Résolution d'équations numériques

Daniel PERRIN

On présente ici trois méthodes de résolution d'équations : les méthodes de Newton, d'interpolation linéaire et, très brièvement, d'ajustement linéaire.

Pour des compléments sur ces questions on pourra consulter le livre de J.-L. Ovaert et J.-L. Verley, Analyse, Vol. 1, Cedic, Chapitre VI §2 (ce livre n'est plus disponible en librairie mais la bibliothèque en a quelques exemplaires).

1 Introduction

1.1 Les méthodes

Soit $f:[a,b]\to \mathbf{R}$ une fonction de classe C^1 et supposons que f admette un zéro α entre a et b (c'est le cas si f(a) et f(b) sont de signes contraires). Nous supposerons que α est le seul zéro de f dans [a,b] (c'est le cas si f est monotone sur [a,b] et on peut en général s'y ramener en restreignant l'intervalle [a,b]). Notre objectif est de décrire des algorithmes permettant de calculer la racine α . Pour cela, l'idée est de remplacer l'équation f(x)=0 par une équation équivalente du type g(x)=x et d'utiliser une suite récurrente $x_{n+1}=g(x_n)$ dont on sait que, si elle converge, c'est vers un point fixe de g, donc un zéro de f, c'est-à-dire vers α .

Il existe toujours de telles fonctions g, par exemple g(x) = f(x) + x. On a même une certaine latitude sur g, on peut prendre, en effet : $g(x) = x + \mu f(x)$ avec $\mu \neq 0$, ou encore $g(x) = x + \mu(x)f(x)$ où μ est une fonction qui ne s'annule pas sur [a,b]. Dans tous ces cas on aura bien $f(x) = 0 \iff g(x) = x$.

Il reste à choisir le scalaire ou la fonction μ pour que la suite $x_{n+1} = g(x_n)$ converge effectivement vers α . On sait que cela est lié à la valeur de $g'(\alpha)$: si on a $|g'(\alpha)| > 1$ la suite ne converge pas (sauf si elle est constante à partir d'un certain rang), si on a $|g'(\alpha)| < 1$ elle converge (pourvu que x_0 soit assez voisin de α) et le meilleur choix est celui qui donne $g'(\alpha) = 0$ et qui assure une convergence très rapide. Dans le cas présent, si on prend $g(x) = x + \mu f(x)$ on a $g'(\alpha) = 1 + \mu f'(\alpha)$, de sorte que le choix optimal serait de prendre $\mu = -\frac{1}{f'(\alpha)}$. On notera que ce choix n'est possible que si $f'(\alpha)$ est non nul, c'est-à-dire si α n'est pas racine double de l'équation. De plus, comme α est inconnu, ce choix est en général impraticable et on se contentera d'une valeur approchée. Il y a pour cela plusieurs solutions qui fournissent chacune des algorithmes de calcul de α :

1) Les méthodes d'ajustement linéaire consistent à prendre μ constant et non nul. Il y a deux variantes très voisines, en prenant $\mu = -1/\lambda$, donc $g(x) = x - \frac{f(x)}{\lambda}$ avec $\lambda = f'(\beta)$ avec $\beta \in]a,b[$, le plus proche possible de α , ou $\lambda = \frac{f(\gamma) - f(\delta)}{\gamma - \delta}$ avec $\gamma,\delta \in]a,b[$, voisins de α , ce qui revient au même puisque, par le théorème des accroissements finis, il existe $\epsilon \in]\gamma,\delta[$ tel que $f(\gamma) - f(\delta) = (\gamma - \delta)f'(\epsilon)$.

- 2) La méthode de Newton est du premier type de 1) mais avec λ variable, $\lambda = f'(x)$: $g(x) = x \frac{f(x)}{f'(x)}$.
- 3) Enfin, la méthode d'interpolation linéaire est du second type de 1) avec λ variable : $\lambda(x) = \frac{f(\gamma) f(x)}{\gamma x}.$

Les méthodes d'ajustement et d'interpolation linéaire donnent des convergences de type géométrique (i.e. en k^n avec 0 < k < 1), celle de Newton donne une convergence rapide (i.e. en k^{2^n} avec 0 < k < 1).

1.2 Le cadre

Pour simplifier, nous ferons les hypothèses suivantes :

- **1.1 Hypothèses et notations.** On considère une fonction $f:[a,b] \to \mathbb{R}$, de classe C^2 , vérifiant les conditions suivantes :
- 1) f' ne s'annule pas sur [a,b], donc garde un signe constant, de sorte que f est monotone sur [a,b].
- 2) f(a)f(b) est < 0, de sorte que f admet un unique zéro α dans]a,b[.
- 3) f'' garde un signe constant sur [a,b] (donc f est concave ou convexe).

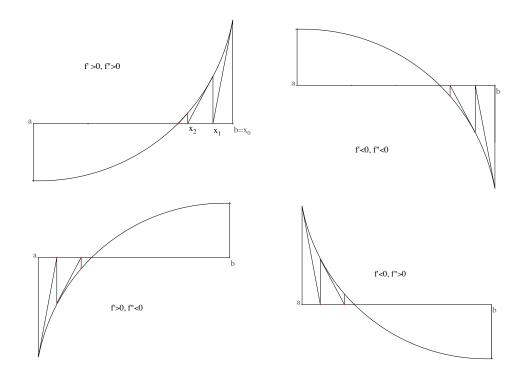
La fonction |f'| étant continue et non nulle sur [a,b] admet une borne inférieure que nous noterons m'. La fonction |f''| étant continue sur [a,b] admet une borne supérieure que nous noterons M''.

1.2 Remarques.

- 1) On notera que les hypothèses ci-dessus peuvent toujours être réalisées en restreignant suffisamment l'intervalle [a, b], sauf si on a $f'(\alpha) = 0$ (α racine double de f) ou $f''(\alpha) = 0$ (α point d'inflexion de f).
- 2) On peut toujours se ramener au cas où f' et f'' sont positives, c'est-à-dire où f est croissante et convexe. En effet, si f est croissante et concave (resp. décroissante et convexe, resp. décroissante et concave), il suffit de remplacer l'équation f(x) = 0 par $f_1(x) = 0$ (resp. $f_2(x) = 0$, resp $f_3(x) = 0$) avec $f_1(x) = -f(-x)$ (resp. $f_2(x) = f(-x)$, resp. $f_3(x) = -f(x)$).

2 La méthode de Newton

Comme on l'a dit, la méthode de Newton consiste, pour calculer α , à introduire la fonction : $g(x) = x - \frac{f(x)}{f'(x)}$. L'interprétation géométrique de g est la suivante : on écrit la tangente au graphe de f en le point (x, f(x)), c'est la droite d'équation Y - f(x) = f'(x)(X - x) et on coupe cette droite par l'axe des x, Y = 0, on obtient alors X = g(x) qui sera une valeur approchée de α . On réitère l'opération pour obtenir une suite x_n qui converge vers α , voir figures ci-dessous.



2.1 Théorème. Soit $x_0 \in [a, b]$. On suppose que x_0 vérifie la condition

$$f(x_0)f''(x_0) > 0$$
 (règle de Fourier).

Alors, si on définit la suite (x_n) par la relation de récurrence $x_{n+1} = g(x_n)$, la suite (x_n) est monotone, elle converge vers α et on a la majoration :

$$|x_n - \alpha| \le \frac{2m'}{M''} \left(\frac{M''}{2m'} |x_0 - \alpha|\right)^{2^n}.$$

Démonstration. On peut supposer f' et f'' positives. On a alors f(a) < 0, f(b) > 0 et la règle de Fourier impose $f(x_0) > 0$, c'est-à-dire $x_0 > \alpha$.

2.2 Lemme. L'intervalle $J = [\alpha, b]$ est stable par g et on a, pour $x \in J$, $g(x) \leq x$.

Démonstration. Les fonctions f et f' étant positives sur J, on a déjà $g(x) \le x \le b$. Pour voir que g reste supérieur à α , on étudie la fonction $g(x) - \alpha = x - \alpha - \frac{f(x)}{f'(x)}$ ou encore la fonction $u(x) = (x - \alpha)f'(x) - f(x)$. On a $u'(x) = (x - \alpha)f''(x) \ge 0$, de sorte que u est croissante sur J. Comme elle s'annule en α , elle est positive, donc aussi $g(x) - \alpha$.

Comme J est stable par g, la suite (x_n) est bien définie et elle est est minorée par α . De plus, l'inégalité $g(x) \leq x$ montre qu'elle est décroissante. Elle est donc convergente, et sa limite est l'unique point fixe de g, qui est α .

Les majorations résultent du lemme suivant :

2.3 Lemme. On suppose f', f'' positives. Pour $x \in [\alpha, b]$ on a $g(x) - \alpha \leq \frac{M''}{2m'}(x - \alpha)^2$.

Démonstration. On a

$$g(x) - \alpha = (x - \alpha) - \frac{f(x)}{f'(x)} = \frac{f'(x)(x - \alpha) - f(x)}{f'(x)}$$

et on majore cette fraction en minorant le dénominateur par m' et en majorant le numérateur $u(x) = f'(x)(x - \alpha) - f(x) + f(\alpha)$. On a $u'(x) = f''(x)(x - \alpha)$ et on majore $u(x) = u(x) - u(\alpha)$ ($u(\alpha)$ est nul car $f(\alpha)$ l'est) par la formule de la moyenne :

$$u(x) - u(\alpha) = \int_{\alpha}^{x} f''(t)(t - \alpha)dt \le M'' \int_{\alpha}^{x} (t - \alpha)dt = M'' \frac{(x - \alpha)^{2}}{2}.$$

Le lemme 2.3 appliqué à x_{n-1} donne l'inégalité $x_n - \alpha \leq \frac{M''}{2m'} (x_{n-1} - \alpha)^2$ qui, par récurrence sur n, donne la formule annoncée :

$$x_n - \alpha \le \left(\frac{M''}{2m'}\right)^{1+2+\dots+2^{n-1}} (x_0 - \alpha)^{2^n}.$$

2.4 Remarque. Lorsque la quantité $(\frac{M''}{2m'}|x_0 - \alpha|)$ est < 1, la convergence de x_n vers α est une convergence rapide. On notera que, puisque x_n converge vers α , cette condition est réalisée pourvu qu'on remplace x_0 par x_n pour n assez grand. Dans la pratique, on constatera que la méthode de Newton converge avec une rapidité stupéfiante.

3 La méthode d'interpolation linéaire

Cette méthode porte de nombreux autres noms : méthode des cordes, de fausse position, de Lagrange, des parties proportionnelles. Pour simplifier, nous supposerons f' et f'' positives, ce qui implique f croissante, convexe et f(a) < 0, f(b) > 0. Le cas général est analogue, $mutatis\ mutandis$.

Nous aurons besoin de quelques propriétés des fonctions convexes :

- **3.1 Rappels.** On suppose f convexe, c'est-à-dire $f'' \ge 0$.
- 1) La courbe représentative de f est au-dessus de ses tangentes, c'est-à-dire qu'on a, pour tout $c \in]a,b[$ et tout x dans [a,b] :

$$f(x) > f(c) + (x - c)f'(c).$$

2) Si x et y sont distincts, la pente $p(x,y) = p(y,x) = \frac{f(x) - f(y)}{x - y}$ est, pour y fixé (resp. pour x fixé), une fonction croissante de x (resp. de y).

Démonstration. 1) On étudie la différence $\delta(x) = f(x) - f(c) - (x - c)f'(c)$.

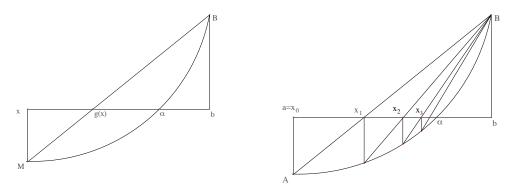
2) On se ramène au point 1) en dérivant p(x,y) par rapport à x.

On considère les points B = (b, f(b)) et M = (x, f(x)) du graphe de f. La pente de la droite (MB) est p(x, b) et on peut écrire l'équation de la droite (MB) sous la forme

Y = f(x) + p(x,b)(X-x) ou Y = f(b) + p(x,b)(X-b). Cette droite coupe l'axe des x au point (g(x),0) avec :

$$g(x) = x - \frac{f(x)}{p(x,b)} = b - \frac{f(b)}{p(x,b)}$$
.

On obtient ainsi la valeur approchée g(x) de α . On réitère l'opération pour obtenir une suite x_n qui converge vers α , voir figure ci-dessous.



3.2 Théorème. On suppose f' et f'' positives. Soit $x_0 \in [a,b]$, $x_0 < \alpha$. La suite (x_n) , définie par la relation de récurrence $x_{n+1} = g(x_n)$, est croissante, elle converge vers α et on a la majoration :

$$|x_n - \alpha| \le \left[1 - \frac{p(x_0, \alpha)}{p(\alpha, b)}\right]^n |x_0 - \alpha|.$$

Démonstration. On commence par un lemme :

3.3 Lemme. L'intervalle $I = [a, \alpha]$ est stable par g et on a, pour $x \in I$, $g(x) \ge x$.

Démonstration. Soit $x \in I$. On a $g(x) = x - f(x) \frac{b - x}{f(b) - f(x)}$, ce qui, comme f est négative sur I, montre $g(x) \ge x \ge a$.

Pour montrer $g(x) \leq \alpha$ on calcule $\alpha - g(x) = \frac{u(x)}{f(b) - f(x)}$, avec $u(x) = (\alpha - x)(f(b) - f(x)) + f(x)(b - x)$ et il s'agit de montrer que cette quantité est positive. On a $u'(x) = -f(b) + (b - \alpha)f'(x)$, donc $u''(x) = f''(x)(b - \alpha) \geq 0$. La fonction u' est donc croissante sur $[a, \alpha]$ et en α elle vaut $u'(\alpha) = -f(b) + (b - \alpha)f'(\alpha) = f(\alpha) - f(b) + (b - \alpha)f'(\alpha)$ qui est ≤ 0 en vertu de 3.1.1. Il en résulte que u est décroissante et, comme elle est nulle en α , elle est positive sur $[a, \alpha]$.

On peut alors revenir au théorème. Comme I est stable par g, la suite (x_n) est bien définie, majorée par α et croissante. Elle converge donc vers l'unique point fixe de g, à savoir α .

La majoration est obtenue par récurrence à partir du lemme suivant :

3.4 Lemme. Pour
$$x \in [a, \alpha]$$
, on $a \ 0 \le \alpha - g(x) \le (\alpha - x) \left[1 - \frac{p(x_0, \alpha)}{p(\alpha, b)} \right]$.

Démonstration. Un calcul immédiat donne, en tenant compte de $f(\alpha) = 0$:

$$\alpha - g(x) = (\alpha - x) \left[1 - \frac{p(x, \alpha)}{p(x, b)} \right]$$

On obtient la majoration en minorant $p(x,\alpha)$ par $p(x_0,\alpha)$ et en majorant p(x,b) par $p(\alpha,b)$ en vertu de 3.1.2.

3.5 Remarque. Lorsqu'on ne suppose plus f' et f'' positives, le choix de x_0 et celui de l'extrémité fixe des cordes dépendent de la monotonie et de la concavité de f. La règle est la suivante : on suppose que x_0 vérifie la condition $f(x_0)f''(x_0) < 0$. Soit e l'extrémité (a ou b) telle que α soit entre x_0 et e. On construit le point x_{n+1} comme intersection de la droite qui joint le point le point d'abscisse x_n de la courbe et le point (e, f(e)).

4 La méthode d'ajustement linéaire

Nous en donnons seulement un bref aperçu. On pose $g(x) = x - \frac{f(x)}{\lambda}$ où λ est un scalaire non nul et on définit la suite (x_n) par récurrence, à partir de $x_0 \in [a, b]$, par $x_{n+1} = g(x_n)$. Attention, il faut vérifier que la suite est bien définie, c'est à dire que les x_n ne sortent pas de [a, b].

On part d'un point $P_n = (x_n, f(x_n))$ du graphe de f. On trace la droite de pente λ passant par P_n qui a pour équation $y - f(x_n) = \lambda(x - x_n)$. Cette droite coupe l'axe des x au point d'abscisse x_{n+1} , cf. figure ci-dessous, avec

$$x_{n+1} = x_n - \frac{f(x_n)}{\lambda} = g(x_n).$$

Lorsqu'on itère ce procédé on trace donc des sécantes toutes de pente λ d'où le nom de méthode des sécantes parallèles donné parfois à cette méthode.

Pour fixer les idées supposons f' et f'' positives, donc f croissante et convexe. Comme le scalaire λ doit être le plus proche possible de $f'(\alpha)$, nous prendrons $\lambda > 0$. On sait que la monotonie de la suite (x_n) dépend du signe de $g'(\alpha)$. Ici, on a $g'(\alpha) = 1 - f'(\alpha)/\lambda$ et donc $g'(\alpha) > 0 \iff \lambda > f'(\alpha)$ et $g'(\alpha) < 0 \iff \lambda < f'(\alpha)$. On aura donc pour la suite (x_n) un comportement "en escalier" si et seulement si la pente λ est plus grande que la pente de la tangente au graphe de f en α et un comportement en "escargot" sinon.

