TD 2 : Puissances, logarithmes et évolution à taux constant

ÉVOLUTIONS À TAUX CONSTANT

- Ex 1. Une entreprise achète une machine au prix de 9000 euros. Elle estime que la machine se déprécie de 20% par an. On note V_0 la valeur initiale de la machine, tandis que V_1, V_2, \ldots, V_n représentent les valeurs respectives de la machine au bout de un an, deux ans, ..., n années.
 - **a.** Écrire l'expression de V_n en fonction de n.
 - b. Calculer la valeur de la machine au bout de huit années de fonctionnement
 - **c.** Calculer la valeur de la machine au bout de 9 mois
 - d. Une machine d'un autre type a été revendue au bout de 5 ans à 3277 euros. Quelle était la valeur de la machine au moment de l'achat, sachant qu'elle se déprécie aussi de 20% par an? Solution. a. $V_n = 9000 \times (1 \frac{20}{100})^n = 9000 \times 0, 8^n$
 - b. On prend n=8 dans la formule précédente : $V_8=1509,95$ euro
 - c. 9 mois= 9/12=0.75 ans, donc on prend n=0.75 et on trouve $V_{0.75}=7613.07$ euro
 - d. On note W_n la valeur de la machine après n années. On a $W_n = W_0 \times 1, 2^n$.
 - À l'instant présent, la machine vaut $W_0=3277$ euro.
 - À son achat, il y a 5 ans, elle valait $W_{-5} = 3277 \times 0, 8^{-5} = 10\,000, 61$ euros.

CALCUL ET CONVERSION DE TAUX

- $\underline{\mathbf{Ex}\ 2.}$ Résoudre les équations suivantes (en recherchant les solutions strictement positives) :
 - **a.** $x^2 = 25$ **b.** $y^{-0.5} = 10$ **c.** $(1+s)^5 = 10$ **d.** $3(1+t)^4 = 12$ **e.** $10 + 2y^{-0.5} = 28$ **f.** $z^3 = 4z^5$ **Solution. a.** On élève les deux membres à la puissance 1/2, et on trouve $x = 25^{\frac{1}{2}} = 5$ (ou on utilise la racine carrée...)
 - **b.** On élève les deux membres à la puissance 1/(-0,5) = -2, et on trouve $y = 10^{\frac{1}{-0.5}} = 10^{-2} = 0.01$.
 - **c.** On élève les deux membres à la puissance 1/5, et on trouve $(1+s) = 10^{\frac{1}{5}} \simeq 1,584893192$. De là, $s \simeq 1,584893192 1 = 0,584893192$.
 - **d.** Pour se ramener à une équation connue, on divise les deux membres de l'équation par 3. On trouve $(1+t)^4 = 4$.
 - On élève les deux membres à la puissance 1/4, et on trouve $(1+t)=4^{\frac{1}{4}}\simeq 1,414213562$. De là, $t\simeq 1,584893192-1=0,414213562$.
 - e. Pour se ramener à une équation connue, on commence par retrancher 10 des deux côtés, pour trouver $2y^{-0.5} = 18$.
 - Ensuite, en divisant par 2 de chaque côté, on trouve $y^{-0.5} = 9$.
 - On élève les deux membres à la puissance 1/(-0,5)=-2, et on trouve $y=9^{\frac{1}{-0,5}}=9^{-2}\simeq 0,012345679$.
 - **f.** On divise de chaque côté par z^5 , pour retrouver une équation connue : $z^3z^{-5}=z^{-2}=4$. On élève les deux membres à la puissance 1/(-2)=-0,5, et on trouve $z=4^{-0,5}=0,5$.
- **Ex 3.** La ville d'Aquilée perd sa population : le premier janvier 2012 elle comptait 500 000 habitants, tandis que le premier janvier 2017 elle n'avait plus que 400 000 habitants.
 - a. Quel est le taux moyen annuel de croissance?
 - b. La ville d'Onessa est en forte expansion : au cours des 10 dernières années elle a triplé sa

1

population. Quel est le taux moyen annuel de croissance?

Solution. a. Soit P_n la population l'année 2012 + n, et t le taux annuel de croissance. On a

$$P_n = P_0(1+t)^n,$$

avec $P_0 = 500000$ et $P_5 = 400000$. Ainsi,

$$400000 = 500000(1+t)^5.$$

On en déduit que $(1+t)^5 = \frac{400000}{500000} = 0, 8$, donc $(1+t) = 0, 8^{\frac{1}{5}} \simeq 0,956$ et $t \simeq 0,956 - 1 = -0,044 = -4,4\%$.

b. Soit t le taux de croissance annuel.

Le coefficient multiplicateur global sur 10 ans est de $(1+t)^10=3$, car la population a triplé. On en déduit que $(1+t)=3^{\frac{1}{10}}\simeq 1,116$, et $t\simeq 1,116-1=0,116=11,6\%$.

- **Ex 4.** On dit que deux taux sont *équivalents* s'ils donnent lieu à la même croissance. Par exemple un taux mensuel t_m est *équivalent* à un taux annuel t_a si la valeur acquise en 12 mois par un euro placé au taux mensuel de t_m est égal à la valeur acquise en 1 an par un euro placé au taux annuel de t_a .
 - a. Quel est le taux annuel équivalent à un taux mensuel de 5%?
 - **b.** Quel est le taux mensuel équivalent à un taux annuel de 48%?
 - c. Quel est le taux trimestriel équivalent à un taux annuel de 55%?

Solution. On note t_a le taux annuel, t_m le taux mensuel et t_t le taux trimestriel. Leurs valeurs dépendent de la question.

- **a.** Au bout d'un an, le coefficient multiplicateur vaut $1+t_a=(1+t_m)^{12}=1,05^{12}\simeq 1,7959$. On a donc $t_a\simeq 1,7959-1=0,7959=79,59\%$.
- **b.** Au bout d'un an, le coefficient multiplicateur vaut $1 + t_a = (1 + t_m)^{12} = 1,48$. On a donc $1 + t_m = 1,48^{\frac{1}{12}} \simeq 1,033$, et donc $t_m \simeq 0,033 = 3,3\%$.
- **c.** Au bout d'un an, le coefficient multiplicateur vaut $1 + t_a = (1 + t_t)^4 = 1,55$. On a donc $1 + t_t = 1,55^{\frac{1}{4}} \simeq 1,116$, et donc $t_m \simeq 0,116 = 11,6\%$.
- Ex 5. Les chiffres d'affaire de trois entreprises ont augmenté à taux constant dans les dernières années.
 - Le chiffre d'affaire de l'entreprise A augmente avec un taux **annuel** de 36%
 - Le chiffre d'affaire de l'entreprise B augmente avec un taux **mensuel** de 3%
 - Le chiffre d'affaire de l'entreprise C augmente avec un taux **semestriel** (sur 6 mois) de 18%
 - Le chiffre d'affaire de l'entreprise D augmente avec un taux bi-annuel (sur 2 ans) de 72%

Laquelle des quatre entreprises a le plus fort taux de croissance?

Solution. Les conversions donne des taux annuels, respectivement, de :

A:36% B:43% C:39% D:31%

L'entreprise B a le plus fort taux de croissance.

On remarque au passage qu'un taux annuel de 36% ne correspond pas à un taux mensuel de 36/12 = 3%, ni à un taux semestriel de 36/2 = 18%, ni à un taux bi-annuel de $36 \times 2 = 72\%$.

Trouver la durée : équation $b^x=a$

Ex 6. Résoudre les équations suivantes :

a. $0, 8^t = 4$ **b.** $2 \times 4^y = 5$ **c.** $2 \times 4^y + 1 = 5$ **d.** $4^v = 3 \times 2^v$ **e.** $2 \times 0, 9^n = 21 \times 0, 2^n$ **Solution. a.** On applique le logarithme de chaque côté, pour trouver $t \log(0, 8) = \log(4)$, soit $t = \log(4)/\log(0, 8) \simeq -6, 21$.

On peut aussi utiliser directement la formule du cours $t = \log(4)/\log(0,8)$.

b. On se ramène d'abord à une équation de la forme $b^x=a$ en divisant par 2 de chaque côté : $4^y=2,5$.

La formule du cours donne $y = \log(2, 5)/\log(4) \simeq 0, 66$.

pun On se ramène d'abord à une équation de la forme $b^x = a$ en soustrayant 1 :

Puis en divisant par 2:

$$4^y = 2$$

La formule du cours donne $y = \log(2)/\log(4) = 0,5$ (il s'agit bien d'une équalité : on a $4^{0,5} = \sqrt{4} = 2$).

c. On divise par 2^v de chaque côté :

$$3 = 4^{v}/2^{v} = (4/2)^{v} = 2^{v}$$
.

La formule du cours donne $v = \log(3)/\log(2) \simeq 1,58$.

d. On divise par $0, 2^n$ de chaque côté :

$$21 = 2 \times 0, 9^{n}/0, 2^{n} = 2 \times (0, 9/0, 2)^{n} = 2 \times 4, 5^{n}.$$

On divise par 2 pour obtenir $10, 5 = 4, 5^n$, et la formule du cours donne $n = \log(10, 5)/\log(4, 5) \simeq 1,56$.

 $\underline{\mathbf{Ex 7.}}$ La demande d'un certain bien augmente de 35% par an. Dans combien d'années la demande aura-t-elle doublée?

Solution. Le coefficient multiplicateur global après n années vaut $(1+t)^n = (1+35/100)^n = 1.35^n$.

La demande aura doublé quand ce coefficient vaudra 2, donc quand $1,35^n=2$.

On trouve $n = \log(2)/\log(1,35) \simeq 3,66$ ans $\simeq 3$ ans et 8 mois.

Ex 8. Un site internet A a 30 000 inscrits et un taux de croissance mensuel de 10%. Le site concurrent B a 10 000 inscrits et un taux de croissance mensuel de 20%. Si les taux de croissance restent constants, dans combien de temps le site B aura-t-il le même nombre d'inscrits que le site A?

Solution. Soient:

 $a_n =$ nombre d'inscrits sur le site A après n mois,

 b_n = nombre d'inscrits sur le site B après n mois.

On a $a_n = 30000 \times 1, 1^n$ et $b_n = 10000 \times 1, 2^n$. Les deux sites auront le même nombre d'inscrits quand $a_n = b_n$, soit $30000 \times 1, 1^n = 10000 \times 1, 2^n$.

On divise les deux membres par $1, 1^n$ puis par 10000. On trouve $(1, 2/1, 1)^n = 30000/10000 = 3$, et donc $n = \log(3)/\log(1, 2/1, 1) \approx 12.62$.

Il faudra donc attendre environ 13 mois.

Exercices facultatifs

- **Ex 9.** Jusqu'en 2007, le salaire net du Président de la République s'élevait à 7084 Euros par mois. Il a augmentée de 172% en 2008, puis a été gelé depuis. En mai 2012 le nouveau Président annonce une baisse de salaire de 30%. Un invité d'une radio publique commentait ainsi cette annonce : "ça fera encore 142% d'augmentation". 1. Calculer le nouveau salaire de 2008.
 - 2. Calculer le salaire du nouveau Président après mai 2012.
 - 3. Donner le taux d'augmentation global entre avant hausse de 2007 et après la baisse de 2012. Commenter les propos entendus à la radio.

Solution. 1. 19 268,48

- 2. 13 487,94
- 3. +90
- **Ex 10.** En 2017, Anne achète des actions de 3 sociétés : Alax (1€ l'action), Bavar (2€ l'action), Circa (4€ l'action).

Au total, elle achète 1200 actions pour un montant de 2 900 €.

Aujourd'hui, par rapport à 2017, le prix de l'action Alax n'a pas évolué, l'action Bavar a baissé de 50 %, et l'action Circa a augmenté de 50 %. Actuellement, le portefeuille d'Anne vaut 3 200€. On souhaite déterminer le nombre d'actions de chaque société achetées par Anne.

- a. Mettre en équation le problème.
- **b.** Résoudre

```
Solution. a = \text{nombre d'actions Alax}
```

b =nombre d'actions Bavar

c =nombre d'actions Circa

```
\begin{cases} a+b+c=90 & \text{Au total, elle achète 90 actions} \\ 6a+8b+10c=730 & \text{Valeur portefeuille en janvier} \\ 2\times6a+1,25\times8b+0,6\times10c=840 & \text{Valeur portefeuille en septembre} \end{cases}
```

On trouve a = 20, b = 45, c = 25.

- **Ex 11.** (plus difficile) Une vidéo vient d'apparaître sur les réseaux sociaux. Le jour de sa publication, elle avait déjà enregistré 400 "vues" et le nombre journalier de nouvelles "vues" a augmenté de 10% par jour pendant plusieurs semaines.
 - a. Écrire le nombre y_n de nouvelle vues enregistré le jour n.
 - b. Calculer le nombre total de vues enregistrées
 - à la fin du premier jour t_1
 - à la fin du deuxième jour t_2
 - à la fin du cinquième jour t_5
 - **c.** Calculer le nombre **total** de vues t_n enregistrés à la fin du n-ème jour. Exprimer t_n en fonction de n utilisant la formule $1+a+\cdots+a^{n-1}=\frac{a^n-1}{a-1}$.
 - d. Calculer le nombre total de vues enregistrés à la fin du 15ème jour
 - e. Pendant quelle journée le nombre total de vues aura dépassé le 30 000?