${\bf Interrogation}\ 4: {\bf Transformations}\ {\bf affines},\ {\bf formes}\ {\bf quadratiques}$

 $\label{eq:Durée:30 minutes - 4 questions.}$ Le 12 décembre 2023

Question 1. (2 points) On fixe un espace vectoriel E muni d'une produit scalaire $\langle \cdot, \cdot \rangle$. Reformulez la phrase suivante en utilisant un formalisme mathématique : "Un endormorphisme de E qui est autoadjoint a une valeur propre réelle." Le terme "autoadjoint" est à développer (sans utiliser l'adjoint f^*).
Question 2. (3 points) Répondez par vrai ou faux et argumentez par une démonstration ou un contre-exemple.
1. Si une application affine $f: E \to F$ est surjective, alors sa partie linéaire est surjective.
2. La forme quadratique $q(x, y, z) = 2x^2 - y^2 + 4xz - 4yz - 2z^2$ est de signature $(1, 2)$.

Question 3. (3 points) Soit E le plan affine et F, G deux droites sécantes. On se donne un vecteur

Soit s_F la symétrie affine d'axe F parallèlement à \overrightarrow{G} , et $t_{\overrightarrow{u}}$ la translation de vecteur \overrightarrow{u} . On note

$:=t_{\overrightarrow{u}}$ of $1.$ C	onstruisez le point $s(a)$ sur le dessin ci-contre.		
1. 0	constrained to point s(a) sai to dessiii of control		
0 D			
2. D	émontrez que le milieu de $[a, s(a)]$ appartient à F .	1	ig F
		→	
		\vec{u}	
		a^{ullet}	
 uestio			
	n 4. (2 points)	Égriyag la m	entrico do a d
1. Se	n 4. (2 points) pit $q(x,y)=x^2+4xy+3y^2$ une forme quadratique de \mathbb{R}^2 .	Écrivez la m	natrice de q de
1. Se	n 4. (2 points)	Écrivez la m	$\frac{ }{ }$ natrice de q da
1. Se	n 4. (2 points) pit $q(x,y)=x^2+4xy+3y^2$ une forme quadratique de \mathbb{R}^2 .	Écrivez la m	${}$ atrice de q da
1. Se	n 4. (2 points) pit $q(x,y)=x^2+4xy+3y^2$ une forme quadratique de \mathbb{R}^2 .	Écrivez la m	$\frac{1}{2}$ atrice de q de
1. Se	n 4. (2 points) pit $q(x,y)=x^2+4xy+3y^2$ une forme quadratique de \mathbb{R}^2 .	Écrivez la m	atrice de <i>q</i> da
1. Se	n 4. (2 points) pit $q(x,y)=x^2+4xy+3y^2$ une forme quadratique de \mathbb{R}^2 .	Écrivez la m	natrice de q de
1. Se	n 4. (2 points) pit $q(x,y)=x^2+4xy+3y^2$ une forme quadratique de \mathbb{R}^2 .		
1. Se	n 4. (2 points) poit $q(x,y)=x^2+4xy+3y^2$ une forme quadratique de \mathbb{R}^2 . La forme q est-elle dégénérée?		
1. Se	n 4. (2 points) poit $q(x,y)=x^2+4xy+3y^2$ une forme quadratique de \mathbb{R}^2 . La forme q est-elle dégénérée?		
1. So ba	n 4. (2 points) pit $q(x,y)=x^2+4xy+3y^2$ une forme quadratique de \mathbb{R}^2 . La forme q est-elle dégénérée?		
1. So ba	n 4. (2 points) poit $q(x,y)=x^2+4xy+3y^2$ une forme quadratique de \mathbb{R}^2 . La forme q est-elle dégénérée?		
1. So ba	n 4. (2 points) pit $q(x,y)=x^2+4xy+3y^2$ une forme quadratique de \mathbb{R}^2 . La forme q est-elle dégénérée?		
1. So ba	n 4. (2 points) pit $q(x,y)=x^2+4xy+3y^2$ une forme quadratique de \mathbb{R}^2 . La forme q est-elle dégénérée?		
1. So ba	n 4. (2 points) pit $q(x,y)=x^2+4xy+3y^2$ une forme quadratique de \mathbb{R}^2 . La forme q est-elle dégénérée?		
1. So ba	n 4. (2 points) pit $q(x,y)=x^2+4xy+3y^2$ une forme quadratique de \mathbb{R}^2 . La forme q est-elle dégénérée?		