Approximation de $\sqrt{2}$ par les fractions continuées

On désigne par [x] la partie entière du nombre réel x. On a donc $[x] \le x < [x] + 1$.

Soit x un nombre réel. On définit deux suites a_n et x_n , pour $n \in \mathbb{N}$, de la manière suivante :

On pose $a_0 = [x]$ et $x_0 = x - a_0$. Pour $n \ge 1$ on définit a_n et x_n par récurrence par :

- $a_n = x_n = 0$ si $x_{n-1} = 0$,
- $a_n = \left[\frac{1}{x_{n-1}}\right]$ et $x_n = \frac{1}{x_{n-1}} a_n$ sinon.
- 1) Montrer que l'on a $a_0 \in \mathbf{Z}$, $a_n \in \mathbf{N}$ pour $n \ge 1$ et $0 \le x_n < 1$ pour tout n.
- 2) Montrer, pour tout $n \in \mathbb{N}$, la formule :

$$x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_n + x_n}}}$$

On pose, si a_0, a_1, \dots, a_n sont non nuls :

$$[a_0, \dots, a_n] = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\dots + \frac{1}{a_n}}}}.$$

Montrer que $[a_0, \dots, a_n]$ est un nombre rationnel.

- 3) Montrer les équivalences :
- $x \in \mathbf{Q} \iff \exists n \in \mathbf{N}, x_n = 0 \iff \exists n \in \mathbf{N}, x = [a_0, \dots, a_n].$ (Pour la première implication on raisonnera par récurrence descendante sur le dénominateur de x.)

Les rationnels $[a_0, \dots, a_n]$ constituent ce qu'on appelle le développement en fractions continuées (ou continues) de x. On peut montrer, dans le cas général, que la suite $[a_0, \dots, a_n]$ converge vers x et qu'elle réalise même en un certain sens la "meilleure" approximation rationnelle de x (i.e., celle dont les dénominateurs sont les plus petits possibles). Nous allons nous contenter d'étudier un cas particulier très simple.

- 4) a) On prend $x=\sqrt{2}-1$. Montrer que l'on a $a_0=0$, $x_0=\sqrt{2}-1$ et, pour $n\geq 1$, $a_n=2$ et $x_n=\sqrt{2}-1$.
 - b) On pose $v_n = [a_0, \dots, a_n]$. Montrer la relation de récurrence

$$v_{n+1} = \frac{1}{2 + v_n}.$$

En déduire que la suite v_n converge vers $v = \sqrt{2} - 1$. Donner une majoration de $|v_n - v|$ en fonction de n. Étudier la monotonie de v_n .

5) On pose $u_n = 1 + v_n$. Montrer que la suite u_n converge vers $\sqrt{2}$. Préciser la relation de récurrence¹ vérifiée par u_n .

On a donc la formule:

$$\sqrt{2} = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \cdots}}}$$

6) On écrit le nombre rationnel u_n sous-forme de fraction **irréductible** : $u_n = p_n/q_n$. Montrer que p_n et q_n vérifient les relations de récurrence :

$$p_{n+1} = p_n + 2q_n$$
 et $q_{n+1} = p_n + q_n$,
 $p_{n+1} = 2p_n + p_{n-1}$ et $q_{n+1} = 2q_n + q_{n-1}$,

et calculer p_n, q_n, u_n pour $n \leq 10$.

7) On pose:

$$u_n' = \frac{u_n - \sqrt{2}}{u_n + \sqrt{2}}.$$

Montrer que u'_n vérifie la relation de récurrence $u'_{n+1} = \lambda u'_n$ avec $\lambda = -(\sqrt{2}-1)^2$. Calculer u'_n pour tout n.

8) On considère la suite de Héron (w_n) , définie par $w_0=1$ et par la relation de récurrence :

$$w_{n+1} = \frac{1}{2}(w_n + \frac{2}{w_n}).$$

On pose

$$w_n' = \frac{w_n - \sqrt{2}}{w_n + \sqrt{2}}.$$

Montrer la relation de récurrence $w'_{n+1} = (w'_n)^2$. En déduire les relations $w'_n = \lambda^{2^n} = u'_{2^n-1}$ puis la formule $w_n = u_{2^n-1}$.

Expliquer pourquoi la suite w_n tend très vite vers $\sqrt{2}$.

9) Montrer que les suites u_n et w_n s'obtiennent respectivement en appliquant la méthode des sécantes et la méthode de Newton au graphe de la fonction $x^2 - 2$ à partir du point A = (1, -1).

¹ Réponse : $u_{n+1} = 1 + \frac{1}{1 + u_n}$.