1 Une inégalité

Il s'agit de montrer le résultat suivant :

1.1 Théorème. Soit A une matrice $n \times n$ à coefficients dans \mathbf{C} et soient $\lambda_1, \ldots, \lambda_n$ ses valeurs propres. On a l'inégalité : $\sum_{i=1}^{n} |\lambda_i|^2 \leq \operatorname{Tr}(AA^*) = \operatorname{Tr}(A^*A)$.

Démonstration. 1) On montre d'abord le résultat lorsque les valeurs propres de A sont réelles. On sait que l'application $A \mapsto q(A) = \operatorname{Tr}(AA^*)$ est une forme hermitienne définie positive sur $\mathbf{M}_n(\mathbf{C})$, dont la forme polaire est $\varphi(A,B) = \frac{1}{2}(\operatorname{Tr}(AB^*) + \operatorname{Tr}(BA^*))$. Pour $A,B \in \mathbf{M}_n(\mathbf{C})$ on a l'inégalité de Cauchy-Schwarz : $|\varphi(A,B)|^2 \leq q(A)q(B)$. On applique cette inégalité à A et A^* . On a $q(A) = q(A^*) = \operatorname{Tr}(AA^*)$ et $\varphi(A,A^*) = \frac{1}{2}\operatorname{Tr}(A^2) + \operatorname{Tr}((A^*)^2) = \frac{1}{2}\left(\sum_{i=1}^n \lambda_i^2 + \sum_{i=1}^n \overline{\lambda_i}^2\right)$. Comme les λ_i sont réels, on a $\varphi(A,A^*) = \sum_{i=1}^n |\lambda_i|^2$ et la conclusion.

- 2) On utilise un lemme:
- **1.2 Lemme.** Soit A une matrice $n \times n$ à coefficients dans \mathbf{C} et soient $\lambda_1, \ldots, \lambda_n$ ses valeurs propres. On peut écrire A sous la forme A = BU où U est une matrice unitaire et où B a pour valeurs propres $|\lambda_1|, \ldots, |\lambda_n|$.

Avec ce lemme on peut achever la preuve du théorème. En effet, on a $AA^* = BUU^*B^* = BB^*$ et on a, en vertu du premier cas, $\sum_{i=1}^{n} |\lambda_i|^2 \leq \text{Tr}(BB^*) = \text{Tr}(AA^*)$.

- 3) Il reste à prouver le lemme. On procède par récurrence sur n. Pour n=1 on a $A=(a)=(|a|e^{i\theta})$ et on prend $U=(e^{-i\theta})$. Pour passer de n-1 à n on munit \mathbf{C}^n du produit scalaire canonique pour lequel la base canonique est orthonormée. On choisit un vecteur propre e_1 de A relatif à $\lambda_1=|\lambda_1|e^{i\theta_1}$ et de norme 1. On complète e_1 en une base orthonormée e_1,\ldots,e_n et on note P la matrice (unitaire) de passage. On a $A=PA'P^*$ où A' s'écrit par blocs $A'=\begin{pmatrix} \lambda_1 & w \\ 0 & M \end{pmatrix}$, avec $M\in \mathbf{M}_{n-1}(\mathbf{C})$. Le développement du polynôme caractéristique $\det(A-X\mathrm{Id})$ montre que les valeurs propres de M sont $\lambda_2,\ldots,\lambda_n$. Par l'hypothèse de récurrence on peut écrire M=NV où N a pour valeurs propres $|\lambda_2|,\ldots,|\lambda_n|$ et où V est unitaire de dimension n-1. On pose alors $U'=\begin{pmatrix} e^{i\theta_1} & 0 \\ 0 & V \end{pmatrix}$, de sorte qu'on a $A'U'^{-1}=\begin{pmatrix} |\lambda_1| & wV^{-1} \\ 0 & N \end{pmatrix}:=B'$. On a ainsi écrit A'=B'U', où B' a pour valeurs propres $|\lambda_1|,\ldots,|\lambda_n|$ et où U' est unitaire. Mais alors, on a $A=PA'P^*=P(B'U')P^*=(PB'P^*)(PU'P^*)=BU$, avec les conditions requises : B est semblable à B', donc a les mêmes valeurs propres, et U est produit de trois matrices unitaires, donc est unitaire.
- 1.3 Remarque. Comme Bernard Héron me l'a fait remarquer, une autre méthode pour établir l'inégalité ci-dessus consiste à utiliser la décomposition de Schur, c'est-à-dire à écrire $A=U^*TU$ avec U unitaire et T triangulaire.