{i+1}(k,\mu_n) = 0$. Finalement pour tout n > 0, le groupe $H^{i+1}(k,\bar{k}^*)[n]$ est nul, mais on sait que $H^{i+1}(k,\bar{k}^*)$ est de torsion (Cor 3.10) donc ce dernier groupe est nul.

Exercice 2.

- 1. On note que $K^{\rm nr} \subset K^{\rm ab} \subset \overline{K}$ (où \overline{K} est la clôture algébrique de K). Ainsi le groupe de Galois absolu de $K^{\rm ab}$ est un sous-groupe fermé de celui de $K^{\rm nr}$, qui est de dimension cohomologique ≤ 1 (Th. 4.10). Ceci implique que ${\rm cd}(K^{\rm ab}) \leq 1$ par la Prop. 3.15.
- **2.** Comme on l'a vu (Cor. 6.18), le groupe G est isomorphe à $\widehat{\mathbf{Z}} \times U_K$, en particulier G contient un sous-groupe fermé isomorphe à U_K^1 . Ainsi $\operatorname{cd}_p(G)$

finie implique déjà $\operatorname{cd}_p(U_K^1)$ finie via la Prop. 3.15. Réciproquement si $\operatorname{cd}_p(U_K^1)$ est finie, on a $\operatorname{cd}_p(U_K) = \operatorname{cd}_p(U_K^1)$ finie via la suite exacte

$$1 \to U_K^1 \to U_K \to \kappa^* \to 1$$

et le fait que le cardinal du corps résiduel κ de K est de la forme p^f (et donc U_K^1 est un sous-groupe ouvert de U_K d'indice premier à p, ce qui permet d'appliquer la Prop. 3.15). Alors comme $G/U_K \simeq \widehat{\mathbf{Z}}$, on sait (Prop. 3.17) que

$$\operatorname{cd}_p(G) \le \operatorname{cd}_p(U_K) + \operatorname{cd}_p(\widehat{\mathbf{Z}}) = \operatorname{cd}_p(U_K^1) + 1.$$

Remarque: Comme U_K^1 est isomorphe à $\mathbf{Z}_p^r \times F$ où F est un p-groupe fini, la condition $\operatorname{cd}_p(U_K^1)$ finie est aussi équivalente à $(U_K^1)_{\operatorname{tors}}$ trivial: en effet \mathbf{Z}_p^r est de dimension cohomologique $\leq r$ (récurrence sur r en utilisant la Prop. 3.17) et un p-groupe fini est de p-dimension cohomologique finie si et seulement s'il est fini. Cette dernière condition est à son tour équivalente au fait que K ne contienne pas de racine primitive p-ième de l'unité. C'est le cas pour $K = \mathbf{Q}_p$ par exemple.

3. On sait (Th. 6.10) que $\operatorname{Gal}(K_{\pi}/K)$ est isomorphe à U_K . En particulier p^{∞} divise $[K_{\pi}:K]$ car U_K contient U_K^1 , qui est un pro-p-groupe infini (c'est la limite projective des U_K^1/U_K^i pour $i \geq 1$). Ceci implique $\operatorname{cd}_p(K_{\pi}) \leq 1$ (Th. 4.10) et donc $(\operatorname{Br} K_{\pi})[p] = H^2(K, \mu_p) = 0$. Ainsi la torsion p-primaire de $\operatorname{Br} K_{\pi}$ est nulle.

Si maintenant $\ell \neq p$, on considère le corps fixe $K_1 \subset K_{\pi}$ pour le sousgroupe ouvert U_K^1 . Comme $\operatorname{Gal}(K_1/K) = U_K/U_K^1 \simeq \kappa^*$ est fini, le corps K_1 est encore un corps p-adique, donc son groupe de Brauer $\operatorname{Br} K_1$ est isomorphe à \mathbf{Q}/\mathbf{Z} . Choisissons alors a non nul dans $\operatorname{Br} K_1\{\ell\}$. La restriction de a à $\operatorname{Br} K_{\pi}$ est non nulle, sinon il existerait une extension finie $L \subset K_{\pi}$ de K_1 telle que $\operatorname{Res}_L(a) = 0$ via le Cor. 3.8. Soit alors $m = [L : K_1]$, on peut écrire $m = p^r$ car U_K^1 est un pro-p-groupe. Alors le Th. 4.8. donne $\operatorname{Inv}_L(\operatorname{Res}_L(a)) = m.\operatorname{inv}_K(a) \neq 0$ puisque $\operatorname{inv}_K(a)$ est non nul et de torsion ℓ -primaire, contradiction.

Exercice 3.

- 1. a) Soit L le corps de classes de Hilbert de K. On sait (Def. 10.14) que $\operatorname{Gal}(L/K)$ est un groupe abélien de cardinal $\operatorname{Cl}(K)$. Ce cardinal ne peut pas être divisible par p, sinon $\operatorname{Gal}(L/K)$ aurait un quotient cyclique d'ordre p, et K aurait donc une extension cyclique d'ordre p incluse dans L, donc non ramifiée d'après le Cor. 10.19.
- b) D'après a), on a $\widehat{H}^q(G,\operatorname{Cl}(K))=0$ puisque G est un p-groupe donc $\widehat{H}^q(G,\operatorname{Cl}(K))$ est à la fois de torsion p-primaire (Th. 1.31) et annulé par le cardinal de $\operatorname{Cl}(K)$.

2. a) Pour v place de K, notons $G_v \subset G$ le groupe de décomposition en v. Avec les notations du paragraphe 8.1., on a

$$I_K^1 = \prod_{v \in \Omega_\infty} I_K(v) \times \prod_{v \in \Omega_f} U_K(v)$$

où Ω_{∞} (resp. Ω_f) est l'ensemble des places archimédiennes (resp. finies) de k. Comme K/k est non ramifiée, le G_v -module U_v est cohomologiquement trivial pour $v \in \Omega_f$ (Prop. 4.1), et pour $v \in \Omega_{\infty}$ on a G_v trivial à cause de la condition de "non ramification aux places infinies". Comme $I_K(v)$ et $U_K(v)$ sont respectivement les G-modules induits par K_v^* et U_v , le résultat déoule du lemme de Shapiro.

b) On a une suite exacte

$$0 \to I_K^1/E_K \to C_K \to \operatorname{Cl}(K) \to 0$$

D'après 1.b), la suite exacte longue de cohomologie donne

$$\widehat{H}^q(G, I_K^1/E_K) \simeq \widehat{H}^q(G, C_K).$$

La suite exacte

$$0 \to E_K \to I_K^1 \to I_K^1/E_K \to 0$$

et 2.a) donnent aussi un isomorphisme

$$\widehat{H}^q(G, I_K^1/E_K) \simeq \widehat{H}^{q+1}(G, E_K),$$

d'où le résultat.

- **3.** a) D'après le paragraphe 10.1., le théorème de Tate-Nakayama (Th. 2.12, appliqué avec n=-3) donne un isomorphisme de $\widehat{H}^{-3}(G,\mathbf{Z})$ avec $\widehat{H}^{-1}(G,C_K)$, qui est lui même isomorphe à $\widehat{H}^0(G,E_K)$ d'après 2)b).
- b) Le théorème des unités de Dirichlet (Th. 7.17) dit que $\widehat{H}^0(G, E_K) = \mathcal{O}_k^*/N_{K/k}\mathcal{O}_K^*$ peut être engendré par r éléments. On conclut alors avec a).

On pourra lire la suite dans le livre de Serre "Cohomologie galoisienne", paragraphe I.4.4...