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Introduction

Ce mémoire présente les travaux que j’ai effectués depuis la soutenance de ma thèse de doctorat. Si le
point commun à ces travaux est la notion de sous-groupe anosovien, une classe de sous-groupes discrets
des groupes de Lie réels semi-simples introduite par Labourie, c’est la géométrie lorentzienne (et plus
généralement pseudo-riemannienne) qui m’a guidé vers cette thématique.

L’hyperboloïde à une nappe

Les objets géométriques que j’étudie sont tous liés à diverses généralisations (en diverses dimensions et
signatures) de l’hyperboloïde à une nappe. On considérera donc

H =
{
(x,y,z) ∈R3

∣∣∣x2 + y2 − z2 = 1
}
.

Cette surface est souvent présentée par sa particularité d’être doublement réglée : elle possède deux feuil-
letages par droites. Si les droites de l’hyperboloïde peuvent s’interpréter par la géométrie euclidienne de
l’espace ambiant (il s’agit des seules courbes deH qui sont des géodésiques de l’espace euclidien ambiant
R

3), elles n’ont pas de caractérisation intrinsèque : pour la métrique riemannienne induite, il s’agit de
géodésiques comme les autres. La structure géométrique particulièrement adaptée à l’étude de H est
une métrique lorentzienne : celle induite par la forme quadratique q2,1 (dont H est le niveau q2,1 = 1)
restreinte au fibré tangent TH. Pour cette métrique, les droites de l’hyperboloïde sont exactement les
géodésiques de type lumière (i.e. dont les vecteurs tangents sont isotropes pour q2,1). Un autre intérêt de
cette métrique lorentzienne est son homogénéité : l’action sur H du groupe O(2,1) des transformations
linéaires qui préservent q2,1 est isométrique et transitive. Ce point de vue sur l’hyperboloïde à une nappe
H consiste à le considérer comme l’espace de de Sitter dS2, qui est la variété lorentzienne modèle à cour-
bure constante positive. Autrement dit, le rôle que tientH en géométrie lorentzienne est similaire à celui
occupé par la sphère S

2 en géométrie riemannienne.
L’action O(2,1) yH est liée de près à la géométrie du plan hyperbolique H2. En effet, si l’on considère

le modèle de l’hyperboloïde

H
2 =

{
(x,y,z) ∈R3

∣∣∣x2 + y2 − z2 = −1, z > 0
}
,
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on peut associer à un point p ∈ H une géodésique de H
2, obtenue en intersectant l’espace tangent (vecto-

riel) TpH⊂R
3 avec H

2. D’un point de vue dynamique, ceci veut dire que l’on peut identifierH à l’espace
des orbites (orientées) du flot géodésique du plan hyperbolique.

On peut aussi étudier l’hyperboloïde à une nappe comme une quadrique projective. Si l’on identifie R3

à une carte affine dans RP
3, par exemple en envoyant (x,y,z) ∈ R3 sur [x : y : z : 1] ∈ RP

3, l’hyperboloïde
à une nappe H se compactifie en rajoutant un cercle à l’infini. On reconnaît le projectivisé H du cône
isotrope d’une forme quadratique q2,2 de signature (2,2) :

H =
{
[x : y : z : t] ∈RP

3
∣∣∣x2 + y2 − z2 − t2 = 0

}
.

Le groupe qui agit naturellement sur H est donc PO(2,2), et l’action de O(2,1) considérée plus haut
correspond au sous-groupe de PO(2,2) qui préserve H. Cette action ne préserve aucune métrique (rie-
mannienne ou lorentzienne) sur H, mais seulement une structure conforme lorentzienne. La variété
lorentzienne conforme que l’on obtient ainsi, appelée univers d’Einstein et notée Ein2,1, joue le rôle en
géométrie lorentzienne conforme de la sphère conforme S

2 en géométrie riemannienne conforme (c’est-
à-dire de la sphère S

2 munie de l’action du groupe conforme PO(3,1), et pas seulement de son groupe
d’isométries O(3)).

Enfin, le point de vue adopté le plus souvent dans ce mémoire consiste à traiter H comme le bord de
l’espace anti-de Sitter :

AdS3 =
{
[x : y : z : t] ∈RP

3
∣∣∣x2 + y2 − z2 − t2 < 0

}
.

L’action de PO(2,2) sur AdS3 est transitive et isométrique pour une métrique lorentzienne à courbure sec-
tionnelle constante négative. Autrement dit, l’espace anti-de Sitter est l’analogue lorentzien de l’espace
hyperbolique réel H3. Dans le cadre riemannien, toute 3-variété hyperbolique complète est isométrique
à un quotient Γ \H3 où Γ est un sous-groupe discret d’isométries de H

3. Réciproquement, un tel sous-
groupe produit une 3-variété hyperbolique quotient Γ \H3, pourvu que Γ soit sans torsion. Dans le cadre
lorentzien, les choses se compliquent : un sous-groupe discret sans torsion de PO(2,2) n’agit en général
pas de façon proprement discontinue sur AdS3, ce qui fait que l’on obtient pas de 3-variété quotient.
Réciproquement, les 3-variétés anti-de Sitter ne s’obtiennent pas toutes comme le quotient de AdS3 par
un groupe discret qui agit proprement discontinûment sur AdS3. Par exemple, dans son article fonda-
teur [Mes07], Mess a montré que les 3-variétés anti-de Sitter globalement hyperbolique Cauchy-compactes
(essentiellement celles qui se rétractent sur une surface compacte de type espace) s’obtiennent comme
des quotients Γ \Ω d’un ouvert propre Ω ⊂ AdS3 par un sous-groupe discret Γ < PO(2,2). Les variétés
étudiées dans ce mémoire sont des généralisations en dimension et signature arbitraires des 3-variétés
anti-de Sitter globalement hyperbolique Cauchy-compactes.

Géométrie hyperbolique pseudo-riemannienne

Le cadre principal de ce mémoire sera celui de l’espace hyperbolique pseudo-riemannien

H
p,q :=

{
[x1 : · · · : xp+q+1] ∈RP

p+q
∣∣∣x2

1 + · · ·+ x2
p − xp+1 − · · · − x2

p+q+1 < 0
}

et de son bord

∂Hp,q :=
{
[x1 : · · · : xp+q+1] ∈RP

p+q
∣∣∣x2

1 + · · ·+ x2
p − xp+1 − · · · − x2

p+q+1 = 0
}
.
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Lorsque l’on sort du cadre riemannien (i.e. pour q , 0), un sous-groupe discret Γ < PO(p,q + 1) n’agit
pas toujours de façon proprement discontinue sur H

p,q. Notre étude se portera sur les sous-groupes
H
p,q-convexe-cocompacts définis par Danciger, Guéritaud et Kassel dans [DGK18]. Comme le nom le

suggère, un tel sous-groupe Γ < PO(p,q + 1) a la particularité de préserver un convexe fermé C ⊂ H
p,q

sur lequel il agit de façon proprement discontinue et cocompacte (si cette définition suffit lorsque q = 0,
la définition précise en signature quelconque est plus technique). On peut donc espérer, en restreignant
l’étude de l’action Γ yH

p,q à l’action sur le convexe C, arriver à une situation plus proche de la géométrie
hyperbolique riemannienne. Une première similarité est la définition de l’ensemble limiteΛΓ ⊂ ∂Hp,q d’un
tel groupe, qui est égal à C ∩∂Hp,q. La dynamique Γ yΛΓ est la même que dans le cadre riemannien : le
groupe Γ est hyperbolique et cette action est topologiquement conjuguée à celle sur son bord de Gromov
∂∞Γ . Mais l’action de Γ sur ∂Hp,q n’est pas pour autant similaire au cas riemannien : lorsque q , 0, l’action
de Γ sur le complémentaire ∂Hp,q \ΛΓ n’est pas proprement discontinue.

Je cherche depuis plusieurs années à comprendre la nature fractale de l’ensemble limite ΛΓ ⊂ ∂Hp,q

d’un sous-groupe H
p,q-convexe-cocompact. En étudiant le lien entre cet ensemble limite et la structure

pseudo-riemannienne conforme de H
p,q, on se rend vite compte que ΛΓ est homéomorphe à un sous-

ensemble de la sphère S
p−1, et que dans le cas où ΛΓ est homéomorphe à S

p−1, c’est automatiquement
une sous-variété lipschitzienne. Ce comportement s’oppose à celui des sous-groupes quasi-fuchsiens en
géométrie hyperbolique, où l’ensemble limite serait typiquement une sphère topologique de dimension
de Hausdorff non entière (or la dimension de Hausdorff d’une sous-variété lipschitzienne est égale à sa
dimension topologique).

Dans l’article [GM21], écrit en collaboration avec O. Glorieux, nous montrons qu’il est possible de
définir une autre notion de dimension, que nous appelons dimension de Hausdorff pseudo-riemannienne,
qui est plus adaptée pour décrire la géométrie fractale de l’ensemble limite. Tout comme en géométrie
hyperbolique, nous interprétons cette dimension comme un exposant critique, c’est-à-dire comme un taux
de croissance exponentielle

δ
H
p,q (Γ ) = limsup

R→∞

1
R

LogCard {γ ∈ Γ
∣∣∣d

H
p,q(o,γ · o) ≤ R}

qui demande une attention particulière afin d’être bien défini. En effet, la quantité d
H
p,q (x,y) représente

la longueur d’une géodésique entre deux points x,y ∈ H
p,q mais n’est pas une distance. Pour que cet

exposant ne dépende pas du point o ∈Hp,q choisi, nous imposons à ce point d’appartenir à un convexe
C sur lequel Γ agit de façon cocompacte, et nous montrons que la restriction de d

H
p,q à C vérifie une

forme affaiblie d’inégalité triangulaire. Le lien entre cet exposant critique et la dimension de Hausdorff
pseudo-riemannienne se fait alors par une adaptation de la théorie de Patterson-Sullivan.

Les deux autres articles présentés portant sur la géométrie hyperbolique pseudo-riemannienne ont
pour point commun de se restreindre au cas de l’espace anti-de Sitter AdSd+1 = H

d,1, et plus précisé-
ment aux groupes AdSd+1-quasi-fuchsiens, c’est-à-dire aux sous-groupes AdSd+1-convexe-cocompacts
Γ < PO(d,2) pour lesquels l’ensemble limite ΛΓ ⊂ ∂AdSd+1 est homéomorphe à la sphère S

d−1. Dans
[MST23], co-écrit avec J-M. Schlenker et N. Tholozan, nous construisons des nouveaux exemples de tels
sous-groupes lorsque d ≥ 4, isomorphes à des groupes fondamentaux de variétés de Gromov-Thurston, une
famille de variétés compactes possédant des métriques riemanniennes à courbure sectionnelle négative
mais non localement symétriques. Dans [GM], co-écrit avec O. Glorieux, nous montrons que l’ensemble
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limite d’un groupe AdSd+1-quasi-fuchsien ne peut être une sous-variété de classe C1 que dans le cas très
spécifique d’un réseau uniforme Γ <O(d,1) < PO(d,2), renforçant ainsi l’idée que cet ensemble limite est
un objet fractal.

Sous-groupes projectivement anosoviens

Un sous-groupe projectivement anosovien Γ < SL(d,R) est essentiellement un sous-groupe discret hyper-
bolique au sens de Gromov dont on peut réaliser le bord de Gromov comme un sous-ensemble fermé
ΛΓ ⊂RP

d−1, que l’on nommera à nouveau ensemble limite. Les sous-groupes Hp,q-convexe-cocompacts en
sont des exemples. C’est dans ce cadre plus général que se placent les deux autres articles présentés dans
ce mémoire.

Dans l’article [GMT23], écrit en collaboration avec O. Glorieux et N. Tholozan, nous étudions la
géométrie fractale de cet ensemble limite en lien avec un exposant critique qui cette fois-ci est de nature
plus algébrique. Plus précisément, étant donné un sous-groupe projectivement anosovien Γ < SL(d,R),
on peut considérer une application injective et équivariante ξ : ∂∞Γ →RP

d−1 dont l’image est l’ensemble
limite ΛΓ ainsi qu’une autre ξ∗ : ∂∞→ RP

d−1∗ dont l’image est l’ensemble limite Λ∗
Γ

de la représentation
duale de Γ . Ces applications sont compatibles au sens où ξsym = (ξ,ξ∗) : ∂∞Γ → RP

d−1 ×RP
d−1∗ est à

valeurs dans la variété de drapeaux partiels

F1,d−1 =
{
([x], [α]) ∈RP

d−1 ×RP
d−1∗

∣∣∣α(x) = 0
}
.

Un sous-groupe projectivement anosovien Γ < SL(d,R) possède ainsi trois ensembles limites différents

ΛΓ = ξ(∂∞Γ ) ⊂RP
d−1 ; Λ∗Γ = ξ∗(∂∞Γ ) ⊂RP

d−1∗ ; Λ
sym
Γ

= ξsym(∂∞Γ ) ⊂ F1,d−1.

Notre travail relie ces ensembles limites aux exposants critiques

δ1,2(Γ ) = limsup
R→+∞

1
R

LogCard
{
γ ∈ Γ

∣∣∣µ1(γ)−µ2(γ) ≤ R
}

et
δ1,d(Γ ) = limsup

R→+∞

1
R

LogCard
{
γ ∈ Γ

∣∣∣µ1(γ)−µd(γ) ≤ R
}
.,

où µ1(g) ≥ · · · ≥ µd(g) représentent les logarithmes des valeurs singulières de g ∈ SL(d,R) (i.e. la moitié
des logarithmes des valeurs propres de gT g). Si nous obtenons assez directement une majoration de la
dimension de Hausdorff

Hdim(ΛΓ ) ≤ δ1,2(Γ )

valable pour les trois ensembles limites, il est en revanche plus délicat de minorer une dimension de
Hausdorff. Nous parvenons à le faire pour l’ensemble limite symétrisé, la formule

Hdim
(
Λ

sym
Γ

)
≥ δ1,d(Γ )

se déduisant du résultat plus fort
Hdim

(
Λ

sym
Γ

)
≥ 2δ1,d(Γ )
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valable pour les sous-groupe fortement projectivement convexe-cocompacts (dont les groupes Hp,q-convexe-
cocompacts sont des exemples), qui permettent une étude proche de celle effectuée dans [GM21], la
géométrie hyperbolique pseudo-riemannienne étant remplacée par la géométrie de la distance de Hilbert
d’un domaine proprement convexe de l’espace projectif. Un autre aspect de ce travail, utilisé dans les
démonstrations mais qui est tout de même d’un intérêt indépendant, est l’égalité entre les exposants cri-
tiques décrits plus hauts (i.e. des taux de croissance de valeurs singulières) et des entropies (qui mesurent
la croissance des valeurs propres).

Enfin, le dernier travail présenté [DMS24], issu d’une collaboration avec B. Delarue et A. Sanders,
montre que s’il n’est pas possible de trouver un espace homogène remplissant le rôle de l’espace hy-
perbolique pour les sous-groupes discrets de SO(n,1), il est possible de trouver un remplaçant au flot
géodésique. Plus précisément, nous considérons un espace homogène L ≈ SL(d,R)/SL±(d − 1,R) muni
d’un flot φt qui commute avec l’action de SL(d,R) et nous montrons que, pour tout sous-groupe projec-
tivement anosovien sans torsion Γ < SL(d,R), on peut trouver un ouvert M̃Γ ⊂ L invariant à la fois par
Γ et par le flot φt, sur lequel Γ agit librement et proprement discontinûment, et de façon à ce que le flot
obtenu sur la variété quotientMΓ = Γ \M̃Γ vérifie l’axiome A de Smale, une propriété forte d’hyperbolicité
uniforme de ce flot.

Le fait d’associer un flot à un sous-groupe projectivement anosovien remonte à la définition originale
de Labourie [Lab06]. Cependant, ce flot intervenant dans la définition n’est pas très pratique pour l’étude
de tels sous-groupes, en particulier parce qu’il demande un choix à priori de paramétrage. Ce problème
de choix de paramétrage a été réglé par Sambarino [Sam14, Sam24], introduisant ce qu’il appelle le flot
de réfraction. Ce flot de réfraction est très efficace dans l’étude des sous-groupes anosoviens, par exemple
des questions de comptage sur le groupe se résolvent par des propriétés ergodiques du flot. Sambarino
arrive ainsi à l’estimée

Card
{
[γ] ∈ [Γ ]prim

∣∣∣λ1(γ) ≤ R
}

=
eh(Γ )R

h(Γ )R
+ O(1)

où le nombre h(Γ ) > 0 représente l’entropie topologique du flot de réfraction, [Γ ]prim est l’ensemble des
classes de conjugaison d’éléments primitifs de Γ et λ1(γ) ∈ R est le logarithme de son rayon spectral.
L’usage du flot de réfraction est tout de même limité par sa faible régularité : il s’agit d’un flot Hölder
sur un espace métrique. Notre point de vue permet de réaliser ce flot de réfraction comme la restriction
du flot lisseMΓ x φt à un sous-ensemble compact invariant KΓ ⊂MΓ . Ce nouveau point de vue permet
d’étudier les sous-groupes projectivement anosoviens à l’aide d’outils de dynamique différentiable. Comme
application, nous montrons le mélange exponentiel de ces flots, et en déduisons une asymptotique plus
précise : l’existence d’un nombre c ∈ (0,h(Γ )) tel que

Card
{
[γ] ∈ [Γ ]prim

∣∣∣λ1(γ) ≤ R
}

=
eh(Γ )R

h(Γ )R

(
1 + O(e−cR)

)
.

Ce travail a aussi un intérêt géométrique. Par exemple, si l’on étudie un sous-groupe projectivement
anosovien Γ < SL(d,R) qui est isomorphe au groupe fondamental d’une surface compacte sans bord Σ de
genre au moins 2 (comme par exemple les images de représentations de Hitchin, l’exemple fondateur de la
théorie), une question qui revient souvent est de savoir si l’on peut trouver une copie de la surface Σ, ou
plutôt un plongement π1(Σ)-équivariant de son revêtement universel Σ̃, dans un espace homogène pour
SL(d,R) (typiquement son espace symétrique riemannien SL(d,R)/SO(d)). Notre approche ne donne pas
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de telle surface, mais le compact invariant KΓ ⊂ MΓ est une copie canonique du fibré unitaire tangent
T 1Σ dans une variété localement homogèneMΓ modelée sur L.

Organisation du mémoire

Nous commencerons par une présentation des notions de géométrie hyperbolique pseudo-riemannienne
et de sous-groupes anosoviens nécessaires à la lecture du mémoire.

Les trois parties suivantes portent sur les sous-groupes H
p,q-convexe-cocompacts. Nous en verrons

d’abord cinq familles d’exemples dans la partie 2. Les trois premières sont bien connues, mais la qua-
trième est jusqu’ici absente de la littérature sur le sujet. La dernière famille d’exemples est celle con-
struite dans l’article [MST23] en partant de variétés de Gromov-Thurston. La partie 3 traite la régularité
des ensembles limites. Si son but principal est de présenter les résultats de [GM], qui se restreint à la
signature lorentzienne, une grande proportion est écrite en signature quelconque, à la fois pour obtenir
un résultat plus général et pour clarifier l’importance de la signature lorentzienne dans [GM]. La partie 4
vient ensuite présenter la théorie de Patterson-Sullivan pseudo-riemannienne développée dans [GM21].

La suite du mémoire se place dans le cadre plus général des sous-groupes projectivement anosoviens
de SL(d,R). La partie 5 résume les résultats obtenus dans [GMT23] sur les dimensions de Hausdorff
des ensembles limites de ces sous-groupes. La partie 6 porte sur la construction d’un flot lisse associé à
un sous-groupe projectivement anosovien issue de l’article [DMS24], et présente les propriétés différen-
tiables et ergodiques de ce flot.
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1 Background on pseudo-Riemannian hyperbolic geometry and projective
Anosov subgroups

1.1 Models for Hp,q and its boundary

Consider two integers p,q with p ≥ 1 and q ≥ 0, and equip the vector space V = R
p+q+1 with the non-

degenerate bilinear form 〈·, ·〉p,q+1 of signature (p,q+ 1) defined by

〈
x,y

〉
p,q+1 :=

p∑
j=1

xjyj −
d∑

j=p+1

xjyj ∀x,y ∈Rp+q+1.

The pseudo-hyperbolic space H
p,q is defined as the projectivization of timelike vectors, i.e.

H
p,q :=

{
[x] ∈ P(V )

∣∣∣〈x,x〉p,q+1 < 0
}
.

Two important cases are the (Riemannian) hyperbolic space Hp = H
p,0, and the (Lorentzian) anti-de Sitter

space AdSp+1 = H
p,1.

The geometry of Hp,q is best described by considering its double cover

Ĥ
p,q :=

{
x ∈ V

∣∣∣〈x,x〉p,q+1 = −1
}
.

The restriction of 〈·, ·〉p,q+1 to tangent spaces

TxĤ
p,q = x⊥ := {v ∈ V | 〈x,v〉p,q+1 = 0}

endows Ĥ
p,q with a pseudo-Riemannian metric of signature (p,q) invariant under both the O(p,q + 1)-

action and the antipodal map. It therefore descends to a PO(p,q+1)-invariant pseudo-Riemannian metric
on H

p,q. Since the differential d[·] : T Ĥp,q → THp,q is also a double cover, we may describe the tangent
bundle of Hp,q as

THp,q =
{
[x : v] ∈ P(V ×V )

∣∣∣〈x,x〉p,q+1 < 0,〈x,v〉p,q+1 = 0
}
.

With this description, the pseudo-Riemannian metric is expressed as

(
[x : v1], [x : v2]

)
[x]

= −
〈v1,v2〉p,q+1

〈x,x〉p,q+1
.

If q = 0, we recover the (Klein model of the) real hyperbolic space H
p = H

p,0. If q = 1, we find the
projective model of the anti-de Sitter space AdSp+1 = H

p,1.
The boundary of Hp,q is simply its boundary within the real projective space

∂Hp,q = H
p,q \Hp,q =

{
[x] ∈ P(V )

∣∣∣〈x,x〉p,q+1 = 0
}
.
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Notations and inner product for points of Hp,q

Given a point x ∈Hp,q ⊂RP
p+q, which is a line in R

p,q+1, we will add a tilde to denote a lift x̃ ∈ x ⊂R
p+q+1

satisfying 〈x̃, x̃〉p,q+1 = −1, provided the expression in which it is used does not depend on such a lift (as
there are two choices). With this convention, for x,y ∈Hp,q, we can define the number |

〈
x̃, ỹ

〉
p,q+1 | (but

not
〈
x̃, ỹ

〉
p,q+1). Similarly, given ξ ∈ ∂Hp,q we will add a tilde to denote a choice of a lift ξ̃ ∈ ξ ⊂ R

p+q+1,
provided once again that the expression in which it is used does not depend on such a lift. For example,
given (x,ξ) ∈Hp,q×∂Hp,q, the expression

〈
x̃, ξ̃

〉
p,q+1

, 0 is well defined, even though the number
〈
x̃, ξ̃

〉
p,q+1

is not.

1.2 Isometries of Hp,q

The group of orientation preserving isometries of Hp,q is the group PO(p,q + 1) of projective transforma-
tions of RP

p+q whose lifts to R
p+q+1 preserve the bilinear form 〈·|·〉p,q+1. It acts transitively on H

p,q. The
stabilizer of a point x ∈Hp,q in PO(p,q + 1) is isomorphic to O(p,q). For x0 = [0 : · · · : 0 : 1], the associated
embedding O(p,q) ⊂ PO(p,q+ 1) corresponds to the standard inclusion by block-diagonal matrices

O(p,q) → PO(p,q+ 1)

A 7→
[
A

1

]
so H

p,q can be seen as the homogeneous space PO(p,q+ 1)/O(p,q).

1.3 Geodesics

As in any pseudo-Riemannian manifold, geodesics of H
p,q are defined as geodesics of the Levi-Civita

connection. Geodesic lines are intersections of Hp,q with projectivizations P(V ) ⊂RP
p+q of 2-dimensional

planes V ⊂R
p+q+1 such that P(V )∩Hp,q , ∅.

The condition P(V )∩Hp,q , ∅means that V contains a negative direction, so the restriction of 〈·, ·〉p,q+1
to V has signature (0,2), (1,1) or (0,1). These 3 possible signatures correspond to the 3 types of geodesics
in pseudo-Riemannian manifolds (respectively timelike, spacelike and lightlike).

Given two distinct points x,y ∈Hp,q, there is a unique geodesic line (xy) ⊂H
p,q going through x and

y, it has a simple description:
(xy) = P(x⊕ y)∩Hp,q.

The type of the geodesic (xy) depends only on the inner product. It is (recall that x̃ denotes a lift of x to
R
p+q+1 satisfying 〈x̃, x̃〉p,q+1 = −1, and ỹ is defined in a similar way):

• Spacelike if and only if |
〈
x̃, ỹ

〉
p,q+1 | > 1,

• Lightlike if and only if |
〈
x̃, ỹ

〉
p,q+1 | = 1,

• Timelike if and only if |
〈
x̃, ỹ

〉
p,q+1 | < 1.
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Not all geodesics of Hp,q have endpoints on ∂Hp,q, which is a major difference with Riemannian hy-
perbolic geometry. However, the situation is nicer if we restrict ourselves to spacelike geodesics. Indeed,
timelike geodesics are closed, so they never meet the boundary, and lightlike geodesics meet the boundary
at exactly one point.

Lemma 1.1. Given x ∈ H
p,q and ξ ∈ ∂Hp,q, there is a unique geodesic (xξ) of Hp,q passing though x with

endpoint ξ. It is spacelike if and only if
〈
x̃, ξ̃

〉
p,q+1

, 0. In this case, it can be parametrized as f (s) where:

f̃ (s) = cosh(s)x̃ − sinh(s)

 ξ̃〈
x̃, ξ̃

〉
p,q+1

+ x̃


= e−sx̃ − sinhs〈

x̃, ξ̃
〉
p,q+1

ξ̃.

Proof. Since P(x⊕ξ) is the only projective line containing x and ξ, we have the existence and uniqueness
of the geodesic. Since 〈x̃, x̃〉p,q+1 = −1 and

〈
ξ̃, ξ̃

〉
p,q+1

= 0, the signature of the restriction of 〈·, ·〉p,q+1 to

x⊕ ξ is (1,1) if and only if
〈
x̃, ξ̃

〉
p,q+1

, 0. Since the formula for f (s) is a unique speed parametrization of

P(x⊕ ξ)∩AdSn+1, it is a parametrization of the geodesic (xξ).

We will denote by [xξ) = f ([0,+∞)) the half geodesic going from x to ξ. Pairs of points in ∂Hp,q do not
always define a geodesic of Hp,q. Given ξ,η ∈ ∂Hp,q, there is a spacelike geodesic of Hp,q with endpoints
ξ and η if and only if

〈
ξ̃, η̃

〉
p,q+1

, 0, in which case we denote it by (ξη).

1.4 The geometry of ∂Hp,q

The boundary ∂Hp,q carries a PO(p,q+ 1)-invariant pseudo-Riemannian conformal class.

Definition 1.2. A lift of ∂Hp,q is a submanifold Σ ⊂ V with the following properties:

• The restriction of the projection map [·] : V \ {0} → P(V ) is a double cover Σ→ ∂Hp,q,

• −ξ ∈ Σ for any ξ ∈ Σ.

Lifts of ∂Hp,q exist, as proves the example

Σ =
{
x ∈Rp,q+1

∣∣∣x2
1 + · · ·+ x2

p = x2
p+1 + · · ·+ x2

p+q+1 = 1
}

= S
p−1 ×Sq.

There is however no natural choice (whereas Hp,q has a natural lift Ĥp,q). If Σ ⊂ V is such a lift, then the
flat pseudo-Riemannian metric of Rp,q+1 restricts to a pseudo-Riemannian metric of signature (p−1,q) on
Σ. One can then consider its push-forward gΣ on ∂Hp,q. If Σ,Σ′ ⊂ V are two such lifts, there is a smooth
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function λ : Σ→ R+ such that the map x 7→ λ(x)x is a diffeomorphism from Σ to Σ′. The pull-back of the
pseudo-Riemannian metric on Σ′ by this map can be easily computed:

〈d(λ · x),d(λ · x)〉p,q+1 = 〈dλ · x+λ · dx,dλ · x+λ · dx〉p,q+1

= (dλ)2 〈x,x〉p,q+1︸     ︷︷     ︸
=0

+2λdλ〈x,dx〉p,q+1︸       ︷︷       ︸
=0

+λ2 〈dx,dx〉p,q+1

= λ2 〈dx,dx〉p,q+1 .

Pushed down to ∂Hp,q, this translates to gΣ′ = λ2gΣ, so there is a naturally defined conformal class of
signature (p − 1,q) on ∂Hp,q. Note that any metric g is this conformal class can be realised as g = gΣ for a
unique submanifold Σ ⊂ V with the above properties.

We will now see that certain open subsets of ∂Hp,q carry preferred metrics in the restricted conformal
class once a base point in H

p,q has been chosen.

Definition 1.3. Let x ∈Hp,q. Its dual hyperplane is the set

x∗ :=
{
y ∈Hp,q

∣∣∣∣ 〈x̃, ỹ〉p,q+1 = 0
}
.

The dual hyperplane x∗ is a totally geodesic embedded copy of Hp,q−1 in H
p,q. Conversely, any totally

geodesic embedded copy of Hp,q−1 in H
p,q is equal to x∗ for a unique point x ∈Hp,q. Note that if q = 0,

then x∗ is empty.

Definition 1.4. Let x ∈Hp,q. The affine domain associated to x is

U (x) =
{
y ∈Hp,q

∣∣∣∣ 〈x̃, ỹ〉p,q+1 , 0
}

= H
p,q \ x∗.

The pseudo-spherical domain associated to x is

∂U (x) =
{
ξ ∈ ∂Hp,q

∣∣∣∣∣ 〈x̃, ξ̃〉p,q+1
, 0

}
= ∂Hp,q \∂x∗.

By definition, the affine domain U (x) is the intersection of H
p,q with an affine patch. Consider the

case of x0 = [0 : · · · : 0 : 1] ∈Hp,q. The affine domain U (x0) consists of points [u1 : · · · : up+q+1] ∈Hp,q such
that up+q+1 , 0. The affine chart

[u1 : · · · : up+q+1] 7→
(

u1

up+q+1
, . . . ,

up+q

up+q+1

)
maps U (x0) to an open set W of Rp+q, and sends geodesics to affine lines in R

p+q.
More precisely, if we denote by qp,q the standard quadratic form of signature (p,q) on R

p+q, then
W = q−1

p,q((−∞,1)) is the interior of the quadric Q = q−1
p,q({1}), which is the image of ∂U (x0) through the

same map. If q = 0, then Q is a sphere, and we recover the Klein model of hyperbolic space. If q = 1, then
Q is a one sheeted hyperboloid. This explains why we draw AdS3 = H

2,1 as the interior of a one sheeted
hyperboloid. As this is a projective model, geodesics are represented by straight lines (see Figure 1).
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Figure 1: Geodesics of AdS3 = H
2,1 in an affine domain.

Note that a similar description of U (x) and ∂U (x) is valid for any point x ∈Hp,q (because the isometry
group PO(p,q+ 1) acts transitively on H

p,q).
Given x ∈Hp,q, the pseudo-spherical domain ∂U (x) can be equipped with a pseudo-Riemannian met-

ric gx of signature (p−1,q) such that (∂U (x), gx) is isometric to the pseudo-Riemannian sphere S
p−1,q. This

is achieved by fixing a lift x̃ ∈ Ĥp,q of x and considering the submanifold

Σx̃ =
{
y ∈Rp+q+1

∣∣∣∣ 〈y,y〉p,q+1 = 0,
〈
x̃, y

〉
p,q+1 = 1

}
=

{
x̃+ z ∈Rp+q+1

∣∣∣z ∈ x̃⊥, 〈z,z〉p,q+1 = 1
}
.

The restriction of the flat pseudo-Riemannian metric to Σx̃ has signature (p − 1,q) and constant sectional
curvature +1. As it is invariant under both the stabiliser of x̃ in O(p,q + 1) and the antipodal map, it
descends to a a pseudo-Riemannian metric gx of signature (p − 1,q) on ∂U (x), that has constant sectional
curvature +1 and that is invariant under the stabiliser of x in PO(p,q+ 1).

1.5 Convex-cocompactness in H
p,q

We follow the definitions in [DGK18]. Let us first give a precise definition of the appropriate notion of
convexity in real projective geometry.

Definition 1.5. A subset Ω ⊂ RP
p+q is properly convex if its closure is contained in some affine chart in

which it is bounded and convex.
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Definition 1.6. A group Γ ⊂ PO(p,q + 1) is H
p,q-convex cocompact if it is discrete and the action of Γ on

H
p,q preserves a set Ω with the following properties:

1. Ω is closed in H
p,q, is properly convex and has non empty interior.

2. The intersection of the closureΩ ⊂RP
p+q with ∂Hp,q does not contain any non trivial line segment.

3. The action of Γ on Ω is properly discontinuous and cocompact.

Note that if q = 0, i.e. in usual (Riemannian) hyperbolic geometry, the hyperbolic space H
p = H

p,0 is
properly convex and contains no trivial line segment in its boundary, so H

p,0-convex-cocompactness is
equivalent to the usual notion of convex-cocompactness.

We will focus most of our attention on the limit set of such a group.

Definition 1.7. If Γ ⊂ PO(p,q + 1) is H
p,q-convex cocompact, and Ω ⊂H

p,q satisfies the conditions men-
tioned above, then the limit set ΛΓ ⊂ ∂Hp,q is the set of accumulation points of the Γ -orbit of a point in
Ω.

This definition involves a choice of a properly convex set Ω satisfying the conditions described above,
and a base point in Ω. However, the resulting limit set ΛΓ only depends on the group Γ :

Proposition 1.8 ([DGK18]). If Γ ⊂ PO(p,q + 1) is Hp,q-convex cocompact, then Γ is Gromov-hyperbolic, and
the action of Γ on ΛΓ is topologically conjugate to the action on its Gromov boundary ∂∞Γ .
Moreover, ΛΓ does not depend on the choice of Ω or a point in Ω.

For H
p,1-convex cocompact subgroups of PO(p,2) for which the limit set is homeomorphic to S

p−1,
this was proved in [BM12]. In particular, the action of Γ on the set of triples of distinct points in ΛΓ is
properly discontinuous and cocompact, which will be of some use to us. Proposition 1.8 implies that infi-
nite order elements of Γ have a north-south dynamic as for any hyperbolic group acting on its boundary.

Proposition 1.9. If Γ ⊂ PO(p,q+ 1) is a convex cocompact group, then every infinite order element γ ∈ Γ \ {Id}
acts on ΛΓ with exactly two fixed points: γ±. For every ξ ∈ΛΓ \ {γ±}, we have limn→±∞γ

n · ξ = γ±.

1.6 Negative sets, convex hulls and black domains

One of the important properties of the limit set ΛΓ is that it is negative.

Definition 1.10. A subset Λ ⊂ ∂Hp,q is negative if it lifts to a cone in R
p,q+1 \ {0} on which all inner

products for 〈·, ·〉p,q+1 of non collinear vectors are negative.
If Λ has at least three elements, this is equivalent to any triple (ξ,η,τ) ∈Λ3 of pairwise distinct points

satisfying
〈
ξ̃, η̃

〉
p,q+1

〈
η̃, τ̃

〉
p,q+1

〈
τ̃ , ξ̃

〉
p,q+1

< 0.

Note that the sign of
〈
ξ̃, η̃

〉
p,q+1

〈
η̃, τ̃

〉
p,q+1

〈
τ̃ , ξ̃

〉
p,q+1

does not depend on a choice of lifts ξ̃, η̃, τ̃ ∈Rp+q+1.

This condition means that the intersection of the copy of RP
2 spanned by ξ,η,τ with H

p,q is a totally
geodesic copy of H2.
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Proposition 1.11 ([DGK18]). If Γ < PO(p,q + 1) is H
p,q-convex cocompact, then its limit set ΛΓ ⊂ ∂Hp,q is

negative.

As a consequence, any two distinct points of ΛΓ can be joined by a spacelike geodesic of Hp,q.

Definition 1.12. Let Γ < PO(p,q+1) be H
p,q-convex cocompact. For every infinite order element γ ∈ Γ we

call the spacelike geodesic (γ−γ+) the axis of γ .

Instead of considering the action on a properly convex set with non empty interior (as the ones in-
volved in the definition of Hp,q-convex cocompactness), we will work with the convex hull of the limit
set (which can have empty interior).

Definition 1.13. If Γ ⊂ PO(p,q+ 1) is Hp,q-convex cocompact, we define C(ΛΓ ) as the intersection of Hp,q

with the convex hull of ΛΓ defined in some affine chart containing a convex set Ω as defined above.

Another important subset of Hp,q associated to Λ is its black domain (or invisible domain).

Definition 1.14. Let Λ ⊂ ∂Hp,q be a negative set, and a lift Λ̃ ⊂R
p,q+1 \ {0} on which all inner products of

non collinear vectors are negative. Its black domain is

E(Λ) = P

({
u ∈Rp,q+1

∣∣∣〈u,v〉p,q+1 < 0 ∀v ∈ Λ̃
})
.

One can check that Ω(Λ) is convex, and that it contains C(Λ).

Lemma 1.15. If x ∈Ω(Λ), then the dual hyperplane x∗ is disjoint from C(Λ).

Proof. It comes from the definition of the black domain Ω(Λ) that x∗ is disjoint from Λ. This can be
translated as Λ ⊂ ∂U (x). Since U (x)∪∂U (x) is convex and it contains Λ, it must contain C(Λ).

Negative sets are related to a local product structure of Hp,q, itself coming from its conformal pseudo-
Riemannian structure. Recall that the projection from ∂Ĥp,q = S

p−1 ×Sq ⊂R
p+q+1 to ∂Hp,q ⊂RP

p+q is a 2
to 1 covering. We will endow S

p−1 and S
q with their round metrics and associated Riemannian distances,

and say that a map f : X → Y between metric spaces is distance-decreasing if it satisfies dY (f (x1), f (x2)) <
dX(x1,x2) whenever x1 , x2.

Lemma 1.16. Let Λ ⊂ ∂Hp,q be a negative set. Then Λ is homeomorphic to a closed subset F ⊂ S
p−1. More

precisely, there is a distance-decreasing map f : F→ S
q such that Λ is the quotient by the antipodal map of the

graph of f . Furthermore, if Λ is homeomorphic to S
p−1 then F = S

p−1.

Proof. By definition of a negative set, we can consider a cone C ⊂ R
p+q+1 whose projection in RP

p+q is
Λ and such that any non collinear vectors v,w ∈ C satisfy 〈v,w〉p,q+1 < 0. This condition means that two
distinct points (x1, y1), (x2, y2) ∈ C ∩Sp−1 ×Sq must satisfy d

S
q (y1, y2) < d

S
p−1(x1,x2), i.e. C ∩Sp−1 ×Sq is the

graph of a non decreasing map f : F→ S
q for some subset F ⊂ S

p−1.
Denote by π : Sp−1 ×Sq→ ∂Hp,q the quotient by the antipodal map. The map

ψ :
{
F → Λ

x 7→ π((x,f (x))

is a homeomorphism, so if Λ is assumed to be homeomorphic to S
p−1 then F must be open by applying

the invariance of domain to ψ−1, so we must have F = S
p−1.
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1.7 H
p,q-convex-cocompact groups of maximal dimension

When q = 0, the notion of H
p,0-convex cocompactness is equivalent to the usual notion in real hy-

perbolic geometry. This allows to construct examples in any signature: consider a convex cocompact
group Γ ⊂ O(p,1), and its image through the standard embedding O(p,1) ↪→ PO(p,q + 1). It is H

p,q-
convex cocompact. One can also consider any representation α : Γ → O(q), and the image of its graph
{(γ,α(γ))|γ ∈ Γ } ⊂ O(p,1)×O(q) through the standard embedding O(p,1)×O(q) ↪→ PO(p,q + 1). It is also
H
p,q-convex cocompact. The "largest" example one can construct in this way is obtained when Γ is a

uniform lattice in O(p,1). In this case, the limit set ΛΓ is homeomorphic to ∂Hp ≈ S
p−1.

General Hp,q-convex-cocompact subgroups cannot have a larger limit set.

Proposition 1.17. If Γ < PO(p,q+1) is Hp,q-convex cocompact, then the limit setΛΓ ⊂ ∂Hp,q is homeomorphic
to a closed subset of Sp−1. Furthermore, if ΛΓ is homeomorphic to S

p−1, then it is a Lipschitz submanifold of
∂Hp,q.

Proof. It follows from Lemma 1.16 and Proposition 1.11.

Another way of comparing the sizes of discrete groups is the virtual cohomological dimension vcd(Γ ).
By the work of Bestvina-Mess [BM91, Corollary 1.4], a consequence of Proposition 1.17 is that any H

p,q-
convex cocompact subgroup Γ < PO(p,q+ 1) satisfies vcd(Γ ) ≤ p − 1.

It would seem that when one has two possible definitions for the class of "largest" H
p,q-convex co-

compact subgroups: either those such that ΛΓ is homeomorphic to S
p−1, or those such that vcd(Γ ) ≤ p−1.

Thankfully, we do not have to choose since they are equivalent.

Proposition 1.18 ([DGK23, Corollary 11.10]). If Γ < PO(p,q+ 1) is Hp,q-convex-cocompact, then the follow-
ing are equivalent:

1. The virtual cohomological dimension of Γ is equal to p,

2. The limit set ΛΓ is homeomorphic to S
p−1.

Definition 1.19. We will say that a H
p,q-convex cocompact subgroup Γ < PO(p,q+1) is of maximal dimen-

sion if ΛΓ is homeomorphic to S
p−1.

Although we will see results that apply to the general Hp,q-convex-cocompact case, our point of focus,
in particular all of our examples, will be of maximal dimension.

1.8 Projective Anosov subgroups

Definition 1.20. Let g ∈GL(d,R). We denote by

λ1(g) ≥ λ2(g) ≥ · · · ≥ λd(g)

the logarithms of the moduli of the (complex) eigenvalues of g (with repetitions). We also denote by

µ1(g) ≥ µ2(g) ≥ · · · ≥ µd(g)

the logarithms of its singular values, that is µi(g) = 1
2λi(g

T g).
For g ∈ PGL(d,R), we define λi(g) (resp. µi(g)) by λi(g) = λi(ĝ) (resp. µi(g) = µi(ĝ)) for some lift

ĝ ∈ SL±(d,R) (i.e. det ĝ = ±1) of g.
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Remark. In the case of g ∈ PO(p,q + 1) ⊂ PGL(p + q + 1,R), we find that λi(g) + λp+q+2−i(g) = 0 when
1 ≤ i ≤min{p,q+ 1}, and λi(g) = 0 when min{p,q+ 1} < i ≤max{p,q+ 1}.

Definition 1.21. A finitely generated subgroup Γ < PGL(d,R) (or Γ < SL±(d,R)) is called projective Anosov
if there are constants c,c′ > 0 such that

µ1(γ)−µ2(γ) ≥ c|γ | − c′

for all γ ∈ Γ , where |γ | denotes its word length with respect to some finite generating set.

Note that this is not the original definition of an Anosov subgroup [Lab06, GW12], but an equivalent
characterisation taken from [BPS19, KLP17]. We will also use a characterisation in terms of eigenvalues.

Theorem 1.22 ([KP22]). A finitely generated subgroup Γ < SL±(d,R) (or Γ < PGL(d,R)) is projective Anosov
if and only if it is Gromov-hyperbolic and there are constants c,c′ > 0 such that

λ1(γ)−λ2(γ) ≥ c|γ |∞ − c′

for any γ ∈ Γ .

Let us list a few of the classic properties of projective Anosov subgroups. We will use the notation
RP

d−1∗ for the projective space P(Rd∗) of the dual space R
d∗, and identify it with the Grassmannian

manifold Gd−1(Rd) of hyperplanes in R
d .

Proposition 1.23. If Γ < SL±(d,R) (or Γ < PGL(d,R)) is projective Anosov, there exists a unique pair of Γ -
equivariant maps ξ : ∂∞Γ →RP

d−1 and ξ∗ : ∂∞Γ →RP
d−1∗ such that:

(1) The maps ξ and ξ∗ are bi-Hölder homeomorphisms onto their images.

(2) For t, s ∈ ∂∞Γ , one has ξ(t) ⊂ ξ∗(s) if and only if t = s.

(3) For any γ ∈ Γ of infinite order, λ1(γ) > 0 and eλ1(γ) is the modulus of a unique eigenvalue of (any
matrix representing) γ . This eigenvalue is real and simple, and the corresponding eigenspace of γ is
ξ(γ+) ∈ RP

d−1. Similarly, the eigenspace of the endomorphism α 7→ α ◦ γ−1 of Rd∗ corresponding to the
eigenvalue of modulus e−λ1(γ) is ξ∗(γ−).

One of the consequences of the Anosov property is openness in moduli space.

Theorem 1.24 ([Lab06]). Let Γ < SL±(d,R) (or Γ < PGL(d,R)) be projective Anosov, and let ρ : Γ → SL±(d,R)
(or Γ < PGL(d,R)) be a representation. If ρ is sufficiently close to the inclusion map, then it is faithful and ρ(Γ )
is projective Anosov.

Projective Anosov subgroups of PO(p,q + 1) are closely related to H
p,q-convex cocompact groups,

as was found out by Danciger, Guéritaud and Kassel. As a non degenerate bilinear form induces an
isomorphism between a vector space and its dual space, projective Anosov subgroups of PO(p,q + 1) can
be understood with only one limit map.

Proposition 1.25. If Γ < PO(p,q + 1) is projective Anosov, there exists a unique Γ -equivariant map ξ : ∂∞Γ →
∂Hp,q ⊂RP

p+q such that:
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(1) The map ξ is a bi-Hölder homeomorphism onto its image.

(2) For t, s ∈ ∂∞Γ , one has
〈
ξ̃(t), ξ̃(s)

〉
p,q+1

= 0 if and only if t = s.

(3) For any γ ∈ Γ of infinite order, λ1(γ) > 0 and eλ1(γ) is the modulus of a unique eigenvalue of any matrix
representing γ . This eigenvalue is real and simple, and the corresponding eigenspace of γ is ξ(γ+) ∈
∂Hp,q ⊂RP

p+q.

Theorem 1.26 ([DGK18, DGK23]). Let Γ < PO(p,q + 1) be H
p,q-convex cocompact. Then Γ is projective

Anosov and ΛΓ = ξ(∂∞Γ ).
Conversely, if Γ < PO(p,q+1) is projective Anosov and ξ(∂∞Γ ) is negative, then Γ is Hp,q-convex cocompact.

In the case of H
p,1-quasi-Fuchsian subgroups of PO(p,2), this was proved by Barbot and Mérigot

[BM12]. As negativity of the limit set is also an open condition, we get the following.

Theorem 1.27. Let Γ < PO(p,q+1) be Hp,q-convex cocompact, and let ρ : Γ → PO(p,q+1) be a representation.
If ρ is sufficiently close to the inclusion map, then it is faithful and ρ(Γ ) is projective Anosov.

Another consequence is that the dynamics of elements of Γ acting on ΛΓ (Proposition 1.9) extends to
∂Hp,q. Indeed, any infinite order γ ∈ Γ is proximal, i.e. satisfies λ1(γ) > λ2(γ).

Proposition 1.28. Let Γ < PO(p,q+1) be Hp,q-convex cocompact, γ ∈ Γ an infinite order element, and γ± ∈ΛΓ
is attracting and repelling fixed points. For any ξ ∈ ∂Hp,q with

〈
ξ̃, γ̃

〉
p,q+1

, 0, we have limn→+∞γ
n · ξ = γ+.

2 Examples of pseudo-Riemannian convex-cocompact groups

2.1 Globally hyperbolic anti-de Sitter spacetimes

Let us focus on the case of Lorentzian signature, that is the anti-de Sitter space AdSd+1 = H
d,1. In this

setting, convex-cocompact subgroups of maximal dimension have codimension one, so it makes sense to
refer to them as quasi-Fuchsian.

Definition 2.1. A subgroup Γ < PO(d,2) is called AdSd+1-quasi-Fuchsian if it is H
d,1-convex-cocompact

of maximal dimension. If is called AdSd+1-Fuchsian if it preserves a totally geodesic copy of Hd .

The original motivations for the study of AdSd+1-quasi-Fuchsian groups is that they are holonomies
of globally hyperbolic Cauchy compact AdS manifolds (by AdS manifold, we mean a Lorentzian manifold
that is locally isometric to AdSd+1, or equivalently that has constant sectional curvature −1).

Recall that a C1 curve c : I → N in a Lorentzian manifold (N,h) is called causal if its tangent vector is
everywhere causal, that is hc(t)(ċ(t), ċ(t)) ≤ 0 and ċ(t) ≤ 0 for all t ∈ I . Such a curve is called inextensible if
none of its re-parametrisations can be extended to a causal curve defined on a larger interval.

Definition 2.2. A Cauchy hypersurface in a Lorentzian manifold is a topological hypersurface intersecting
every inextensible causal curve at exactly one point. A Lorentzian manifold admitting a Cauchy hyper-
surface is called globally hyperbolic.
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A globally hyperbolic Lorentzian manifold (N,h) always admits a Cauchy temporal function, i.e. a
smooth function to R with no critical points whose level sets are spacelike Cauchy hypersurfaces, see e.g.
[BS05]. Moreover, all smooth Cauchy hypersurfaces are diffeomorphic to each other, and ifM is a smooth
Cauchy hypersurface, then N is diffeomorphic to M ×R.

Definition 2.3. A globally hyperbolic Lorentzian manifold is Cauchy compact if its Cauchy hypersurfaces
are compact.

Definition 2.4. A globally hyperbolic Cauchy compact AdS manifold is maximal if it is not isometric to a
proper open subset of another globally hyperbolic AdS manifold.

From now on, we abbreviate “globally hyperbolic Cauchy compact” into “GHC”, and “globally hyper-
bolic maximal Cauchy compact” into “GHMC”.

We recall here a description of GHMC AdS spacetimes, due to Mess [Mes07, ABB+07]. It is only stated
in dimension 2 + 1 in [Mes07], but the argument works in higher dimension as pointed in [Bar08]. For
other proofs see [Bar08, Corollary 11.2] and [BM12, Proposition 4.8].

Theorem 2.5 (Mess). Let Γ < PO(d,2) be a torsion free AdSd+1-quasi-Fuchsian subgroup. The quotient N =
Γ \Ω(ΛΓ ) is a GHMC AdS manifold.

Conversely, letN be a GHMC AdS manifold of dimension d+1 whose fundamental group is word-hyperbolic.
Then there exists a torsion free AdSd+1-quasi-Fuchsian subgroup Γ < PO(d,2) such that N is isometric to
Γ \Ω(ΛΓ ).

The hypothesis of word-hyperbolicity of the fundamental group in the converse cannot be dropped,
but it has many equivalent formulations in this context (see [MST23, Theorem 3.29] for a list). The case of
AdS3 = H

2,1 is quite specific, as we can use the exceptional isomorphism PO(2,2)◦ ' PSL(2,R)×PSL(2,R)
to describe H

2,1-quasi-Fuchsian groups.

Theorem 2.6 ([Mes07, Bar08]). A torsion free subgroup Γ < PO(2,2)◦ ' PSL(2,R)×PSL(2,R) is AdS3-quasi-
Fuchsian if and only if there is a closed oriented surface S, and two hyperbolic metrics h1,h2 on S such that

Γ = {(ρ1(γ),ρ2(γ)) |γ ∈ π1(S)}

where ρ1,ρ2 : π1(S)→ PSL(2,R) = Isom(H2)◦ are the holonomy representations of h1,h2.

This is a Lorentzian analogue of the Bers simultaneous uniformization theorem [Ber72] for H3-quasi-
Fuchsian groups. In this description of AdS3-quasi-Fuchsian groups (called the Mess parametrization),
AdS3-Fuchsian groups correspond to pairs (ρ1,ρ2) where ρ1 and ρ2 are conjugate in PSL(2,R) (i.e. they
represent the same point in the Teichmüller space of S).

2.2 Representations of surface groups

Let us now turn to the p = 2 case. Note that a H
2,q-convex-cocompact subgroup of maximal dimension

is a hyperbolic group whose Gromov boundary is homeomorphic to the circle, so it must be virtually
isomorphic to the fundamental group of a closed hyperbolic surface.
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The Lie group PO(2,q+1) is of Hermitian type, and one can study maximal representations of surface
groups. It is shown in [BILW05] that maximality is equivalent to the Anosov property with an additional
property on the limit set which can be shown to be equivalent to negativity. Combining with the results
of [DGK23], one gets the following:

Theorem 2.7 ([BILW05, DGK23]). Let Γ be the fundamental group of a closed orientable hyperbolic surface,
and let q ≥ 0. A faithful representation ρ : Γ → PO(2,q + 1) is maximal if and only if its image is H2,q-quasi-
Fuchsian.

These representations are studied in depth in [CTT19].

2.3 Deformation of real hyperbolic lattices

Thanks to the stability result of Theorem 1.27, one way to produce H
p,q-convex cocompact groups is

to start with a convex-cocompact subgroup Γ < O(p,1) and construct a continuous path (ρt)t∈R of rep-
resentations of Γ into PO(p,q + 1) such that ρ0 is the standard block-diagonal inclusion. Theorem 1.27
then asserts that ρt(Γ ) is Hp,q-convex-cocompact provided that t is small enough. It turns out that in the
maximal dimension case (here when Γ < O(p,1) is a uniform lattice), this condition is also closed, as was
proved for q = 1 by Barbot [Bar15] and in the general case by Beyrer and Kassel [BK23].

Theorem 2.8 ([Bar15, BK23]). Let Γ < PO(p,q + 1) be Hp,q-convex-cocompact of maximal dimension, and let
(ρt)t∈R be a continuous path of representations of Γ into PO(p,q + 1) such that ρ0 is the inclusion. Then ρt is
faithful and ρt(Γ ) is Hp,q-convex-cocompact for all t ∈R.

The standard construction of such a path of representations is given by bending deformations [JM87].
This is achieved by considering a uniform lattice Γ < O(p,1) that splits as an amalgamated product Γ =
Γ1 ∗∆ Γ2 where ∆ is a uniform lattice in O(p−1,1). Geometrically, this means that the hyperbolic manifold
M = Γ \Hp (or orbifold if we do not assume Γ to be torsion free) contains a totally geodesic hypersurface
Σ = ∆\Hp−1 that separates M into two connected components M \ Σ = M1 ∪M2 (and Γi = π1(Mi) for
i = 1,2). We can then consider any continuous path (gt)t∈R in the centraliser of O(p− 1,1) in PO(p,q + 1)
(which is commensurable to O(1,q)), and set ρt : Γ → PO(p,q + 1) to be the unique representation such
that ρt(γ) = ρ0(γ) for γ ∈ Γ1, and ρt(γ) = gtρ0(γ)g−1

t for γ ∈ Γ2.
In [MST23, Theorem 1.18], J-M. Schlenker, N. Tholozan and I produce examples of deformations of

some specific lattices of O(3,1) in PO(3,2) that are not bending deformations.
Deformations of real hyperbolic lattices are not the only examples of H

p,q-convex-cocompact sub-
groups of maximal dimension. If q = 2, the space of Hp,q-convex-cocompact representations of the fun-
damental group of an orientable surface of genus g ≥ 2 has 22g+1 connected components [CTT19, section
2.5]. One notable example is the Hitchin component in PO(2,3), i.e. the connected component containing
representations obtained as the composition of the holonomy representation of a hyperbolic metric into
SO(2,1)◦ with the irreducible representation SO(2,1)◦ → PO(2,3). In the next sections we will describe
examples of Hp,q-convex-cocompact subgroups of maximal dimension that are not isomorphic to lattices
in O(p,1).
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2.4 Complex hyperbolic lattices

Let us now describe an example that has not yet (to my knowledge) appeared in the literature. Given a
semi-simple Lie group G without compact factors, the Killing form of G allows us to interpret the adjoint
representation as AdG : G → O(p,q) where p is the dimension of the symmetric space of G and q is the
dimension of a maximal compact subgroup. In the case of G = SU(d,1), we find p = 2d and q = d2.

Proposition 2.9. Let d ≥ 1, and let Γ < SU(d,1) be a uniform lattice. The subgroup

AdSU(d,1)(Γ ) < SO(2d,d2)

is H2d,d2−1-convex-cocompact.

Remark. It also has maximal dimension, as vcd(Γ ) = dimH
d
C

= 2d.

There several ways of proving this, and we will present both a geometric proof, involving a recent geo-
metric characterisation due to Beyrer-Kassel [BK23] using the existence of a SU(d,1)-equivariant spacelike
embedding H

d
C
→H

2d,d2−1, and an algebraic one based on the restricted root space decomposition of the
Lie algebra su(d,1).

2.4.1 A geometric approach

Let us start by defining the relevant geometric objects. For z,w ∈ Cd+1, consider the standard hermitian
form of signature (d,1)

〈z,w〉 = z1w1 + · · ·+ zdwd − zd+1wd+1.

The complex hyperbolic space is defined by

H
d
C

=
{
[z] ∈CPd

∣∣∣〈z,z〉 < 0
}
.

The tangent space T[z]H
d
C

can be identified with
{
ż ∈Cd+1

∣∣∣〈z, ż〉 = 0
}
. The Riemannian metric on H

d
C

is

defined as ‖ż‖2 = 2〈ż, ż〉 (its sectional curvature ranges between −1 and −1
4 ).

Let Id,1 be the diagonal matrix Id,1 = Diag(1, . . . ,1,−1) ∈ GL(d + 1,C), so that by identifying C
d+1 with

column vectors, we have 〈z,w〉 = zT Id,1w. We can now consider the matrix group

SU(d,1) =
{
g ∈ SL(d + 1,C)

∣∣∣gT Id,1g = Id,1
}

and its Lie algebra

su(d,1) =
{
X ∈ sl(d + 1,C)

∣∣∣∣XT Id,1 + Id,1X = 0
}
.

The Killing form B of su(d,1) satisfies B(X,Y ) = 2(d + 1)Tr(XY ) for X,Y ∈ su(d,1), so we may consider the
trace instead of the Killing form in what follows. Consider the SU(d,1)-equivariant map

ϕ :


{
z ∈Cd+1

∣∣∣〈z,z〉 = −1
}
→ su(d,1)

z 7→ i
d+11d+1 − i

〈z,z〉zz
T Id,1

.
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It satisfies Tr(ϕ(z)ϕ(z)) = − 1
d+1 , so it induces an embedding Φ : Hd

C
→H

2d,d2−1. Its differential, for 〈z,z〉 =
−1, satisfies

Tr(dzϕ(ż))2) = 2〈ż, ż〉 .

In other terms Φ is a spacelike homothetic embedding, in particular Φ(Hd
C

) is a 2d-dimensional spacelike
submanifold of H

2d,d2−1 on which AdSU(d,1)(Γ ) acts properly discontinuously and cocompactly for any

uniform lattice Γ < SU(d,1). According to [BK23, Corollary 1.14], this implies that AdSU(d,1)(Γ ) is H2d,d2−1-
convex-cocompact.

In order to describe the limit ΛAd(Γ ), consider the boundary at infinity of Hd
C

∂Hd
C

=
{
[z] ∈CPd

∣∣∣〈z,z〉 = 0
}
.

The embedding Φ : Hd
C
→H

2d,d2−1 extends to the boundary:

∂Φ :

 ∂Hd
C
→ P(su(d,1))

[z] 7→
[
izzT Id,1

] .

It satisfies Tr(∂Φ([z])∂Φ([z])) = 0, so it can be seen as en embedding ∂Φ : ∂Hd
C
→ ∂H2d,d2−1, and ΛAd(Γ ) =

∂Φ(∂∞H
d
C

) for any uniform lattice Γ < SU(d,1). It is a smooth submanifold of ∂H2d,d2−1. In order to
understand its tangent spaces, it is easier to consider

∂ϕ :


{
z ∈Cd+1 \ {0}

∣∣∣〈z,z〉 = 0
}
→ su(d,1)

z 7→ izzT Id,1

and differentiate it to find

Tr
(
dz∂ϕ(ż)2

)
= −

(
żzT Id,1żz

T Id,1 + 2żzT Id,1zż
T
Id,1 + zż

T
Id,1zż

T
Id,1

)
= −

(
〈z, ż〉2 + 2〈z,z〉〈ż, ż〉+ 〈ż, ż〉

)
= 0.

It follows that ∂Φ(∂Hd
C

) is a totally isotropic submanifold of the pseudo-Riemannian conformal man-
ifold ∂H2d,d2−1.

2.4.2 An algebraic approach

This paragraph assumes the reader to be familiar the structure theory of real semi-simple Lie algebras. It
also assumes that d ≥ 2, since the case of SU(1,1) ≈ SL(2,R) is well known. Let us start by considering a
Cartan decomposition g = su(d,1) as g = k⊕k⊥, where k is the Lie algebra of a maximal compact subgroup
of G = SU(d,1) (e.g. the Lie algebra of S(U(d) ×U(1))), and k⊥ is the orthogonal of k for the Killing form
B of g. We also fix a maximal Abelian subalgebra a ⊂ k⊥ (i.e. any one-dimensional vector subspace since
rk

R
(g) = 1), and set m ≈ u(d − 1) the centraliser of a in k. Consider a restricted root space decomposition

of g = su(d,1):
g =m⊕ a⊕ gα ⊕ g2α ⊕ g−α ⊕ g−2α
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where the restricted root spaces satisfy dimgα = dimg−α = 2(d − 1) and dimg2α = dimg−2α = 1. Given
X ∈ a, we find λ1(Ad(eX)) = 2α(X) and λ2(Ad(eX)) = α(X). It follows that µ1(Ad(g))− µ2(Ad(g)) = α(µ(g))
for any g ∈ G, where µ : G→ a+ is the Cartan projection. This directly implies that the restriction of Ad
to any uniform lattice is projective Anosov.

Let P < G be the parabolic subgroup with Lie algebra p =m⊕a⊕gα ⊕g−α, and Q < SO(B) the stabiliser
of g2α. Since g2α is an isotropic line in g, the homogeneous space SO(B)/Q can be interpreted as ∂H2d,d2−1.
As Ad(P ) = Ad(G)∩Q, we can consider the embedding

Ψ :
{
G/P ≈ ∂Hd

C
→ SO(B)/Q ≈ ∂H2d,d2−1

gmodP 7→ Ad(g)modQ
.

Note that by definition, for X ∈ a+, the direction g2α is the eigendirection of Ad(eX) = ead(X) for its largest
eigenvalue e2α(X). More generally, for a loxodromic element g ∈ G with attracting fixed point g+ ∈ ∂Hd

C
,

Ψ (g+) is the eigendirection of Ad(g) for its eigenvalue of largest modulus. Given a uniform lattice Γ < G,
this means that Ψ (∂∞H

d
C

) =ΛAd(Γ ) ⊂ ∂H2d,d2−1. In order to prove thatΛAd(Γ ) is negative, consider the sl2-
triple (H,E,F) associated to the restricted root 2α, that is H ∈ a+, E ∈ g2α and F ∈ g−2α satisfy [H,E] = E,
[H,F] = −F and [E,F] = 2H .

Consider the lift L = {Ad(g)E |g ∈ G} ⊂ g of ΛAd(Γ ). We wish to show that B(X,Y ) < 0 for distinct
X,Y ∈ L. But the action of G on G/P is transitive on pairs of distinct points (because rk

R
(G) = 1), so it

is sufficient to prove B(Ad(eF)E,E) < 0. As in SL(2,R), we have B(E,F) > 01 and Ad(eF)E = E − F − 2H ,
therefore

B(Ad(eF)E,E) = B(E −F − 2H,E)

= −B(F,E) < 0.

We have proved that Ad(Γ ) is projective Anosov and that ΛAd(Γ ) is negative, so by [DGK18] Ad(Γ ) is

H
2d,d2−1-convex-cocompact. We can also find from this construction that the limit set is a smooth mani-

fold, and we can see that its tangent spaces are totally isotropic by differentiating

demodPΨ :
{

g/p → so(B)/q
Xmodp 7→ ad(X)modq

and composing with {
so(B)/q → Tg2α

∂H2d,d2−1 = g⊥2α/g2α
ϕmodq 7→ ϕ(g2α)modg2α

.

Since g⊥2α = p⊕ g−α, the range of demodPΨ identifies with g−α, which is a totally isotropic subspace of g.
The embedding Φ : Hd

C
→H

2d,d2−1 can also be recovered algebraically. Consider a maximal compact
subgroup K < G (recall that K ≈ SU(d)), and denote by z ⊂ g the Lie algebra of its centre. Then z ≈ u(1)
is a negative line in g (the restriction of the Killing form to a compact subgroup is negative definite), so

1The restriction of B to a⊕ g2α ⊕ g−2α ≈ sl(2,R) is a multiple of the Killing form of sl(2,R) because of its ad-invariance and
the simplicity of sl(2,R). This multiple is positive because both quadratic forms are positive on H .
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by setting H < SO(B) the stabiliser of z, we can identify SO(B)/H with H
2d,d2−1. The embedding Φ now

reads as {
G/K → SO(B)/H ≈H

2d,d2−1

gmodK 7→ Ad(g)modH
.

Remark. Given a semi-simple Lie group G without compact factors, if the restriction of the adjoint rep-
resentation to a uniform lattice is projective Anosov, then G must be virtually isomorphic to SU(d,1),
d ≥ 1. Indeed, for a uniform lattice to have an Anosov representation, it must Gromov hyperbolic, so
rk

R
(G) = 1. The classification tells us that G is locally isomorphic to SO(d,1), SU(d,1), Sp(d,1) or the

exceptional group F−20
4 . In the case of SO(d,1) (d ≥ 3), the restricted root space decomposition has the

form
g =m⊕ a⊕ gα ⊕ g−α

where dimgα = d − 1, so for any element g ∈ G we find µ1(Ad(g)) = µ2(Ad(g)) = α(µ(g)), where µ : G→ a+

is the Cartan projection. In the cases of Sp(d,1) (d ≥ 2) and F−20
4 , the restricted root system is non reduced

(as for SU(d,1)) and the restricted root space decomposition has the form

g =m⊕ a⊕ gα ⊕ g2α ⊕ g−α ⊕ g−2α

where dimg2α = 3 in the case of Sp(d,1), and dimg2α = 7 for F−20
4 . In both cases we find µ1(Ad(g)) =

µ2(Ad(g)) = 2α(µ(g)) for any g ∈ G.
In all three cases, we have found that µ1(Ad(g)) = µ2(Ad(g)) for any g ∈ G, so the restriction of the

adjoint representation to a uniform lattice cannot be projective Anosov.

2.5 Gromov-Thurston spacetimes

So far the H
p,q-convex-cocompact groups that we have considered have been obtained by the following

processes:

• Consider a uniform lattice Γ < O(p,1) and consider deformations of the standard inclusion of Γ in
PO(p,q+ 1).

• Consider representations of lattices Γ < O(p,1) that are not deformations of the standard inclusion
of Γ in PO(p,q+ 1), e.g. the Hitchin component in PO(2,3).

• Consider representations of lattices in another Lie group G→ PO(p,q+1), e.g. the adjoint represen-
tation of G = SU(d,1).

Another approach consists in working with groups that are not isomorphic to a lattice in any Lie
group.

Theorem 2.10. For any d ≥ 4, there are AdSd+1-quasi-Fuchsian subgroups Γ < PO(d,2) that are not isomor-
phic to a lattice in any Lie group.

The first published construction works for 4 ≤ d ≤ 8, and is due to Lee and Marquis [LM19]. They
work with Coxeter groups, a very effective approach with the caveat of only working for small dimensions.
Arbitrary dimensions d ≥ 4 were treated in a collaboration with J-M. Schlenker and N. Tholozan [MST23].
In our approach, we construct representations of fundamental groups of Gromov-Thurston manifolds.
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Definition 2.11. A n-dihedral hyperbolic manifold of dimension d is the data of a closed oriented hyperbolic
manifold M of dimension d and two isometric involutions σ1 and σ2 of M with the following properties:

• The fixed loci of σ1 and σ2 are connected embedded totally geodesic hypersurfaces,

• The intersection S = Fixσ1 ∩Fixσ2 is connected,

• Fixσ1 and Fixσ2 intersect along S with an angle π
n .

• Fixσ1 and Fixσ2 are homologically trivial.

The existence of manifolds M of any dimension d ≥ 2 with those properties is proved in [GT87].
Under these conditions, σ1 and σ2 generate a dihedral group of isometries of M of order 2n, denoted Dn.
We denote by Rn its cyclic subgroup of order n, spanned by ρ = σ1σ2, and by M = Rn\M the quotient
orbifold. We still denote by S its image in M.

Definition 2.12. LetM be an n-dihedral hyperbolic manifold. For every a ∈ 1
nN>0, we define the Gromov-

Thurston manifold Ma of ramification a associated to M as the cyclically ramified cover of M along S of
degree na.

To understand this construction visually, let H1 ⊂ Fixσ1 be the closure of a connected component of
Fixσ1 \ S, and H2 ⊂ Fixσ2 the closure of a connected component of Fixσ2 \ S chosen so that the oriented
angle at S from H1 to H2 is π

n . We then consider the copies of H1 and H2 under the isometry ρ = σ1σ2
which we denote H2i+1 = ρi(H1) and H2i = ρi−1(H2) for i = 1, . . . ,n− 1.

When considering the action of the cyclic subgroup Rn, a fundamental domain is given by the union
of two of the former small pieces, e.g. the domain bounded by H1 and H3 containing H2 (see Figure 2).

Just as the hyperbolic manifold M is obtained by gluing n copies of this fundamental piece together,
the Gromov-Thurston manifold Ma is obtained by gluing na copies of this same fundamental piece.

Theorem 2.13 ([MST23, Theorem 1.1] ). Let M be a n-dihedral hyperbolic manifold of dimension d ≥ 3 and
a > 1. There exist a faithful representation ρ : π1(Ma)→ PO(d,2) whose image is AdSd+1-quasi-Fuchsian.

More precisely, there is a na − 3 parameter family of such representations [MST23, Theorem 1.2]. It
was proved by Gromov and Thurston in [GT87] that Ma cannot carry a hyperbolic metric if d ≥ 4 and
a , 1, and more generally π(Ma) cannot be isomorphic to a lattice in any Lie group [MST23, Remark 1.4],
so Theorem 2.13 implies Theorem 2.10.

The proof of [MST23, Theorem 1.1] consists in treating Ma as a hyperbolic manifold with a cone
singularity along S, and realizing this metric as the induced metric on a polyhedral hypersurface of
AdSd+1. Outside of S, this poses no problem as AdSd+1 contains totally geodesic copies of Hd . Locally
around S, this is achieved by considering a particular class of polyhedral hypersurfaces that we call hipped
hypersurfaces [MST23, Definition 5.1] (see Figure 3).

This leads to the construction of a spacelike AdS structure on Ma, that is an atlas (Ui ,φi)i∈I where
(Ui)i∈I is an open cover of Ma and Φi : Ui →AdSd+1 is a Lipschitz spacelike immersion. By proving that
this spacelike AdS structure has the additional properties of being convex and ruled [MST23, Lemma
5.6], we can use a correspondence between convex ruled spacelike AdS structures on Ma and faithful
representations π1(Ma)→ PO(d,2) whose image is AdSd+1-quasi-Fuchsian [MST23, Lemma 3.37].
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Figure 2: A n-dihedral manifold M, its fundamental piece and the quotient M.

These representations are parametrised by the hipped hypersurfaces used to realise the cone singular
metric ofMa locally in AdSd+1. By parametrising these hipped surfaces by equilateral polygons in the de
Sitter space dS2 [MST23, Lemma 5.4], we show that the deformation space has dimension na−1 [MST23,
Proposition 4.11].

Remark. This is not the first construction of geometric structures on Gromov-Thurston manifolds. In
their paper [GT87], Gromov and Thurston show that they can be equipped with Riemannian metrics
whose sectional curvature is pinched arbitrarily close to −1 (provided n is large enough). Kapovich
[Kap07] showed that they carry convex projective structures, and by Fine and Premoselli [FP20] that
they carry Einstein metrics of negative sectional curvature. In [MST23, Corollary 1.15], we also construct
flat conformal structures on Gromov-Thurston manifolds Ma with a < 1 (through hyperbolic structures
on Ma ×R). The existence of these flat conformal structures was already mentioned in [GT87].

3 Non-differentiability of limit sets

This section discusses the regularity of the limit set ΛΓ ⊂ ∂Hp,q of an H
p,q-convex-cocompact group

Γ < PO(p,q + 1) of maximal dimension (i.e. such that ΛΓ is homeomorphic to S
p−1), with the goal of

presenting the results of the paper [GM] in which O. Glorieux and I studied the q = 1 case. We have seen
in Proposition 1.17 thatΛΓ is always a Lipschitz submanifold regardless of the signature. The main result
of [GM] is that in the q = 1 case, it can only be C1 for AdSp+1-Fuchsian groups (Theorem 3.6). We will
also discuss other signatures, which is why I included the proofs of several results from [GM] as the paper
only covered Lorentzian signature.
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Figure 3: A hipped hypersurface in AdS3.

3.1 Zariski closures

One of the intermediate results of [GM] is a classification of Zariski closures of AdSd+1-quasi-Fuchsian
groups: it is either a conjugate of O(d,1) (up to finite index), or PO(d,2) itself. The study of these Zariski
closures is made easier by their semi-simplicity (which of course fails for general Hp,q-convex-cocompact
groups without any dimension assumption).

Proposition 3.1. Let Γ < PO(p,q+ 1) be Hp,q-convex-cocompact of maximal dimension. The Lie algebra of the
Zariski closure of Γ is the direct sum of a semi-simple Lie algebra and a Lie subalgebra of so(q+ 1).

We will call a vector subspace V ⊂ R
p+q+1 non degenerate if the restriction of 〈·, ·〉p,q+1 to V is non

degenerate, that is V ∩V ⊥ = {0}.

Lemma 3.2. Let Γ < PO(p,q + 1) be H
p,q-convex-cocompact of maximal dimension, and let V ⊂ R

p+q+1 be a
vector subspace. If Γ preserves P(V ), then V is non degenerate.

Proof. By contradiction, we just have to eliminate the case of a totally isotropic subspace (by considering
V ∩ V ⊥), i.e. we may assume that P(V ) ⊂ ∂Hp,q. Now ΛΓ ⊂ P(V ) is a closed Γ -invariant subset of ΛΓ .
Since the action of Γ on ΛΓ is topologically conjugate to the action on its Gromov boundary ∂∞Γ , it is
minimal (i.e. all orbits are dense). So we find a dichotomy: either ΛΓ ⊂ P(V ) or ΛΓ ∩P(V ) = ∅. The first
case is made impossible by the negativity of ΛΓ , so we just have to rule out the second case.

We now assume that ΛΓ ∩P(V ) = ∅. Let γ ∈ Γ be of infinite order, and consider its attracting and
repelling fixed points γ± ∈ΛΓ (see sections 1.5 and 1.8). Let ξ ∈ P(V ). If

〈
ξ̃, γ̃−

〉
p,q+1

, 0, then γn ·ξ→ γ+
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as n→ +∞ (Proposition 1.28), which would mean that γ+ ∈ P(V ). As this cannot be the case, we must have〈
ξ̃, γ̃−

〉
p,q+1

= 0, and by density of repelling fixed points of elements of Γ in ∂∞Γ we find that
〈
ξ̃, η̃

〉
p,q+1

= 0

for all η ∈ ΛΓ . Fix a lift ξ̃ = (ξ1,ξ2) ∈ Sp−1 × Sq and consider a point η̃ = (η1,η2) ∈ π−1(ΛΓ ) ∩ S
p−1 × Sq

(using the notations of the proof of Lemma 1.16). The equality
〈
ξ̃, η̃

〉
p,q+1

= 0 means that d
S
p−1(ξ1,η1) =

d
S
q (ξ2,η2). Now consider the distance decreasing function f : Sp−1 → S

q from Lemma 1.16. Applying
this to η̃ = (ξ1, f (ξ1)) ∈ π−1(ΛΓ ), we find that f (ξ1) = ξ2, hence ξ ∈ΛΓ , which is a contradiction.

Lemma 3.3. Let Λ ⊂ ∂Hp,q be a negative set that is homeomorphic to S
p−1. The Lie algebra of

G = {g ∈ PO(p,q+ 1) |g · ξ = ξ, ∀ξ ∈Λ}

is isomorphic to a subalgebra of so(q+ 1).

Proof. We use the notations of the proof of Lemma 1.16, and write π−1(Λ) = Λ+ tΛ− ⊂ S
p−1 ×Sq where

Λ+ is the graph of the function f : Sp−1 → S
q from Lemma 1.16. Let Ĝ < O(p,q + 1) denote the lifts of

G that act trivially on Λ+. Its projection in G has index at most two, so the compactness of G and Ĝ are
equivalent.

Now Ĝ also acts trivially on V = Span(Λ+). Let us show that V ⊥ is negative definite. Let v ∈ V ⊥ \ {0},
and decompose v = (v1,v2) ∈Rp ×Rq+1. Note that if v1 = 0, then 〈v,v〉p,q+1 = −‖v2‖2 < 0, so we my assume
that v1 , 0. Consider x,y ∈ Sp−1 such that x − y is collinear to v1. The fact that v is orthogonal to both
(x,f (x)) and (y,f (y)) for 〈·, ·〉p,q+1 means that

(x − y) · v1 = (f (x)− f (y)) · v2

where the dot product on each side represents the standard Euclidean inner products of R
p and R

q+1.
Since the left hand side is the inner product of collinear vectors, the Cauchy-Schwarz inequality yields∥∥∥x − y∥∥∥‖v1‖ ≤

∥∥∥f (x)− f (y)
∥∥∥‖v2‖ .

As v1 , 0, we also have x , y, so the left hand side cannot vanish, and neither can the right hand side,
hence v2 , 0. But f is distance decreasing2, so

∥∥∥f (x)− f (y)
∥∥∥ < ∥∥∥x − y∥∥∥ and thus ‖v1‖ < ‖v2‖, i.e. 〈v,v〉p,q+1 <

0.
It follows that Ĝ is a closed subgroup of the group preserving a negative definite vector subspace V ⊥

and acting trivially on its orthogonal V , which is a compact group isomorphic to O(dimV ⊥).

Proof of Proposition 3.1. Consider a lift Γ̂ < O(p,q + 1). If the linear action of Γ̂ preserves a subspace V ⊂
R
p+q+1, then it is non degenerate by Lemma 3.2, so R

p+q+1 = V ⊕V ⊥ and Γ̂ is totally reducible. It follows
that the Zariski closure of Γ is reductive. Since the centraliser of Γ in PO(p,q+ 1) acts trivially on ΛΓ , it is
compact thanks to Lemma 3.3.

Things are much simpler in the q = 1 case.

2By definition, f is distance decreasing for the Riemannian distances, but this is equivalent to being distance decreasing for
the ambient Euclidean norms
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Lemma 3.4 ([GM, Lemma 3.1]). Let Γ < PO(d,2) be AdSd+1-quasi-Fuchsian. If there is a proper vector
subspace V ⊂R

d+2 such that Γ preserves P(V ), then Γ is AdSd+1-Fuchsian.

Sketch of proof. Let V ⊂ R
d+2 be such a subspace. According to Lemma 3.2, V is non degenerate so its

signature is (k,2), (k,1) or (k,0) for some integer k ≥ 0 (here k denotes the number of positive signs in the
signature). In the first case, Γ acts on the totally geodesic copy X = P(V )∩AdSd+1 of AdSk+1. This is not
possible because ΛΓ ≈ S

d−1 would then be a negative subset of ∂X ≈ ∂AdSk,1, thus homeomorphic to a
subset of Sk−1.

Signature (k,0) can also be ruled out since V ⊥ would then have signature (d − k,2). We are left with
the Lorentzian signature (k,1), in which case Γ preserves the totally geodesic copy X = P(V )∩AdSd+1 of
H
k . As ∂X must contain ΛΓ we find that k = d, and Γ is AdSd+1-Fuchsian.

Proposition 3.5 ([GM, Proposition 1.4]). Let Γ < PO(d,2) be AdSd+1-quasi-Fuchsian. If Γ is not AdSd+1-
Fuchsian, then it is Zariski dense in PO(d,2).

Sketch of proof. If Γ is not AdSd+1-Fuchsian, let G ≤ SO(d,2)◦ be the identity component of the Zariski
closure of lifts of elements of Γ to O(d,2). Not that finite index subgroups of Γ are not AdSd+1-Fuchsian
(they have the same limit set), so by Lemma 3.4 G acts irreducibly on R

d+2. According to [DSL11, Theo-
rem 1], the only connected Lie subgroups of SO(d,2)◦ with this property (other than SO(d,2)◦ itself) are
U(d2 ,1), SU(d2 ,1), S1 · SO(d2 ,1) (when d is even) and the irreducible copy of SO(2,1)◦ when d = 3. The first
family of examples are not possible because they do not contain proximal elements, and the last one is
ruled out by a cohomological dimension argument.

3.2 Non differentiability in AdSd+1

We can now turn to the main result of [GM].

Theorem 3.6 ([GM, Theorem 1.3]). Let Γ < PO(d,2) be AdSd+1-quasi-Fuchsian. If the limit set ΛΓ is a C1

submanifold of ∂AdSd+1, then Γ is AdSd+1-Fuchsian.

The first step consists in understanding the signature of the restriction of the Lorentzian conformal
class of ∂AdSd+1 to tangent spaces of ΛΓ . The Lorentzian signature is key here, as the following result
fails in other signatures.

Lemma 3.7 ([GM, Lemma 4.1]). If Γ < PO(d,2) is AdSd+1-quasi-Fuchsian and ΛΓ is a C1 submanifold of
∂AdSd+1, then there is ξ ∈ΛΓ such that TξΛΓ is spacelike.

Proof. Let f : Sd−1→ S
1 be a distance-decreasing map such that the quotient by the antipodal map of its

graph is ΛΓ (Lemma 1.16).
Knowing that the graph of f is a C1-submanifold, we first want to show that f is C1. Using the Implicit

Function Theorem, it is enough to know that the tangent space of the graph projects non trivially to the
tangent space of Sn−1. This is true because f is Lipschitz.

Since f is distance-decreasing, it cannot be onto, so it can be seen as a function f : Sd−1 → R. At a
point x ∈ Sd−1 where it reaches its maximum, it satisfies dxf = 0, so the tangent space to ΛΓ at (x,f (x)) is
TxS

d−1 × {0}, which is spacelike.
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Remark. In H
p,q, only the first part of the proof works: if Γ < PO(p,q + 1) is H

p,q-convex-cocompact
of maximal dimension, then ΛΓ is the antipodal projection of the graph of a C1 map f : Sp−1 → S

q. In
particular, ΛΓ is diffeomorphic to S

p−1, i.e. it cannot be an exotic sphere.

One can then go from one spacelike tangent space to all tangent spaces being timelike using the
topological dynamics of the action of Γ .

Corollary 3.8 ([GM, Corollary 4.2]). If Γ < PO(d,2) is AdSd+1-quasi-Fuchsian and ΛΓ is a C1 submanifold
of ∂AdSd+1, then for all ξ ∈ΛΓ , the tangent space TξΛΓ is spacelike.

By using the fact that the tangent space to ΛΓ at the attracting fixed point γ+ of an infinite order
element γ ∈ Γ , and translating this fact into linear algebra, we get that Γ cannot contain regular elements.

Lemma 3.9 ([GM, Lemma 4.3]). If Γ < PO(d,2) is AdSd+1-quasi-Fuchsian and ΛΓ is a C1 submanifold of
∂AdSd+1, then any infinite order γ ∈ Γ is conjugate in PO(d,2) to an element of O(d,1).

The absence of regular elements is known to be an obstruction to Zariski density, which is the last
step in the proof.

Proof of Theorem 3.6. If Γ is not AdSd+1-Fuchsian, then by Proposition 3.5 it must be Zariski dense in
PO(d,2), in particular it must contain regular elements of PO(d,2) [AMS95, Ben97]. This is a contradic-
tion with Lemma 3.9.

3.3 Other signatures

Theorem 3.6 is not valid for arbitrary signature (p,q). One of the reasons is the failure of Proposition
3.5, and it is possible to find H

p,q-convex-cocompact subgroups of maximal dimension groups that are
not conjugates of lattices in O(p,1) < PO(p,q + 1) but that still are uniform lattices in a rank one Lie
subgroup of PO(p,q + 1). This can be achieved by considering a uniform lattice in PSL(2,R) then embed-
ding PSL(2,R) into PO(2,3) via the irreducible representation, thus producing H

2,2-convex-cocompact
subgroups whose limit set is a smooth circle. Another example is the adjoint representation of SU(d,1)
restricted to a uniform lattice that produces H

2d,d2−1-convex-cocompact subgroups whose limit set is
smooth and diffeomorphic to S

2d−1 (see Proposition 2.9 and the discussion that follows it).
In the first example, we can also consider deformations of these representations in PO(2,3) (i.e.

Hitchin representations), and produce more H
2,2-convex-cocompact subgroups whose limit set is a C1

curve. Is this case, the limit set is no longer smooth [PS17, Theorem D]. In the Zariski dense case, we have
the following result of A. Zimmer.

Proposition 3.10 ([Zim21, Corollary 1.48]). Let Γ < PO(p,q + 1) be H
p,q-convex-cocompact of maximal di-

mension. If ΛΓ is a C2 submanifold of ∂Hp,q, then Γ is not Zariski dense in PO(p,q+ 1).

A common trait of these non Fuchsian examples with a C1 limit set is that this limit set is isotropic for
the pseudo-Riemannian conformal structure of Hp,q, meaning that Corollary 3.8 fails in non Lorentzian
signature. This is more than a coincidence.

Theorem 3.11. Let Γ < PO(p,q + 1) be H
p,q-convex-cocompact of maximal dimension. If ΛΓ is a spacelike C1

submanifold of ∂Hp,q, then Γ preserves a totally geodesic copy of Hp.
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This can be proved using Theorem 4.19 presented in the next section and [MV24, Theorem 4], but let
us present a sketch of proof in the spirit of [GM].

Sketch of proof. The proof of Lemma 3.9 works in arbitrary signature (p,q) under the assumption that ΛΓ
is spacelike. It follows that a maximal split torus of the Zariski closure G of Γ lies in a maximal split torus
of O(p,1) < PO(p,q+ 1), so G must itself be of the form O(p,1)×K for some compact group K .

More generally, one can prove that if the limit set ΛΓ of a H
p,q-convex-cocompact subgroup Γ <

PO(p,q+1) of maximal dimension is a C1 submanifold, then the signature of the restriction of the pseudo-
Riemannian conformal structure of ∂Hp,q to TΛΓ is constant and of the form (k,0) for some integer
0 ≤ k ≤ p − 1. Adapting the proof of Lemma 3.9, we then find that the Zariski closure of Γ has rank at
most p − k.

4 Pseudo-Riemannian Hausdorff dimension

Limit sets of discrete groups of isometries of real hyperbolic space (and more generally rank one sym-
metric spaces) are a central theme in hyperbolic geometry. They are especially nice for convex cocompact
groups, as they have nice dynamical properties as well as a fractal nature that is well understood. In-
deed, it is known that the Hausdorff dimension of the limit set is equal to the critical exponent, which
is a dynamical invariant of the action on the hyperbolic space. With O. Glorieux, we extended this re-
lation to H

p,q-convex cocompact groups in [GM21]. It is important to understand that both sides of the
equation have to be modified in the pseudo-Riemannian context. On one side, the critical exponent is a
notion of metric geometry, but Hp,q is not a metric space. On the other side, the fact that limit sets of
H
p,q-convex-cocompact subgroups of maximal dimension are Lipschitz submanifolds implies that their

Hausdorff dimension is always equal to p − 1, making that notion uninteresting.

4.1 The critical exponent

Let us first recall the classic definition of the critical exponent in metric spaces. Let G be a countable
group acting isometrically on a metric space (X,d), and o ∈ X. The critical exponent δ(G,X) is

δ(G,X) = limsup
R→∞

1
R

LogCard {g ∈ G |d(g · o,o) ≤ R} .

A simple computation based on the triangle inequality shows that this number does not depend on o ∈ X.
It measures the exponential growth rate of the orbits of G in X. For example, by a simple argument of
volume, we can see that the critical exponent of a uniform lattice of PO(p,1) acting on H

p is equal to
p − 1. More generally this applies to fundamental groups of closed Riemannian manifolds of negative
curvature, where the critical exponent is equal to the exponential growth rate of the volume of balls.

The main problem when it comes to defining this invariant in pseudo-Riemannian hyperbolic geom-
etry is that Hp,q is not a metric space: if q > 0, there are no PO(p,q + 1) invariant distances on H

p,q. The
starting point of our work is the search for a good replacement for the distance on the convex hull C(ΛΓ )
of a H

p,q-convex cocompact group Γ ⊂ PO(p,q+1), which will lead to an H
p,q critical exponent. Instead of
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defining the distance as an infimum of lengths of all curves joining two points (which would ultimately
lead to 0), we just focus on geodesics.

Definition 4.1. Let x,y ∈Hp,q. If x and y are joined by a spacelike geodesic, we define d
H
p,q (x,y) as the

length of this spacelike geodesic. In other cases, we set d
H
p,q (x,y) = 0.

A simple computation (see [GM21, Proposition 3.2]) shows the following formula3

d
H
p,q (x,y) = cosh−1

(
max

{
1,

∣∣∣∣〈x̃, ỹ〉p,q+1

∣∣∣∣}) . (1)

This function is not a distance, and the first part of our work consists in finding a weak form of the
triangle inequality when looking at the convex hull C(ΛΓ ).

Theorem 4.2. If Γ ⊂ PO(p,q + 1) is Hp,q-convex cocompact, there is a constant kΓ > 0 such that d
H
p,q (x,y) ≤

d
H
p,q (x,z) + d

H
p,q (z,y) + kΓ for all x,y,z ∈ C(ΛΓ ).

Sketch of proof. Thanks to the formula (1) and the inequality Logt ≤ cosh−1(t) ≤ Logt+2 for any t ≥ 1, it is
enough to show that the function F : C(ΛΓ )3→R defined by

F(x,y,z) =

〈
x̃, ỹ

〉
p,q+1

〈x̃, z̃〉p,q+1
〈̃
z, ỹ

〉
p,q+1

is bounded. For this, we first notice that it extends continuously to C(ΛΓ )
2
×C(ΛΓ ) (essentially because the

formula defining F also makes sense for x or y inΛΓ ), then use the cocompactness of the action Γ y C(ΛΓ )
in order to confine z to a compact fundamental domain.

Remark. This idea of using a weakened triangle inequality in order to relate Hausdorff dimensions and
critical exponents has been recently used in [DKO24].

Definition 4.3. Let Γ ⊂ PO(p,q+ 1) is Hp,q-convex cocompact. The critical exponent of Γ is

δ
H
p,q (Γ ) = limsup

R→∞

1
R

LogCard {γ ∈ Γ
∣∣∣d

H
p,q (γo,o) ≤ R}

where o ∈ C(ΛΓ ).

Thanks to Theorem 4.2, it does not depend on the choice of a point o ∈ C(ΛΓ ). Another way of defining
δ
H
p,q (Γ ) is as the convergence exponent of the Poincaré series

P (s) =
∑
γ∈Γ

e−sdHp,q (γ ·o,o).

It satisfies {
P (s) < +∞ if s > δ

H
p,q(Γ )

P (s) = +∞ if s < δ
H
p,q(Γ )

.

3Recall that by convention, a lift x̃ ∈Rp+q+1 of a point x ∈Hp,q is assumed to be in Ĥ
p,q, i.e. to satisfy 〈x̃, x̃〉p,q+1 = −1, unless

otherwise specified.
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4.2 Pseudo-Riemannian Hausdorff dimension

Hausdorff dimension and measures rely on the choice of a distance, so in order to define a replacement
for the Hausdorff dimension of the limit set ΛΓ ⊂ ∂Hp,q, we must find a replacement for the distance on
∂Hp,q. This is achieved by using standard constructions in negatively curved metric geometry.

Definition 4.4. Let Γ < PO(p,q + 1) be H
p,q-convex cocompact. Consider x ∈ C(ΛΓ ) and ξ,η ∈ ΛΓ . The

Gromov product of ξ and η centred at x is

(ξ |η)x =
1
2

Log

∣∣∣∣∣∣∣∣
2
〈
ξ̃, x̃

〉
p,q+1

〈
x̃, η̃

〉
p,q+1〈

ξ̃, η̃
〉
p,q+1

∣∣∣∣∣∣∣∣ .
The Gromov distance between ξ and η seen from x is

dx(ξ,η) = e−(ξ |η)x =

√√√√√√∣∣∣∣∣∣∣∣
〈
ξ̃, η̃

〉
p,q+1

2
〈
ξ̃, x̃

〉
p,q+1

〈
x̃, η̃

〉
p,q+1

∣∣∣∣∣∣∣∣.
It has the same interpretation as in metric spaces: for x,y,z ∈ C(ΛΓ ), the Gromov product is defined

by

(x|y)z =
1
2

(d
H
p,q(x,z) + d

H
p,q (y,z)− d

H
p,q (x,y)) .

We then have
(ξ |η)x = lim

y→ξ
z→η

(y|z)x.

Note that the Gromov distance dx has a nice pseudo-Riemannian interpretation. As seen in section 1.4,
one x is chosen there is a natural pseudo-Riemannian metric on the open ∂U (x) ⊂ ∂Hp,q, and ΛΓ ⊂ ∂U (x)
when x ∈ C(ΛΓ ). Then two distinct points ξ,η ∈ ΛΓ are related by a spacelike geodesic whose length is
cos−1(1− 2dx(ξ,η)2).

Even though the Gromov distance dx is symmetric and positive on distinct points, it does not satisfy
the triangle inequality. But here again, there is a weaker version of the triangle inequality that will be
sufficient for our purpose.

Proposition 4.5 ([GM21, Lemma 3.17]). If Γ ⊂ PO(p,q + 1) is H
p,q-convex cocompact, there is a constant

λΓ ≥ 1 such that
∀x ∈ C(ΛΓ )∀ξ,η,τ ∈ΛΓ dx(ξ,η) ≤ λΓ (dx(ξ,τ) + dx(τ,η)) .

The proof is based on the cocompactness of the action of Γ on the spaceΛ(3)
Γ

of pairwise distinct triples
of points in ΛΓ , a general fact for hyperbolic groups. From there, we define a ball in ΛΓ as

Bx(ξ,r) =
{
η ∈ΛΓ

∣∣∣dx(ξ,η) ≤ r
}
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for x ∈ C(ΛΓ ),ξ ∈ ΛΓ and r ≥ 0. We can then adapt the definitions of Hausdorff measure and dimension
to our setting. For E ⊂ΛΓ , s > 0 and ε > 0 we set:

Hs,ε
dx

(E) = inf
{∑

rsi

∣∣∣∣E ⊂⋃
Bx(ξi , ri),ξi ∈ E,ri ≤ ε

}
.

Since Hs,ε
dx

(E) increases as ε decreases, we can consider:

Hs
dx

(E) = lim
ε→0

Hs,ε
dx

(E) ∈ [0 ,+∞].

Finally, the pseudo-Riemannian Hausdorff dimension of E is:

Hdimdx (E) = inf
{
s > 0

∣∣∣Hs
dx

(E) = 0
}
.

Given two points x,y ∈ C(ΛΓ ), the Gromov distances dx and dy satisfy a bi-Lipschitz type inequality

∀ξ,η ∈ΛΓ e−2d
H
p,q (x,y)−2kΓ ≤

dx(ξ,η)
dy(ξ,η)

≤ e2d
H
p,q (x,y)+2kΓ

from which one deduces that the pseudo-Riemannian Hausdorff dimension Hdimdx (ΛΓ ) does not depend
on x.

Theorem 4.6. Let Γ < PO(p,q+ 1) be Hp,q-convex cocompact. For any x ∈ C(ΛΓ ), we have

Hdimdx (ΛΓ ) = δ
H
p,q (Γ ).

Furthermore, given x ∈ C(ΛΓ ), it is possible to find a Riemannian metric on ∂U (x) whose induced
distance is larger than dx (see the proof of [GM21, Proposition 5.1]). Intuitively, the fact that dx(ξ,η) is
small means that the pseudo-Riemannian geodesic segment in ∂U (x) joining ξ and η is close to being
isotropic, but this does not imply that it is short for the Riemannian metric. It follows that the pseudo-
Riemannian Hausdorff dimension is smaller than the usual (Riemannian) Hausdorff dimension. Note
that since the limit set is the locally the graph of a Lipschitz map defined on a closed subset of Sp−1, the
usual Hausdorff dimension is at most p − 1.

Proposition 4.7 ([GM21, Proposition 5.1]). Let Γ < PO(p,q+1) be Hp,q-convex cocompact. For any x ∈ C(ΛΓ ),
we have

Hdimdx(ΛΓ ) ≤Hdim(ΛΓ ) ≤ p − 1

where Hdim(ΛΓ ) denotes its Hausdorff distance for any Riemannian distance on an open neighbourhood of ΛΓ .

4.3 Pseudo-Riemannian Patterson-Sullivan theory

The proof of Theorem 4.6 relies on the existence of a measure for which a pseudo-Riemannian ball of
radius r has volume roughly rδHp,q (Γ ) (this condition is known as Ahlfors-David regularity for metric
space).
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Proposition 4.8. Let Γ < PO(p,q + 1) be Hp,q-convex cocompact, and x ∈ C(ΛΓ ). If there exist a measure µ on
ΛΓ and constants s,C > 0 such that

1
C
≤
µ (Bx(ξ,r))

rs
≤ C

for all r ∈ (0,1), then
Hdimdx (ΛΓ ) = s.

This is a classic result for metric spaces whose proof relies on the Vitali Lemma, a way of modifying
the radii of a covering by balls in order to get disjoint balls that still cover the space if the radius is
replaced by a larger one. This intermediate result uses the triangle inequality, so it must be adapted to
our situation.

Lemma 4.9 (Vitali Lemma for dx, [GM21, Lemma 5.3]). Let Γ < PO(p,q+ 1) be Hp,q-convex cocompact, and
x ∈ C(ΛΓ ). Given a subset J ⊂ΛΓ and a bounded function r : J → (0,+∞), there is a subset I ⊂ J such that:

• The balls Bx(ξ,r(ξ)) are disjoint for distinct points ξ ∈ I .

•
⋃
ξ∈J Bx(ξ,r(ξ)) ⊂

⋃
η∈I Bx(η,5λ

2
Γ
r(η)).

Proof of Proposition 4.8. Let ε > 0, and consider the open cover ΛΓ ⊂
⋃
ξ∈ΛΓ

Bx(ξ,
ε

5λ2
Γ

). By Lemma 4.9, we

can find a (necessarily countable) subset J ⊂ ΛΓ such that ΛΓ ⊂
⋃
ξ∈ΛΓ

Bx(ξ,ε) and the balls Bx(ξ,
ε

5λ2
Γ

) for

ξ ∈ΛΓ are pairwise disjoint. Since Hs,ε
dx

(ΛΓ ) ≤
∑
ξ∈J ε

s, we find:

Hs,ε
dx

(ΛΓ ) ≤
∑
ξ∈J

εs

≤ (5λ2
Γ )sC

∑
ξ∈J

µ

Bx(ξ, ε

5λ2
Γ

)


≤

(
5λ2

Γ

)s
Cµ(ΛΓ ). (2)

We now consider an arbitrary countable collection (ξi , ri) of points of ΛΓ and radii such that ΛΓ ⊂⋃
Bx(ξi , ri). We have µ(ΛΓ ) ≤

∑
µ (Bx(ξi , ri)) ≤ C

∑
rsi , so by considering the infimum amongs all covers we

find
µ(ΛΓ ) ≤ CHs,ε

dx
(ΛΓ ) (3)

Combining (2) and (3) and letting ε→ 0, we get:

µ(ΛΓ )
C
≤Hs

dx
(ΛΓ ) ≤

(
5λ2

Γ

)s
Cµ(ΛΓ ).

The fact that Hs
dx

(ΛΓ ) is both positive and finite implies that Hdimdx(ΛΓ ) = s.

The quest for a measure µ satisfying the Ahlfors-David regularity condition of Proposition 4.8 is
achieved through Patterson-Sullivan theory. The idea, first developed by Patterson in H

2 then Sullivan
in H

d [Pat76, Sul79], is that this condition can be achieved by requiring that γ∗µ is absolutely continuous
with respect to µ for any γ ∈ Γ , with an imposed Radon-Nikodym derivative. This condition is easier to
handle (and obtain) if instead we work with families of measures on ΛΓ indexed by points of C(ΛΓ ) that
we call conformal densities. First, we will need to recall the definition of Busemann functions.
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Definition 4.10. Let Γ < PO(p,q+1) be Hp,q-convex cocompact. The Busemann function centred at ξ ∈ΛΓ ,
is the function βξ on C(ΛΓ )2 defined by:

∀x,y ∈ C(Λ) βξ(x,y) = ln


∣∣∣∣∣∣∣∣
〈
ξ̃, x̃

〉
p,q+1〈

ξ̃, ỹ
〉
p,q+1

∣∣∣∣∣∣∣∣
 .

Just as for the Gromov product, there is an interpretation in terms of differences of distances:

lim
z→ξ

d
H
p,q (z,x)− d

H
p,q (z,y) = βξ(x,y).

Both notions are related by (ξ |η)x = 1
2 (βξ(x,y)+βη(x,y)) for any y ∈ (ξη). We also have the cocycle relation

∀ξ ∈ΛΓ ∀x,y,z ∈ C(ΛΓ ) βξ(x,y) + βξ(y,z) = βξ(x,z).

Definition 4.11. Let Γ < PO(p,q + 1) be H
p,q-convex cocompact. A conformal density of dimension s on

ΛΓ is a family of measures ν = (νx)x∈C(ΛΓ ) on ΛΓ satisfying the following conditions:

1. ∀γ ∈ Γ , γ∗νx = νγx (where γ∗ν(E) = ν(γ−1E))

2. The measures are all absolutely continuous with respect to each other, and dνx
dνy

(ξ) = e−sβξ (x,y) forall

x,y ∈ C(ΛΓ ) and ξ ∈ΛΓ .

3. supp(νx) =ΛΓ

Remark. Fixing a base point o ∈ C(ΛΓ ), we can recover νx for any x ∈ C(ΛΓ ) from νo because of condition
2. So an alternative approach is to start with a single measure ν whose support is ΛΓ and such that, for
any γ ∈ Γ , the measure γ∗ν is absolutely continuous with respect to ν with density dγ∗ν

dν (ξ) = e−sβξ (γ ·o,o) at
ξ ∈ΛΓ .

In order to prove that conformal densities are Ahlfors-David regular, we replace pseudo-Riemannian
balls in ΛΓ with shadows.

Definition 4.12. Let Γ < PO(p,q+1) be H
p,q-convex cocompact, x,y ∈ C(Λ) and r > 0. The shadow Sr(x,y)

is
Sr(x,y) =

{
ξ ∈ΛΓ

∣∣∣ [xξ)∩BC(ΛΓ )(y, r) , ∅
}

where BC(ΛΓ )(y, r) = {z ∈ C(ΛΓ )
∣∣∣d

H
p,q (y,z) ≤ r} is the pseudo-Riemannian ball.

Remark. This is slightly different from the usual definition of shadows as we require that points in shad-
ows lie on the limit set.

There are explicit relations between shadows and balls in ΛΓ .

Lemma 4.13 ([GM21, Corollaries 3.20 and 3.21]). Let Γ < PO(p,q + 1) be H
p,q-convex cocompact, ξ ∈ ΛΓ

and r ∈ (0,1).
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• If y ∈ [xξ) is such that d
H
p,q (x,y) = −Logr, then Bx(ξ,r) ⊂ Sln6(x,y).

• Let t > 0. If y ∈ [xξ) is such that d
H
p,q (x,y) = t + kΓ −Logr − Log8

2 , then St(x,y) ⊂ Bx(ξ,r).
The main interest in shadows is that they are subsets of the limit set ΛΓ parametrised by points in the

convex hull C(ΛΓ ), where we can use the cocompactness of the action of Γ . One of the main technical
results needed to work with shadows is a control on Busemann functions.

Lemma 4.14 ([GM21, Lemma 3.11]). Let Γ < PO(p,q + 1) be Hp,q-convex cocompact, x,y ∈ C(ΛΓ ) and r > 0.
For all ξ ∈ Sr(x,y), one has:

d
H
p,q(x,y)− 2r − 2kΓ ≤ βξ(x,y) ≤ d

H
p,q(x,y) + kΓ .

We then get a pseudo-Riemannian version of Sullivan’s Shadow Lemma.

Theorem 4.15 ([GM21, Theorem 4.7]). Let Γ < PO(p,q+1) be Hp,q-convex cocompact, and let ν be a conformal
density of dimension s. For any x ∈ CΓ (Λ) and r > 0 large enough, there is a constant C(r) > 0 satisfying:

1
C(r)

e−sdHp,q (x,y) ≤ νx(Sr(x,y)) ≤ C(r)e−sdHp,q (x,y)

for all y ∈ C(ΛΓ ).

Sketch of proof. The first step is to move from an arbitrary pair (x,y) to a pair of the form (x,γ ·x) for some
γ ∈ Γ . This is achieved by using the cocompactness of the action on C(ΛΓ ), and the relation

Sr(x,y) ⊂ Sr+d
H
p,q (y,z)+kΓ (x,z)

for x,y,z ∈ C(ΛΓ ) (see the proof of [GM21, Theorem 4.7]). We now want to estimate νx (Sr(x,γ · x)) for
some γ ∈ Γ , and we start with a change of variables.

νx (Sr(x,γ · x)) = νx
(
γ · Sr(γ−1 · x,x)

)
= νγ−1·x

(
Sr(γ−1 · x,x)

)
=

∫
Sr (γ−1·x,x)

e−sβξ (γ−1·x,x)dνx(ξ).

From there, assuming4 s ≥ 0 we easily get an upper bound thanks to the lower bound of the Buneman
function from Lemma 4.14:

νx (Sr(x,γ · x)) ≤ νx(ΛΓ )e2s(r+kΓ )e−sdHp,q (x,γ ·x).

For the lower bound, still use Lemma 4.14:

νx (Sr(x,γ · x)) ≥ νx
(
Sr(γ−1 · x,x)

)
e−skΓ e−sdHp,q (x,γ ·x).

One concludes by finding a lower bound on νx (Sr(y,x)) uniform in y ∈ C(ΛΓ ) provided that r is large
enough. This is possible because Sr(y,x) is close to being the whole limit set ΛΓ when r is large. For a
precise statement and proof, see [GM21, Corollary 4.5].

4We omit the s < 0 case which is also treated in the proof of [GM21, Theorem 4.6] as it is a posteriori unnecessary: there are
no conformal densities of negative dimension. However the proof of this fact is by contradiction and uses the Shadow Lemma
in this case, thus its presence in the paper.
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Theorem 4.15 also estimates the volume of balls in the limit set thanks to Lemma 4.13.

Theorem 4.16 ([GM21, Theorem 4.8]). Let Γ < PO(p,q + 1) be H
p,q-convex cocompact, ν be a conformal

density of dimension s and x ∈ CΓ (Λ). There is c > 0 such that for all ξ ∈ΛΓ and r ∈ (0,1), we have

1
c
≤ νx

(Bx(ξ,r))
rs

≤ c.

Combining Theorem 4.16 and Proposition 4.8, we see that the existence of a conformal density of
dimension s implies that s = Hdimdx(ΛΓ ), so Theorem 4.6 will be proved if we can show the existence of
a conformal density of dimension δ

H
p,q (Γ ). The classic Patterson-Sullivan construction works very well

here.

Theorem 4.17 ([GM21, Theorem 4.2]). Let Γ < PO(p,q+ 1) be Hp,q-convex cocompact. There exists a confor-
mal density of dimension δ

H
p,q (Γ ).

We will see the proof of Theorem 4.17 under the technical assumption that the Poincaré series

P (s) =
∑
γ∈Γ

e−sdHp,q (γ ·o,o)

diverges at s = δ
H
p,q(Γ ). This happen to be true for all Hp,q-convex cocompact [GM21, Corollary 4.12],

but the proof uses the existence of the Patterson-Sullivan density. This is why the construction in [GM21,
Section 7.1] uses a modification of the Poincaré series involving the Patterson function introduced in
[Pat76]. In conclusion, the construction that we give below does give the Patterson-Sullivan density, but
is not sufficient to prove its existence.

Proof of Theorem 4.17 assuming the Poincaré series diverges at s = δ
H
p,q(Γ ). Recall from the remark follow-

ing Definition 4.11 that we can fix a base point o ∈ΛΓ and focus on finding a measure µ whose support is
ΛΓ and such that, for any γ ∈ Γ , the measure γ∗µ is absolutely continuous with respect to µ with density
dγ∗ν
dν (ξ) = e−δHp,q (Γ )βξ (γ ·o,o) at ξ ∈ΛΓ .

The idea is to construct µ as a limit of probability measures µs defined for s > δ
H
p,q (Γ ) and supported

on the orbit Γ ·o, with weights chosen so that they concentrate towardsΛΓ as s→ δ
H
p,q(Γ ). This is achieved

by setting

µs =
1
P (s)

∑
γ∈Γ

e−sdHp,q (γ ·o,o)∆γ ·o

where ∆x is the Dirac mass at x ∈ C(ΛΓ ). Considering µs as a measure on the compact space

C(ΛΓ ) = C(ΛΓ )∪ΛΓ ⊂H
p,q.

Using the compactness of the space of probability measures over a compact topological space we can
consider a sequence (sk)k≥0 of numbers sk < δHp,q (Γ ) with sk < δHp,q (Γ ) such that µsk converges weakly to a
probability measure µ on C(ΛΓ ). As any compact subset K ⊂ C(ΛΓ ) only contains finitely many elements
of the orbit Γ · o (a consequence of proper discontinuity), we find that µs(K) → 0 as s → δ

H
p,q (Γ ), thus

Supp(µ) ⊂ΛΓ .
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For any γ ∈ Γ and s > δ
H
p,q (Γ ), we have

γ∗µs =
1
P (s)

∑
γ ′∈Γ

e−sdHp,q (γ ′ ·o,o)γ∗∆γ ′ ·o

=
1
P (s)

∑
γ ′∈Γ

e−sdHp,q (γ ′ ·o,o)∆γγ ′ ·o

=
1
P (s)

∑
γ ′∈Γ

e−sdHp,q (γ−1γ ′ ·o,o)∆γ ′ ·o

=
1
P (s)

∑
γ ′∈Γ

e−sdHp,q (γ ′ ·o,γ ·o)∆γ ′ ·o.

It follows that γ∗µs is absolutely continuous with respect to µs, with density

dγ∗µs
dµs

(z) = e−s(dHp,q (z,γ ·o)−d
H
p,q (z,o))

at z ∈ Γ · o. As d
H
p,q (z,γ · o) − d

H
p,q(z,o) → βξ(γ · o,o) when z → ξ ∈ ΛΓ , we find that γ∗µ is absolutely

continuous with respect to µ, with density

dγ∗µ

dµ
(ξ) = e−δHp,q (Γ )βξ (γ ·o,o)

at ξ ∈ΛΓ . It also follows from this formula that γ∗µ and µ have the same support, so Supp(µ) is Γ -invariant
and closed, as well as non empty (µ is a probability measure). It follows from the minimality of the action
on ΛΓ that Supp(µ) =ΛΓ .

Remark. When we focus on a single measure µ associated to a fixed base point like we just did, it is
natural to ask of the finite measure µ to be a probability measure. However, if we work with a conformal
density ν = (νx)x∈C(ΛΓ ), the fact that νo is a probability measure does not imply the same property at points
outside the orbit Γ · o. This is actually important in (Riemannian) hyperbolic geometry, as the function
x 7→ µx(ΛΓ ) has its importance in spectral theory: it is an eigenfunction of the Laplacian realising the
bottom of the spectrum. The relation between Patterson-Sullivan measures and spectral theory in the
pseudo-Riemannian setting is the subject of an ongoing project in collaboration with B. Delarue and C.
Guillarmou.

By Patterson-Sullivan density, we mean the conformal density constructed in the proof of Theorem
4.17. Let us finish this section by mentioning the uniqueness and ergodicity of conformal measures.

Theorem 4.18 ([GM21, Theorem 4.13]). Let Γ < PO(p,q + 1) be H
p,q-convex cocompact. The Patterson-

Sullivan conformal density of to a multiplicative constant, and it is ergodic: any Γ -invariant measurable subset
of ΛΓ has zero of full measure for Patterson-Sullivan measures.

38



4.4 Isotropic tangent spaces

Let us focus on the maximal dimension case in this section. At this point of the discussion, all that we
know about the H

p,q-critical exponent and the pseudo-Riemannian Hausdorff dimension is summarised
in the following line:

0 < δ
H
p,q (Γ ) = HdimpR(ΛΓ ) ≤ p − 1.

If Γ is conjugate to a uniform lattice in O(p,1) < PO(p,q + 1), then δ
H
p,q (Γ ) = p − 1. But we have not

encountered any sign pointing to different values of the H
p,q-critical exponent. Although we will see in

the next section that the value p−1 is a characterisation of subgroups preserving a totally geodesic copy of
H
p, let us look at a (failed) naive attempt to prove that any H

p,q-convex-cocompact subgroup of maximal
dimension must satisfy δ

H
p,q (Γ ) = p − 1., and see what we can learn from it (Theorem 4.19).

We know (Proposition 1.17) that the limit set of a H
p,q-convex-cocompact subgroup of maximal di-

mension is a Lipschitz submanifold of ∂Hp,q. This has two interesting consequences. One is that it
naturally carries a class of measures: those that are absolutely continuous with respect to the Lebesgue
class in Lipschitz charts. The other is that it possesses tangent spaces at almost every point (for the
aforementioned measure class).

A naive approach to conformal densities would be to look for them in this class. There is a simple
solution: every x ∈ C(ΛΓ ) defines a pseudo-Riemannian metric hx on the open subset ∂U (x) ⊂ ∂Hp,q, and
ΛΓ ⊂ ∂U (x). We can therefore consider the restriction of hx to tangent spaces of ΛΓ , and use the volume
element of this metric to define a measure Volx on ΛΓ .

To be more precise, consider the antipodal quotient map π : Sp−1 × Sq → ∂Hp,q and a distance-
decreasing function f : Sp−1→ S

q such that π (Gr(f )) =ΛΓ , so that we have a global Lipschitz chart

ϕ :
{

S
p−1 → ΛΓ
u 7→ π(u,f (u))

.

For x ∈ C(ΛΓ ), and a measurable subset A ⊂ΛΓ , the formula is

Volx(A) =
∫
ϕ−1(A)

√
detϕ∗hxdvol

S
p−1 . (4)

The facts that the measure is independent of charts and that g∗hx = hg·x for any g ∈ PO(p,q+ 1) imply that
γ∗Volx = Volγ ·x for any γ ∈ Γ . For x,y ∈ C(ΛΓ ), the metrics hx and hy are in the same conformal class of
∂U (x)∩∂U (y), and the conformal factor is

(hy)ξ =


〈
x̃, ξ̃

〉
p,q+1〈

ỹ, ξ̃
〉
p,q+1


2

(hx)ξ = e2βξ (x,y)(hx)ξ .

So the measures Volx and Voly are in the same class with

dVolx
dVoly

(ξ) = e−(p−1)βξ (x,y).
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At this point, the family (Volx)x∈C(ΛΓ ) seems to be a conformal density of dimension p − 1, with only one
missing item in the definition: the support of Volx. Here again, the Γ -invariance means that either Volx
is the zero measure or it has full support. Looking at the coordinate formula (4) of Volx, the integrand√

detϕ∗hx (defined at points where ΛΓ has a tangent space) vanishes if and only if the tangent space is
degenerate for the pseudo-Riemannian conformal structure of ∂Hp,q. As the only possible dimension of
a conformal density is δ

H
p,q (Γ ), we get the following statement.

Theorem 4.19. Let Γ < PO(p,q+ 1) be Hp,q-convex-cocompact of maximal dimension. If δ
H
p,q (Γ ) < p−1, then

almost all tangent spaces of ΛΓ are degenerate.

4.5 Rigidity results

Let us turn to the question of rigidity, i.e. describing the equality case δ
H
p,q (Γ ) = p − 1. A famous theorem

of Bowen [Bow79] in dimension 3 and Yue [Yue96] in higher dimension shows that the critical exponent
of a convex cocompact representation of a uniform lattice of O(p,1) into PO(p + 1,1) is greater than p − 1
with equality if and only if the group is Fuchsian, that is conjugate to a subgroup of O(p,1). In [GM21],
we prove an analogous statement for H2,1 = AdS3.

Theorem 4.20 ([GM21, Theorem 1.5]). Let Γ < PO(2,2) be AdS3-quasi-Fuchsian. Then

δ
AdS3(Γ ) ≤ 1,

with equality if and only if Γ is AdS3-Fuchsian.

The proof we propose in [GM21] mixes geometric and ergodic tools. Although specificities of the
signature of AdS3, such as the fact that AdS3-quasi-Fuchsian groups are surface groups, occur several
times in the proof (e.g. [GM21, Lemma 6.27] relies on some Teichmüller theory via Bonahon’s geodesic
currents), several arguments could probably be modified in more general settings. There is however an
argument which is central to the proof and only applies to AdS3: the existence of a Lipschitz spacelike
hypersurface Σ ⊂ Γ \Ω(ΛΓ ) on which induced length metric is isometric to a hyperbolic surface. Indeed,
the fact that a H

p,q-quasi-Fuchsian subgroup Γ < PO(p,q+1) needs not be isomorphic to a lattice in O(p,1)
when p ≥ 4 means that there is not Lipschitz spacelike manifold of dimension p−1 on which the induced
length metric is isometric to a hyperbolic manifold.

The general signature has since been solved by Mazzoli and Viaggi.

Theorem 4.21 ([MV24, Theorem 4]). Let Γ < PO(p,q + 1) be H
p,q-convex-cocompact of maximal dimension.

If δ
H
p,q = p − 1, then Γ preserves a totally geodesic copy of Hp.

Their proof relies on the existence of a maximal (i.e. with vanishing mean curvature) spacelike p-
dimensional submanifold of Γ \Ω(ΛΓ ), the existence of which is due to Seppi, Smith and Toulisse [SST23],
and a rigidity result of Ledrappier and Wang [LW10] on the volume entropy of Riemannian manifolds
with Ricci curvature bounded from below.

Remark. Theorem 4.20 can also be recovered from a result of Bishop and Steger [BS91]. In order to
understand this, we need to consider the relationship between critical exponent and entropy. There is a
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bijective correspondence between the set [Γ ]hyp of conjugacy classes of infinite order elements in Γ and
closed spacelike geodesics in Γ \Ω(ΛΓ ). Denote by `

H
p,q([γ]) the length of this geodesic for [γ] ∈ [Γ ]hyp.

The H
p,q-entropy of Γ is

h
H
p,q (Γ ) = limsup

R→+∞

1
R

LogCard
{
[γ] ∈ [Γ ]hyp

∣∣∣`
H
p,q([γ]) ≤ R

}
.

Adapting some classic arguments of hyperbolic geometry, we can prove

h
H
p,q(Γ ) = δ

H
p,q (Γ )

for any H
p,q-quasi-Fuchsian group. In the H

2,1 case, assuming that Γ < PO(2,2) is torsion free and AdS3-
quasi-Fuchsian, we have seen that the exceptional isomorphism PO(2,2)◦ ≈ PSL(2,R)×PSL(2,R) attributes
to Γ a pair of Fuchsian representations ρ1,ρ2 : Γ → PSL(2,R), i.e. faithful representations whose images
are uniform lattices, such that Γ corresponds to

{
(ρ1(γ),ρ2(γ))

∣∣∣γ ∈ Γ } < PSL(2,R) × PSL(2,R). Now ev-
ery conjugacy class [γ] ∈ [Γ ] corresponds to closed geodesics in the hyperbolic surfaces ρ1(Γ )\H2 and
ρ2(Γ )\H2, whose lengths will be denoted by `1([γ]) and `2([γ]). It is proved in [Glo17, Proposition 2.3]
that

`
AdS3([γ]) =

`1([γ]) + `2([γ])
2

.

Now given two Fuchsian representations ρ1,ρ2 : π1(Σ)→ PSL(2,R) of the fundamental group of a closed
surface Σ, it follows from [BS91] that

limsup
R→+∞

1
R

LogCard {[γ] ∈ [π1(Σ)]
∣∣∣`1([γ]) + `2([γ]) ≤ R} ≤

1
2

with equality if and only if ρ1 is conjugate to ρ2.

4.6 Geometric interpretation of the upper bound on the critical exponent

The fact that the entropy has a rigid upper bound, rather than a lower bound as in the case of quasi-
Fuchsian groups acting on H

2, is commonly understood to be a higher rank feature (see the discussion
following Theorem A in [PS17]). The lower bound in rank one is best understood when replacing the
entropy or critical exponent with the Hausdorff dimension of the limit set: non Fuchsian examples have
a fractal limit set, thus a larger Hausdorff dimension. A basic understanding of the pseudo-Riemannian
Hausdorff dimension also explains why we should expect an upper bound in the pseudo-Riemannian
setting: non Fuchsian examples have a limit set with degenerate tangent spaces (Theorem 4.19), so they
can be covered by "fewer" pseudo-Riemannian balls (recall that a pseudo-Riemannian ball of radius 0 is
a light cone), so their pseudo-Riemannian Hausdorff dimension should be smaller.

5 Critical exponents, entropies and Hausdorff dimension of limit sets for
projective Anosov subgroups

The paper [GMT23], written in collaboration with O. Glorieux and N. Tholozan, is in many ways an
extension of the results of [GM21] to the more general setting of projective Anosov subgroups of SL(d,R),
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with the addition of proving equalities between critical exponents (growth rates of singular values) and
entropies (growth rates of eigenvalues) in a broad setting. When geometric arguments are needed, the
pseudo-Riemannian hyperbolic geometry used in [GM21] is replaced with convex projective geometry.

5.1 Results

Let Γ < SL(d,R) be a projective Anosov subgroup. Then Γ is Gromov hyperbolic and comes with two
injective equivariant maps ξ : ∂∞Γ → RP

d−1 and ξ∗ : ∂∞Γ → RP
d−1∗. We denote by ξsym the map (ξ,ξ∗) :

∂∞Γ →F1,d−1 where
F1,d−1 =

{
([x], [α]) ∈RP

d−1 ×RP
d−1∗

∣∣∣α(x) = 0
}

is the partial flag manifold. We will refer to the images of these maps as the limit sets of Γ , denoted

ΛΓ = ξ(∂∞Γ ) ⊂RP
d−1 ; Λ∗Γ = ξ∗(∂∞Γ ) ⊂RP

d−1∗ ; Λ
sym
Γ

= ξsym(∂∞Γ ) ⊂ F1,d−1.

We define the simple root critical exponent of Γ by

δ1,2(Γ ) = limsup
R→+∞

1
R

LogCard
{
γ ∈ Γ

∣∣∣µ1(γ)−µ2(γ) ≤ R
}

and the highest weight critical exponent of Γ by

δ1,d(Γ ) = limsup
R→+∞

1
R

LogCard
{
γ ∈ Γ

∣∣∣µ1(γ)−µd(γ) ≤ R
}
.

These critical exponents are relevant for different reasons: the projective Anosov property means
that µ1(γ) − µ2(γ) grows linearly with the word length of γ , so δ1,2(Γ ) can be seen as a “measure” of the
Anosov property. The critical exponent δ1,d(Γ ) is the critical exponent associated to the Hilbert metric on
SL(d,R)/SO(d) seen as the projectivization of the cone of positive definite quadratic forms on R

d . Our
main result compares these two critical exponents with the Hausdorff dimension of Λsym

Γ
with respect to

a Riemannian metric on F1,d−1.
Our first comparison result between Hausdorff dimensions concerns strongly projectively convex-

cocompact subgroups of SL(d,R), introduced by Crampon and Marquis [CM14]. It is shown in [DGK23]
that these groups are projective Anosov.

Theorem 5.1 ([GMT23, Theorem 1.1]). Assume d ≥ 3, and let Γ < SL(d,R) be a strongly projectively convex-
cocompact subgroup. Then

2δ1,d(Γ ) ≤Hdim(Λsym
Γ

) ≤ δ1,2(Γ ) .

For projective Anosov subgroups that are not convex-cocompact, composing with the representation
of SL(d,R) into SL(Sym2(Rd)) gives the following weaker result:

Corollary 5.2 ([GMT23, Corollary 1.2]). Assume d ≥ 2, and let Γ < SL(d,R) be a projective Anosov subgroup.
Then

δ1,d(Γ ) ≤Hdim(Λsym
Γ

) ≤ δ1,2(Γ ) .

42



Note that Theorem 5.1 is “sharp” in the sense that both inequalities become equalities when Γ is a
convex cocompact subgroup in SO(d − 1,1) ⊂ SL(d,R). Corollary 5.2 is weaker since we always have
δ1,d(Γ ) ≤ 1

2δ1,2(Γ ) when d ≥ 3, so at most one of the inequalities can be an equality. However, it cannot be
sharpened in full generality. For instance, let Γ < SL(2,R) be a uniform lattice and let ρirr ,ρred : SL(2,R)→
SL(3,R) denote respectively the irreducible and reducible representations. Then ρirr(Γ ) and ρred(Γ ) are
projective Anosov with limit set a smooth curve (of Hausdorff dimension 1). However, their critical
exponents differ:

• ρirr(Γ ) < SO(2,1) is convex cocompact and both equalities in Theorem 5.1 are reached

2δ1,3(ρirr(Γ )) = δ1,2(ρirr(Γ )) = 1 = Hdim(Λsym
Γ

) .

• ρred(Γ ) is not convex cocompact and the lower bound in Corollary 5.2 is reached

δ1,3(ρred(Γ )) =
1
2
δ1,2(ρred(Γ )) = 1 = Hdim(Λsym

Γ
) .

The common right-hand side inequality in Theorem 5.1 and Corollary 5.2 is also valid for the other
limit sets.

Theorem 5.3 ([GMT23, Theorem 4.1]). Assume d ≥ 2, and let Γ < SL(d,R) be a projective Anosov subgroup.
Then

Hdim(ΛΓ ) ≤ δ1,2(Γ ) .

This inequality was proven independently by Pozzetti, Sambarino and Wienhard in [PSW21]. There
are many situations where this upper bound on the Hausdorff dimension is reached, including some
Zariski dense examples: the equality Hdim(ΛΓ ) = δ1,2(Γ ) holds for images of Hitchin representations
[PS17, Theorem B].

The lower bounds on the Hausdorff dimension seem however to be rarely reached, leading us in
[GMT23] to conjecture the following rigidity statement:

Conjecture 5.4. Assume d ≥ 3, and let Γ < SL(d,R) be a strongly projectively convex cocompact subgroup. If
2δ1,d = DimH(Λsym

Γ
), then Γ is conjugated to a subgroup of SO(d − 1,1).

For Hp,q-convex-cocompact subgroups Γ < PO(p,q+1), we have 2δ1,d(Γ ) = δ
H
p,q (Γ ), so [MV24, Theorem

4] proves this conjecture for Hp,q-quasi-Fuchsian groups.

5.2 Critical exponents and entropies

Let us introduce entropies as growth rates of eigenvalue gaps for discrete linear groups.

Definition 5.5. Let Γ < SL(d,R) be a discrete subgroup. We define the simple root entropy of Γ as

h1,2(Γ ) = limsup
R→∞

1
R

LogCard {[γ] ∈ [Γ ]
∣∣∣λ1(γ)−λ2(γ) ≤ R} ,
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and the highest weight entropy of Γ as

h1,d(Γ ) = limsup
R→∞

1
R

LogCard {[γ] ∈ [Γ ]
∣∣∣λ1(γ)−λd(γ) ≤ R} ,

where [Γ ] denotes the set of conjugacy classes in Γ .

The term “entropy” comes from the analogy with the geodesic flow of a closed negatively curved
manifold, whose closed orbits are in bijection with conjugacy classes in the fundamental group, and
whose topological entropy equals the exponential growth rate of lengths of closed orbits. For projective
Anosov subgroups, the highest weight entropy is equal to the topological entropy of a flow associated to
Γ (see [Sam14]), and for some specific subgroups as images of Hitchin representations it is also the case
for the simple root entropy (these flows are studied in [BCLS18]).

For sufficiently nice discrete groups of isometries of a negatively curved manifold, the critical expo-
nent equals the entropy. For a Zariski dense Θ-Anosov group, Sambarino obtained in [Sam14] precise
counting estimates for

Card
{
γ ∈ Γ

∣∣∣µ1(γ)−µd(γ) ≤ R
}
,

for projective Anosov subgroups, implying in particular that h1,d(Γ ) = δ1,d(Γ ). The tools he uses, however,
do not seem to apply to simple root critical exponents in general, so the novelty in the following result
concerns the simple root exponent/entropy.

Theorem 5.6 ([GMT23, Theorem 2.30]). Assume d ≥ 2, and let Γ < SL(d,R) be a projective Anosov subgroup.
Then

• h1,2(Γ ) ≤ δ1,2(Γ ),

• h1,d(Γ ) = δ1,d(Γ ).

If Γ is moreover Zariski dense in SL(d,R), then

• h1,2(Γ ) = δ1,2(Γ ).

The reason for Zariski density in the second part is that we need to find some regular elements γ ∈ Γ
(more precisely, we need a controlled gap between µ2(γ) and µ3(γ)), this is achieved thanks to a famous
result of Abels, Margulis and Soifer [AMS95] stating that up to multiplying by elements in a finite subset
of Γ , elements become loxodromic provided that Γ is Zariski-dense. For the simple root entropy, we only
need control on the gap between µ1(γ) and µ2(γ), which is provided by the projective Anosov condition.

The equality h1,2(Γ ) = δ1,2(Γ ) actually holds as soon as the Zariski closure of Γ is semi-simple (by
applying the more general [GMT23, Theorem 2.31] to the Zariski closure). A typical example where we
don’t know whether the equality δ1,2 = h1,2 holds is for Barbot representations: deformations of uniform
lattices of SL(2,R) inside Aff(R2) ⊂ SL(3,R) [Bar01, Bar10].
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5.3 Convex projective geometry and Hausdorff dimensions

We will not discuss the proof of the upper bound (Theorem 5.3) on the Hausdorff dimension in depth,
as it is a rather classic argument. In a few words, let us say that a Hausdorff dimension is bounded from
above by finding an appropriate cover of the set. In self-similar settings, this is achieved by considering
translates of a fixed ball by elements of the group. This works well in our case because the distortion of
such an element γ ∈ Γ is comparable to eµ2(γ)−µ1(γ).

The proof of the lower bound in Theorem 5.1 follows a strategy similar to that of [GM21], with the
Hilbert geometry of a proper convex domain in RP

d−1 replacing the pseudo-Riemannian geometry of
H
p,q. Recall that an open subset Ω ⊂RP

d−1 is called properly convex if its closure is contained in an affine
chart, in which it is convex and bounded.

Definition 5.7 ([DGK23, Definition 1.1]). Let Γ < SL(d,R) be an infinite discrete subgroup.

• Let Ω ⊂ RP
d−1 be a Γ -invariant properly convex open subset. The action Γ y Ω is called strongly

convex cocompact if Ω is strictly convex with C1 boundary, and for some x ∈Ω, the convex hull in Ω
of Γ · x∩∂Ω is non-empty and has compact quotient by Γ .

• The group Γ < SL(d,R) is strongly projectively convex-cocompact if it admits a strongly convex cocom-
pact action on a properly convex open subset Ω ⊂RP

d−1.

Theorem 5.8 ([DGK23, Theorem 1.15]). Let Γ < SL(d,R) be strongly projectively convex-cocompact. Then
Γ is projective Anosov, and if Ω ⊂ RP

d−1 is a properly convex open subset on which Γ acts strongly convex-
cocompactly, then Γ · x∩∂Ω =ΛΓ for any x ∈Ω.

Although the converse is false (e.g. uniform lattices in SL(2,R)), one can go from projective Anosov
subgroups to strongly projectively convex-cocompact subgroups by considering an appropriate represen-
tation of SL(d,R).

Proposition 5.9. Let I : SL(d,R) → SL(Sym2(Rd∗)) be the representation given by the action on the space
of quadratic forms. If Γ < SL(d,R) is projective Anosov, then I(Γ ) < SL(Sym2(Rd∗)) is strongly projectively
convex-cocompact.

This is a consequence of [DGK23, Theorem 1.15 (vi)] and the fact that I(SL(d,R)) preserves the cone
of positive definite quadratic forms.

Sketch of proof of Corollary 5.2 assuming Theorem 5.1. Let n = dimSym2(Rd∗) = d(d+1)
2 . For g ∈ SL(d,R), one

finds
µ1(I(g)) = 2µ1(g) , µ2(I(g)) = µ1(g) +µ2(g) , µn(I(g)) = 2µd(g) ,

so for any discrete subgroup Γ < SL(d,R) we have

δ1,2(I(Γ )) = δ1,2(Γ ) , 2δ1,n(I(Γ )) = δ1,d(Γ ).

If Γ is projective Anosov, then the smooth SL(d,R)-equivariant embedding{
F1,d−1 → P

(
Sym2(Rd∗))

)
×P

(
Sym2(Rd∗)∗

)
([x], [α]) 7→ ([α ⊗α], [ιx ⊗ ιx])

,
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where ιx ∈ (Rd∗)∗) is the evaluation at x ∈Rd , sends Λsym
Γ

to Λsym
I(Γ ) , therefore

Hdim
(
Λ

sym
Γ

)
= Hdim

(
Λ

sym
I(Γ )

)
.

The geometry of a properly convex open subset Ω ⊂ RP
d−1 can be studied through its Hilbert metric

of dΩ.

Definition 5.10. Let Ω ⊂ RP
d−1 be a properly convex open subset, and x,y ∈Ω. Let a,b ∈ ∂Ω denote the

intersections of the projective line (xy) with ∂Ω, ordered so that x lies between a and y. Then the Hilbert
distance between x and y is

dΩ(x,y) =
1
2

Log[a;x;y;b].

If a group Γ < SL(d,R) acts strongly convex cocompactly on Ω, we can define the Hilbert critical expo-
nent

δΩ(Γ ) = limsup
R→+∞

LogCard {γ ∈ Γ
∣∣∣dΩ(x,γ · x) ≤ R}

where x ∈Ω is any point. Now any conjugacy class [γ] ∈ [Γ ] determines a closed geodesic in Γ \Ω, whose
length will be denoted by `Ω([γ]). We can define the Hilbert entropy as

hΩ(Γ ) = limsup
R→+∞

1
R

LogCard {[γ] ∈ [Γ ]
∣∣∣`Ω([γ]) ≤ R} .

Just as we saw in H
p,q (Definition 4.4), we can define the Gromov product and Gromov quasi-distance

on ∂Ω.

Definition 5.11. Let Ω ⊂ RP
d−1 be a properly convex open subset, x ∈ Ω and ξ,η ∈ ∂Ω. The Gromov

product (ξ |η)x is defined by

(ξ |η)x = lim
k→+∞

1
2

(dΩ(xk ,x) + dΩ(yk , y)− dΩ(xk , yk)

where (xk) and (yk) are sequences in Ω such that xk→ ξ and yk→ η. The Gromov quasi-distance is

dx(ξ,η) = e−(ξ |η)x .

Even though the Gromov quasi-distance is not a distance, it can be shown to satisfy the same type
of generalised triangle inequality as in the H

p,q-convex cocompact case (see [GM21, Lemma 3.17] or
Proposition 4.5 in this memoir), which is enough to make sense of the Hausdorff dimension Hdimdx(ΛΓ )
for a strongly projectively convex-cocompact subgroup Γ < SL(d,R).

Proposition 5.12 ([GMT23, Proposition 3.5]). Let Γ < SL(d,R) be acting strongly convex-cocompactly on a
proper convex domain Ω ⊂RP

d . Then, for any x ∈Ω,

Hdimdx(ΛΓ ) = 2δ1,d(Γ ).
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Sketch of proof of Proposition 5.12. Translating a theorem of Coornaert [Coo93] relating Hausdorff dimen-
sion and critical exponent for actions of Gromov hyperbolic groups on Gromov hyperbolic spaces, we
find the equality

δΩ(Γ ) = Hdimdx(ΛΓ ) .

By a result of Coornaert and Knieper in this same general setting [CK02], we find

δΩ(Γ ) = hΩ(Γ ).

Now since the closed geodesic in Γ \Ω corresponding to [γ] ∈ [Γ ] lifts to Ω ⊂ RP
d to the line whose

endpoints in ∂Ω are the eigendirection of γ for its eigenvalues of largest and smallest moduli, a simple
computation shows that

`Ω([γ]) =
λ1(γ)−λd(γ)

2
therefore hΩ(Γ ) = 2h1,d(Γ ). Applying Theorem 5.6, we also have that h1,d(Γ ) = δ1,d(Γ ), hence the conclu-
sion.

The last missing piece in order to prove Theorem 5.1 is a comparison between the Riemannian Haus-
dorff dimension Hdim(Λsym

Γ
) and the dimension Hdimdx (Λ) computed with respect to the Gromov quasi-

distance dx.
Recall from the definition of strong projective cocompactness that we assume the boundary ∂Ω to be

C1. For p ∈ ∂Ω, the tangent space Tp∂Ω corresponds to a hyperplane in RP
d , thus to a point p∗ ∈ RP

d∗.
In the specific case of p = ξ(t) ∈ΛΓ for some t ∈ ∂∞Γ , we find p∗ = ξ∗(t).

Lemma 5.13 ([GMT23, Lemma 3.6]). Given Riemannian distances dP and d∗P on RP
d and RP

d∗, there is a
constant C > 0 such that:

∀p,q ∈ ∂Ω dx(p,q) ≤ C
√
dP(p,q)d∗P(p∗,q∗)

The inequality
Hdimdx(ΛΓ ) ≤Hdim(Λsym

Γ
)

then follows from elementary comparison results between Hausdorff dimensions. The proof of Lemma
5.13 is essentially some elementary planar Euclidean geometry.

6 Locally homogeneous axiom A flows

In [DMS24], written in collaboration with B. Delarue and A. Sanders, we construct a natural real analytic
flow associated to any projective Anosov subgroup, then prove that this flow satisfies Smale’s Axiom A
and is exponentially mixing. Smale’s Axiom A implies that the interesting dynamics of this flow occur
on an invariant compact subset. An important feature of our construction is that the restriction to this
invariant compact subset is equivalent to Sambarino’s refraction flow [Sam14, Sam24]. The novelty is that
we embed Sambarino’s refraction flow into a smooth setting, thus allowing us to import tools from smooth
dynamics. In particular we manage to prove a certain set of conditions, proved to imply exponential
mixing for sufficiently smooth flows by Stoyanov [Sto11], are met by the flow we construct.
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Theorem 6.1 ([DMS24]). There is a SL(d,R)-homogeneous space L, equipped with a flow φt that commutes
with the action of SL(d,R), such that for any torsion free projective Anosov subgroup Γ < SL(d,R), there is a
Γ × {φt}-invariant open subset M̃Γ ⊂ L on which Γ acts properly discontinuously and freely, and such that the
quotient flowMΓ = Γ \M̃Γ x φt satisfies Smale’s Axiom A.

Furthermore, if Γ is irreducible, then the quotient flow mixes exponentially fast with respect to any Gibbs
equilibrium measure associated to a Hölder potential.

6.1 The flow space

We will work with the open set L ⊂ P(Rd ×Rd∗) defined by

L :=
{
[v : α] ∈ P(Rd ×Rd∗)

∣∣∣α(v) , 0
}
.

This real analytic manifold comes with a real analytic action of R defined by

φt([v : α]) = [etv : e−tα], ∀ t ∈R, ∀ [v : α] ∈ L.

The flow φt commutes with the action SL(d,R) yL given by g · [v : α] = [g · v : α ◦ g−1].
In order to describe the geometry of L, it is practical to work with the affine quadric hypersurface

L1 :=
{
(v,α) ∈Rd ×Rd∗

∣∣∣α(v) = 1
}

which is an SL(d,R)-equivariant double cover of L through the restriction of the projection π :
(
R
d ×Rd∗

)
\

{(0,0)} → P(Rd ×Rd∗). The description of the tangent space

T(v,α)L1 =
{
(w,β) ∈Rd ×Rd∗

∣∣∣α(w) + β(v) = 0
}

shows that it carries a real analytic pseudo-Riemannian metric of signature (d,d − 1) given by

((w,β), (w′ ,β′))(v,α) = β(w′) + β′(w) , (w,β), (w′ ,β′) ∈ T(v,α)L1 .

It also carries a real analytic contact form given by the restriction of the tautological 1-form of the cotan-
gent bundle T ∗Rd = R

d ×Rd∗:

τ(v,α)(w,β) = α(w) = −β(v) , (w,β) ∈ T(v,α)L1 .

Both structures descend to SL(d,R)-invariant structures on L. The Reeb vector field of the contact struc-
ture integrates to the flow φt.

The space L fibres over the open set

RP
d−1 t×RP

d−1∗ =
{
([v], [α]) ∈RP

d−1 ×RP
d−1∗

∣∣∣α(v) , 0
}

through the projection

p :

 L → RP
d−1 t×RP

d−1∗

[v : α] 7→ ([v] , [α])
. (5)

The fibres of p are equal to the orbits of the flow φt, giving L the structure of a real analytic principal
R-bundle (i.e. a real affine line bundle).
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Remark. In Lie theoretic language, we can interpret L as the homogeneous space SL(d,R)/S where

S =
{(

1
detA

A

) ∣∣∣∣∣∣detA = ±1
}
≈ SL±(d − 1,R) ,

and the flow φt is the diagonal flow given by right multiplication by the one parameter subgroup

{
etX

∣∣∣ t ∈R}
, X =

(
et

e−
t
d−1 1d−1

)
.

The projection p : L→RP
d−1 t×RP

d−1∗ can also be seen as the projection SL(d,R)/S→ SL(d,R)/L where

L =
{(

1
detA

A

) ∣∣∣∣∣∣A ∈GL(d − 1,R)
}
≈GL(d − 1,R) .

Definition 6.2. Let Γ < SL(d,R) be projective Anosov, and consider its limit maps ξ : ∂∞Γ → RP
d−1 and

ξ∗ : ∂∞Γ →RP
d−1∗. We introduce the following subset of RP

d−1 t×RP
d−1∗:

ΩΓ :=
{
(`,H) ∈RP

d−1 t×RP
d−1∗

∣∣∣∣∣∀x ∈ ∂∞Γ ` t ξ∗(x) or ξ(x) tH
}
.

Then we define
M̃Γ := p−1(ΩΓ ) ⊂ L.

Theorem 6.3 ([DMS24, Lemma 1.4, Theorem 1]). Let Γ < SL(d,R) be projective Anosov. The set M̃Γ ⊂ L is
open and Γ × {φt}-invariant, and the action Γ y M̃Γ is properly discontinuous. If moreover Γ is torsion free,
this action is free.

The openness and invariance of M̃Γ are quite straightforward. The proper discontinuity of the action
Γ y M̃Γ requires some understanding of the linear action Γ y R

d of a projective Anosov subgroup,
which is possible by seeing R

d \ {0} as the total space of the tautological bundle over RP
d−1, since the

projective action Γ y RP
d−1 is well understood thanks to the convergence property (see Theorem 1.1

and Definitions 4.2, 4.25 in [KLP17]):

Proposition 6.4. Let Γ < SL(d,R) be projective Anosov. For any unbounded sequence γN ∈ Γ with boundary
limit points γ+ = limN→+∞γN ∈ ∂∞Γ and γ− = limN→+∞γ

−1
N ∈ ∂∞Γ , there is a subsequence γNk for which the

actions on RP
d−1 and RP

d−1∗ obey the following dynamics as k→ +∞:

1. γNk · `→ ξ(γ+) for all ` ∈RP
d−1 with ` t ξ∗(γ−);

2. γ−1
Nk
· `→ ξ(γ−) for all ` ∈RP

d−1 with ` t ξ∗(γ+);

3. γNk ·H → ξ∗(γ+) for all H ∈RP
d−1∗ with ξ(γ−) tH ;

4. γ−1
Nk
·H → ξ∗(γ−) for all H ∈RP

d−1∗ with ξ(γ+) tH ;
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and all these convergences are uniform on compact subsets.

The lift to R
d \ {0} obeys the following rule, which is the central argument in the proof of proper

discontinuity in Theorem 6.3:

Lemma 6.5 ([DMS24, Lemma 3.2]). Let Γ < SL(d,R) be projective Anosov, and γk ∈ Γ a sequence admitting
distinct boundary limits γ+ = limγk ∈ ∂∞Γ and γ− = limγ−1

k ∈ ∂∞Γ . For any sequence vk → v ∈ Rd \ {0} such
that [v] t ξ∗(γ−), one has γk · vk→∞ as k→∞.

6.2 Smale’s Axiom A

Let us start this section with a few classical definitions from dynamical systems.

Definition 6.6. LetM be a metrizable topological space and φt :M→M a continuous flow defined for
all t ∈R which has no fixed points.

• The non-wandering set NW (φt) of the flow φt is the set of all points x ∈ M for which there are
sequences xN → x inM and tN → +∞ in R such that φtN (xN )→ x.

• The set P (φt) of periodic points of the flow φt consists of all points x ∈M for which there exists T > 0
with φT (x) = x.

• Let K ⊂M be a compact φt-invariant set and E a continuous vector bundle over K equipped with a
continuous flow φtE : E→ E lifting φt over K. Then φtE is uniformly contracting (resp. expanding) on
E if for some (hence any) continuous bundle norm ‖·‖ on E there are constants C,c > 0 such that for
all p ∈ K and all v ∈ Ep one has ∥∥∥φtE(v)

∥∥∥
φt(p)
≤ Ce−c|t| ‖v‖p

for all t ≥ 0 (resp. t ≤ 0).

Definition 6.7. Let M be a smooth manifold and φt :M→M a smooth flow generated by a complete
nowhere vanishing vector field X :M→ TM. A compact φt-invariant set K ⊂M is called hyperbolic for
the flow φt if the restriction of the tangent bundle TM to K admits a decomposition

TM|K = E0 ⊕Es ⊕Eu

where E0
p = R ·X(p) for all p ∈ K and Es, Eu are dφt-invariant continuous sub-bundles such that dφt is

uniformly contracting (resp. expanding) on Es (resp. Eu).

Definition 6.8 (c.f. [Sma67, §II.5 (5.1)]). The flow φt is an Axiom A flow if the non-wandering setNW (φt)
is compact and hyperbolic and coincides with the closure inM of the set of periodic points P (φt).

We now turn back to projective Anosov subgroups.

Definition 6.9. Let Γ < SL(d,R) be a projective Anosov subgroup. The transverse limit set is

Λt
Γ

= {(ξ(s),ξ∗(t)) |s, t ∈ ∂∞Γ , s , t} ⊂RP
d−1 t×RP

d−1∗.

The lifted basic set is
K̃Γ = p−1

(
Λt
Γ

)
⊂ L.
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Lemma 6.10 ([DMS24, Lemma 3.7 and 3.8]). Let Γ < SL(d,R) be a projective Anosov subgroup. The lifted
basic set K̃Γ ⊂ L is a closed Γ × {φt}-invariant subset contained in M̃Γ , and the action Γ y K̃Γ is cocompact.

The cocompactness of the action Γ y K̃Γ is proved by using some appropriate Hopf coordinates on L,
showing that the action Γ y K̃Γ is conjugate to an action Γ y ∂∞Γ

(2)×R studied by Sambarino in [Sam14]
and therefore proving the conjugacy between the quotient flow on KΓ = Γ \K̃Γ and Sambarino’s refraction
flow.

Theorem 6.11 ([DMS24, Theorem A]). Let Γ < SL(d,R) be a projective Anosov subgroup. The quotient flow
MΓ = Γ \M̃Γ x φt is an axiom A flow, and its non wandering set is KΓ = Γ \K̃Γ .

Remark. A flowMx φt on a smooth manifold is called Anosov ifM is compact and is a hyperbolic set.
Despite the terminology, the flowMΓ x φt associated to a projective Anosov subgroup is never Anosov
when d ≥ 3, and is only Anosov for uniform lattices in SL(2,R).

A simple study of the differential of the flow Lx φt shows some predisposition towards hyperbolic-
ity. Indeed, recall the double cover

L1 :=
{
(v,α) ∈Rd ×Rd∗

∣∣∣α(v) = 1
}

and the description of the tangent space

T(v,α)L1 =
{
(w,β) ∈Rd ×Rd∗

∣∣∣α(w) + β(v) = 0
}
.

There is a natural splitting
TL1 = Es ⊕E0 ⊕Eu

where

Eu
(v,α) = kerα × {0},

Es
(v,α) = {0} ×ker ιv ,

E0
(v,α) = R · (v,−α),

∀(v,α) ∈ L1.

These distributions project to an SL(d,R)× {dφt}-equivariant splitting of the tangent bundle TL :

TL = Es ⊕E0 ⊕Eu

This decomposition is related to the flow φt by the formula E0
[v:α] = R · ddt

∣∣∣
t=0
φt([v : α]). The action of

the differential dφt of the flow φt on Eu and Es has a very simple expression. For [v : α] ∈ L, (w,0) ∈
kerα × {0} = Eu

[v:α], (0,β) ∈ {0} ×ker ιv = Es
[v:α] and t ∈R we find:

d[v:α]φ
t(w,0) = (etw,0) , d[v:α]φ

t(0;β) = (0, e−tβ) .

One can be tempted to believe that this formula automatically implies dilation on Eu and contraction on
Es. However, these notions involve a Riemannian metric onMΓ . Considering a lift of such a Riemannian
metric to M̃Γ , the ratio that should grow exponentially fast is∥∥∥d[v:α]φ

t(w,0)
∥∥∥
φt([v:α])

‖(w,0)‖[v:α]
= et
‖(w,0)‖[etv:e−tα]

‖(w,0)‖[v:α]
.
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The comparison would be made trivial if it were possible to choose this Riemannian metric to be constant.
This is not possible because the Γ -action on R

d×Rd∗ does not preserve any norm. Instead, the proof of the
hyperbolicity in Theorem 6.11 consists in showing that the actions of the differential Eu|KΓ x dφt and
Es|KΓ x dφt are conjugate to the flows appearing in the original definition of an Anosov subgroup given
in [Lab06, GW12].

6.3 Exponential mixing

Axiom A flows are known to admit many invariant measures. A large class of interesting invariant mea-
sures is given by Gibbs states. They are ergodic measures µU supported on the non wandering set K of
an Axiom A flowMx φt associated to Hölder functions U : K→ R. Their existence was established by
Bowen and Ruelle [BR75, Theorem 3.3] via a variational principle. Another possible approach is to see
them as limits of measures supported on periodic orbits. Denote by P the set of periodic orbits. For c ∈ P ,
denote by `(c) its period and by λc the Lebesgue measure of length `(c) supported on c. Given a Hölder
potential U ∈ Cα(K), let

`u(c) =
∫
c
udλc.

Then the Gibbs equilibrium state is the weak limit []

µu = lim
T→+∞

1
Card {c ∈ P |`u(c) ≤ T }

∑
{c∈P |`u(c)≤T }

e`u(c) λc
`(c)

.

Let U ∈ Cα(K,R) with unique Gibbs measure µU . Given F,G ∈ Cα(K,R), the correlation function is
defined by

ct(F,G;U ) =
∣∣∣∣∣∫
z∈K

F(z) ·G(φt(z)) dµU (z)−
∫
z∈K

F(z) dµU (z)
∫
z∈K

G(z) dµU (z)
∣∣∣∣∣ .

The flow φt is mixing with respect to µU for all Hölder observables if for all F,G ∈ Cα(K,R) one has
ct(F,G;U )→ 0 as t→∞ and exponentially mixing if there exists cα(U ),Cα(U ) > 0 such that

∀ t ∈R : ct(F,G;U ) ≤ Cα(U )e−cα(U )|t|‖F‖α‖G‖α .

Exponential mixing is also called exponential decay of correlations. It is usually considered as a difficult
condition to prove, and the most famous contribution towards exponential mixing in the context of hy-
perbolicity is the work of Dologopyat [Dol98], relating rates of mixing of Anosov flows with quantitative
measurements of the non integrability of the joint distribution Eu ⊕ Es. Stoyanov [Sto11] adapted this
method to the Axiom A setting, in which some additional constraints on the (possibly fractal) geometry
of the non wandering set must be controlled. In [DMS24], we manage to apply the work of Stoyanov and
prove:

Theorem 6.12 ([DMS24, Theorem C]). Let Γ < SL(d,R) be a torsion free irreducible projective Anosov sub-
group. The flow MΓ x is exponentially mixing for all Hölder observables with respect to Gibbs equilibrium
states associated to Hölder potentials.
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The work of Stoyanov actually proves more than exponential mixing, but some rather precise es-
timates on transfer operators. This stronger result can also be understood in terms of the Ruelle zeta
function

ζΓ (s) =
∏

[γ]∈[Γ ]prim

(
1− e−sλ1([γ])

)−1

where [Γ ]prim denotes the set of conjugacy classes of primitive elements in Γ (i.e. that are not positive pow-
ers of other elements). This Euler product converges for Re(s) < htop(Γ ), where htop(Γ ) is the topological
entropy of the flow KΓ x φt.

The resolution of Smale’s conjecture for Axiom A flows due to Dyatlov-Guillarmou [DG16, DG18] and
Borns-Weil-Shen [BWS21] immediately implies the global meromorphic continuation of ζΓ . It is known
[PS98] that exponential mixing is equivalent to the existence of an open neighbourhood of the vertical
line Re(s) = htop(Γ ) on which ζΓ (s) is holomorphic except at s = htop(Γ ) where it has a simple pole. The
spectral estimates on Ruelle transfer operators achieved by Stoyanov [Sto11], when combined with the
work Pollicott-Sharp [PS98] (see also Dolgopyat-Pollicott [DP98]) imply a zero-free strip to the left of the
simple pole htop(Γ ) ∈C.

Theorem 6.13 ([DMS24, Theorem D]). Suppose Γ < SL(d,R) is a torsion-free projective Anosov subgroup.
Then the associated Ruelle zeta function ζΓ (s) admits a meromorphic continuation to all s ∈ C with a simple
pole at s = htop(Γ ).

If Γ < SL(V ) is irreducible, then ζΓ has a zero-free spectral gap: there exists ε > 0 such that ζΓ is holomorphic
and nowhere vanishing in the strip htop(Γ )− ε < Re(s) < htop(Γ ).

This has applications to counting problems. Consider the orbit counting function

NΓ (t) = Card
{
[γ] ∈ [Γ ]prim

∣∣∣λ1([γ]) ≤ t
}
.

Theorem 6.14 ([DMS24, Theorem D]). Let Γ < SL(d,R) be a torsion free irreducible projective Anosov sub-
group. Then there exists c > 0 such that

NΓ (t) =
ehtop(Γ )t

htop(Γ )t

(
1 + O(e−ct)

)
.

This refines the estimate NΓ (t) ∼ ehtop(Γ )t

htop(Γ )t obtained by Sambarino [Sam14].

6.4 Examples

Let us now describe two settings in which the Axiom A flow φt on MΓ is directly related to a geodesic
flow: Hp,q-convex cocompact groups and Benoist groups.

6.4.1 H
p,q-convex-cocompact groups

If a subgroup Γ < SO(p,q + 1) is H
p,q-convex-cocompact, it is more natural to work with the space like

geodesic flow of Hp,q than with the flow space L.
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Definition 6.15. The spacelike unit tangent bundle of Hp,q is

T 1
H
p,q =

{
[x : v] ∈ THp,q

∣∣∣ ([x : v], [x : v])[x] = 1
}

=
{
[x : v] ∈ P(Rp+q+1 ×Rp+q+1)

∣∣∣〈x,x〉p,q+1 < 0,〈x,v〉p,q+1 = 〈v,v〉p,q+1 + 〈x,x〉p,q+1 = 0
}
.

The geodesic flow ϕt : THp,q→ THp,q leaves T 1
H
p,q invariant, and we find

ϕt([x : v]) = [cosh t x+ sinh t v : sinh t x+ cosh t v] ∀[x : v] ∈ T 1
H
p,q.

Flow lines of this space-like geodesic flow have endpoints in the boundary

∂Hp,q =
{
[x] ∈RP

p+1
∣∣∣〈x,x〉p,q+1 = 0

}
.

They are given, for [x : v] ∈ T 1
H
p,q, by

[x : v]± := lim
t→±∞

π(ϕt([x : v])) = [x ± v] ∈ ∂Hp,q.

Note that we always have [x : v]+ , [x : v]−. The isomorphism

Φp,q+1 :
{

R
p+q+1 → R

p+q+1

[v] 7→
[
〈v, ·〉p,q+1

]
allows us to replace the flow space

L =
{
[v : α] ∈ P(Rp+q+1 ×Rp+q+1)

∣∣∣α(v) > 0
}

and the flow
φt([v : α]) = [etv : e−tα]

with the flow space
L
p,q+1 =

{
[v1 : v2] ∈ P(Rp+q+1 ×Rp+q+1

∣∣∣〈v1,v2〉p,q+1 > 0
}

equipped with the flow
φt([v1 : v2]) = ([etv1 : e−tv2]), t ∈R.

The map

Φ
p,q+1
∂ :

{
T 1

H
p,q → L

p,q+1

[x : v] 7→ [x+ v : x − v]

is an SO(p,q + 1)-equivariant embedding that intertwines the flows Φp,q+1
∂ ◦ϕt = φt ◦Φp,q+1

∂ . Its image is

the subspace L
p,q+1
∂ ⊂ L defined by

L
p,q+1
∂ =

{
[v1 : v2] ∈ Lp,q+1

∣∣∣ [v1], [v2] ∈ ∂Hp,q
}

and the inverse
(
Φ
p,q+1
∂

)−1
: Lp,q+1

∂ → T 1
H
p,q is given by(

Φ
p,q+1
∂

)−1
([v1 : v2]) = [〈v1,v2〉p,q+1 v1 − v2 : 〈v1,v2〉p,q+1 v1 + v2].
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Definition 6.16. If Γ < SO(p,q+ 1) is projective Anosov, we consider

M̃Γ ,∂ = M̃Γ ∩L
p,q+1
∂

=
{
[v1 : v2] ∈ Lp,q+1

∂

∣∣∣∣〈v1,v〉p,q+1 , 0 or 〈v2,v〉p,q+1 , 0 ∀ [v] ∈ΛΓ
}
.

If Γ < SO(p,q + 1) is H
p,q-convex-cocompact, we already know that it acts properly discontinuously

on the open set Ω(ΛΓ ) ⊂H
p,q, and therefore also on T 1Ω(ΛΓ ) ⊂ T 1

H
p,q. Our approach produces a larger

discontinuity domain for the Γ -action on T 1
H
p,q:

Lemma 6.17 ([DMS24, Lemma 6.9]). If Γ < SO(p,q+ 1) is Hp,q-convex cocompact, then

K̃Γ ⊂ Φ
p,q+1
∂

(
T 1Ω(ΛΓ )

)
⊂ M̃Γ ,∂.

Note that the quotient flow on Γ \˜MΓ ,∂ is complete, whereas the spacelike geodesic flow of Γ \Ω(ΛΓ ) is
not. In the H

p,q-convex-cocompact setting, our results become:

Theorem 6.18 ([DMS24, Theorem 12]). Suppose Γ < SO(p,q + 1) is a non-trivial torsion-free H
p,q-convex

cocompact subgroup. The (possibly incomplete) space-like geodesic flow

φt : T 1 (Γ \Ω(ΛΓ ))→ T 1 (Γ \Ω(ΛΓ ))

is the restriction of a complete Axiom A flow

φt :MΓ →MΓ

with a unique basic hyperbolic set KΓ such that KΓ ⊂ T 1 (Γ \Ω(ΛΓ )) ⊂MΓ . Moreover,

1. If Γ is irreducible, the restriction of the space-like geodesic flow φt to the basic hyperbolic setKΓ ) mixes ex-
ponentially for all Hölder observables with respect to every Gibbs equilibrium state with Hölder potential.

2. The Ruelle zeta function ζΓ constructed using the periods of the space-like geodesic flow admits global
meromorphic continuation to C with a simple pole at htop(φt), and assuming Γ is irreducible, ζΓ is
nowhere vanishing and analytic in a strip htop(φt)− ε < Re(z) < htop(φt) for some ε > 0.

3. If Γ is irreducible, the spacelike geodesic flow satisfies the prime orbit theorem with exponentially decaying
error term:

NΓ (τ) =
ehtop(φt)τ

htop(φt)τ

(
1 +O

(
e−(c−htop(φt))τ

))
for some 0 < c < htop(φt).
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6.4.2 Strictly convex divisible domains

We will denote by π : Rd \ {0} →RP
d−1 the canonical projection.

Definition 6.19. A discrete subgroup Γ < SL(d,R) divides a properly convex open subset C ⊂RP
d−1 if the

action of Γ on RP
d−1 preserves C and Γ y C is properly discontinuous and cocompact.

A strictly convex domain C ⊂ RP
d−1 is a properly convex open subset whose boundary ∂C does not

contain any non-trivial projective segment.
A discrete subgroup Γ < SL(d,R) is called a Benoist subgroup if it divides a non-empty strictly convex

domain.

Proposition 6.20 ([Ben04, Théorème 1.1]). Let Γ < SL(d,R) be a Benoist subgroup. Then Γ is projective
Anosov, it divides a unique strictly convex domain CΓ ⊂RP

d−1 and one has

ΛΓ = ∂CΓ .

Furthermore, the boundary ∂CΓ ⊂RP
d−1 is a C1 submanifold, and the limit maps ξ,ξ∗ are related by

Tξ(t)∂CΓ = dxπ(ξ∗(t)), ∀t ∈ ∂∞Γ ,∀x ∈ ξ(t).

Benoist also proved in [Ben04] that the boundary ∂CΓ is never C2, unless Γ is conjugate to a uniform
lattice in SO(d − 1,1) (in which case CΓ is an ellipsoid).

Recall that the Hilbert distance (Definition 5.10) makes any properly convex open set C ⊂ RP
d−1 a

metric space (C,dC). If C is strictly convex, then geodesics are intersections of projective lines with C. In
order to define a geodesic flow, we will work with sphere bundles of manifolds, i.e. the fibre bundle SM
over a manifold M with fibre SxM = (TxM \ {0}) /R∗+ over x ∈M, where R

∗
+ acts by multiplication. The ray

spanned by a non-zero tangent vector ν ∈ TxM will be denoted by [ν) ∈ SxM.
If C ⊂ RP

d−1 is a properly convex open subset, a pair (`, [ν)) ∈ SC defines a parametrization c`,[ν) :
R → C of the intersection of C with the projective line going through ` and tangent to ν, satisfying
dC(`,c`,[ν)(t)) = |t| for any t ∈R, and ċ`,[ν)(0) ∈R∗+ · ν.

Definition 6.21. The Benoist-Hilbert flow is the flow φtBH : SC → SC defined by

φtBH(`, [ν)) := (c`,[ν)(t), [ċ`,[ν)(t))), ∀(`, [ν]) ∈ SC.

Let us now focus on the case of a torsion-free Benoist subgroup Γ < SL(d,R), and denote byNΓ = Γ \CΓ
the quotient manifold. As the action Γ ySCΓ commutes with the Benoist-Hilbert flow, we can also define
a flow φtBH on the quotient manifold SNΓ = Γ \SCΓ .

Note that SNΓ is a smooth manifold, but the regularity of φtBH is exactly that of ∂CΓ .

Proposition 6.22 ([Ben04, Théorème 1.1, Théorème 1.2]). Let Γ < SL(d,R) be a torsion-free Benoist sub-
group. There exists 0 < α < 1 such that the Benoist-Hilbert flow φtBH : SNΓ → SNΓ is a topologically transitive
C1+α Anosov flow.

The Benoist-Hilbert flow φtBH : SNΓ → SNΓ cannot be directly related to our flow space (L,φt). In-
deed, each non-trivial element γ ∈ Γ corresponds to a periodic orbit of both flows, but they have different
periods: λ1(γ) for the flow φt onMΓ and 1

2 (λ1(γ)−λd(γ)) for the Benoist-Hilbert flow.
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In order to make the two coincide, we will work with the adjoint representation Ad : SL(d,R) →
SL(sl(d,R)), as it satisfies λ1(Ad(g)) = λ1(g) − λd(g) for any g ∈ SL(d,R) (meaning that λ1 − λd is the
highest weight of the adjoint representation).

Lemma 6.23 ([GW12, Prop. 4.3]). If Γ < SL(d,R) is projective Anosov, then so is Ad(Γ ) < SL(sl(d,R)), and its
limit map is given by ξAd(t) = [v ⊗α] ∈ P(sl(d,R)) at t ∈ ∂∞Γ , where [v] = ξ(t) and [α] = ξ∗(t).

Just as in the study of Hp,q-convex cocompact subgroups, we can use the non-degenerate symmetric
bilinear form (X,Y ) 7→ Tr(XY ) (which is a multiple of the Killing form of sl(d,R)) and work with the flow
space

LAd = {[X : Y ] ∈ P(sl(d,R)× sl(d,R)) |Tr(XY ) > 0}

equipped with the flow
φt([X : Y ]) = ([etX : e−tY ]), t ∈R.

There is a difference in regularities between the Benoist-Hilbert flow φtBH on SNΓ and the flow φt on
MAd(Γ ), as the basic set KAd(Γ ) is not a C1 submanifold ofMAd(Γ ). It is however better than the expected
Hölder regularity.

Lemma 6.24 ([DMS24, Lemma 6.16 and 6.17]). Let Γ < SL(d,R) be a torsion free Benoist subgroup. The basic
set KAd(Γ ) is a Lipschitz submanifold ofMAd(Γ ), and there is a Hölder homeomorphism

Ψ : SNΓ →KAd(Γ )

with Lipschitz inverse such that
Ψ ◦φtBH = φ2t ◦Ψ , ∀t ∈R.

The loss of regularity from C1,α to Lipschitz when going from φtBH to φt |KAd(Γ )
should be thought of as

being compensated by the gain of regularity in the stable/unstable foliations.

Theorem 6.25 ([DMS24, Theorem G]). If Γ < SL(d,R) is a torsion-free Benoist subgroup and W = sl(V ),
then the Benoist-Hilbert flow φtBH mixes exponentially for all Hölder observables with respect to every Gibbs
equilibrium state with Hölder potential.
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