TD 04: Revêtements

1. Exemples de revêtements

(a) Soit $d \geq 1$, et soit P une fonction polynômiale complexe de degré d. Trouver des ensembles finis F_1 et F_2 tels que $P_{|\mathbb{C}\setminus F_1}:\mathbb{C}\setminus F_1\to\mathbb{C}\setminus F_2$ soit un revêtement de degré d.

Soit G un groupe topologique connexe par arcs, localement connexe par arcs, et ayant un revêtement universel (\widetilde{G}, p) . Soient x, y dans \widetilde{G} , et $\widetilde{e} \in p^{-1}(e)$. Soient γ_x , γ_y des chemins de \widetilde{e} à x et y respectivement. Définir $p \circ \gamma_x \cdot p \circ \gamma_y$ tel que $\gamma_{xy}(0) = \widetilde{e}$. On pose $x \cdot y := \gamma_{xy}(1)$.

- (b) Vérifier que $x \cdot y$ ne dépend pas des chemins γ_x et γ_y choisis.
- (c) Montrer que, muni de cette loi de multiplication, \hat{G} est un groupe, et p est un morphisme de groupes.
- (d) Montrer que l'on a ainsi muni \hat{G} d'une structure de groupe topologique (c'est-à-dire que la multiplication et l'inversion sont continues).

Soient (X,d) un espace métrique connexe et $n\geq 1$ un entier. On définit :

$$C_n := \{(z_k)_{1 \le k \le n} \in X^n : z_j \ne z_k \ \forall j \ne k\},$$

$$P_n := \{S \subset \mathcal{P}(X) : |S| = n\}.$$

On équipe C_n et P_n des distance ssuivantes (d_{P_n} est la distance de Hausdorff) :

$$\begin{array}{lcl} d_{C_n}(S,T) & := & \max_{i \leq i \leq n} d(S_i,T_i), \\ d_{P_n}(S,T) & := & \max \left\{ \max_{z \in S} \min_{z' \in T} d(z,z'), \max_{z' \in T} \min_{z \in S} d(z',z) \right\}. \end{array}$$

Soit $p:C_n\to P_n$ l'application qui envoie $(z_k)_{1\leq k\leq n}$ sur $\{z_k:1\leq k\leq n\}$. On supposera de plus que C_n est connexe.

- (e) Montrer que, pour tout $\mathcal{X} = \{x_1, \dots, x_n\} \in P_n$, il existe $\varepsilon > 0$ tel que $p : B_{C_n}((x_1, \dots, x_n), \varepsilon) \to B_{P_n}(\mathcal{X}, \varepsilon)$ soit bien définie, et soit une isométrie surjective.
- (f) En déduire que p est un revêtement. Quel est son degré ? Quel est son groupe d'automorphismes ? Est-il galoisien ?
- (g) Décrire C_2 et P_2 quand X est le cercle.
- (h) Soit $p: \mathbb{T}^1 \to \mathbb{T}^1$ définie par p(x) = 2x [1] un revêtement de \mathbb{T}^1 par \mathbb{T}^1 . Soit $f: \mathbb{T}^1 \to \mathbb{T}^1$ définie par f(x) = 3x [1]. Montrer qu'il n'existe pas de relèvement de f.

2. RUBAN DE MÖBIUS ET BOUTEILLE DE KLEIN

Soit \sim_M la relation d'équivalence sur $X := \mathbb{R} \times (-1/2, 1/2)$ engendrée par $(x,y) \sim_M (x+1,-y)$ pour tous $(x,y) \in X$. Soit M l'espace quotient, et soit $\pi_M : X \to M$ la projection canonique.

Soit \sim_K la relation d'équivalence sur \mathbb{R}^2 engendrée par $(x,y)\sim_K (x+1,-y)$ et $(x,y)\sim_K (x,y+1)$ pour tout $(x,y)\in\mathbb{R}^2$. Soit K l'espace quotient, et soit $\pi_K:\mathbb{R}^2\to K$ la projection canonique.

- (a) Montrer que π_M et π_K sont des revêtements galoisiens.
- (b) Construire un revêtement double $p: \mathbb{T}^2 \to K$.

3. CLASSIFICATION DE REVÊTEMENTS

Décrire, à isomorphisme près, tous les revêtements connexes de \mathbb{S}_1 , de $\mathbb{P}_n(\mathbb{R})$, du ruban de Möbius M, et de \mathbb{T}^2 .

4. QUELQUES REVÊTEMENTS DU BOUQUET DE DEUX CERCLES

On considère les graphes orientés X et Y ci-dessous, respectivement à gauche et à droite.

- (a) Construire un revêtement $p: X \to Y$ en envoyant les arêtes pleines (resp. hachurées) de X sur les arêtes pleines (resp. hachurées) de Y par des homéomorphismes respectant l'orientation.
- (b) Ce revêtement est-il galoisien?
- (c) Construire un revêtement \overline{X} de X de degré 2, tel que \overline{X} soit un revêtement galoisien de Y.
- (d) Construire un revêtement \overline{Y} de Y de degré 2, tel que \overline{X} soit un revêtement galoisien de \overline{Y} de degré 3.
- (e) Calculer les groupes fondamentaux des quatre espaces topologiques en présence.

- (f) Décrire les morphismes et les sous-groupes en présence (générateurs et relations, indice, normalité).
- (g) En s'inspirant de ces revêtements, construire un sous-groupe de F_2 qui soit distingué et isomorphe à F_{ω} (le sous-groupe libre à une infinité dénombrable de générateurs). On en donnera les générateurs.

5. SURFACE MODULAIRE

On munit de \mathbb{C}^2 d'un produit scalaire $\langle \cdot, \cdot \rangle$. Soit $\mathbb{P}_1(\mathbb{C})$ l'ensemble des droites vectorielles de \mathbb{C}^2 . On définit une distance sur $\mathbb{P}_1(\mathbb{C})$ par $d(\Delta_1, \Delta_2) = \max\{d(x_1, x_2) : x_1 \in \Delta_1 \cap \overline{B}(0, 1), x_2 \in \Delta_2 \cap \overline{B}(0, 1)\}$. Soit $\widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ le compactifié d'Alexandroff de \mathbb{C} . On définit une application :

$$\varphi: \left\{ \begin{array}{ll} \mathbb{P}_1(\mathbb{C}) & \to & \widehat{\mathbb{C}} \\ \{\lambda(z,1) : \lambda \in \mathbb{C}\} & \mapsto & z \ \forall z \in \mathbb{C} \\ \{\lambda(1,0) : \lambda \in \mathbb{C}\} & \mapsto & \infty \end{array} \right..$$

Soit $\mathbb{H} := \{z \in \mathbb{C} : \Im(z) > 0\}$ le demi-plan de Poincaré.

- (a) Montrer que φ est un homéomorphisme.
- (b) Expliciter l'action naturelle de $PSL_2(\mathbb{C})$ sur $\mathbb{P}_1(\mathbb{C})$. En déduire une action de $PSL_2(\mathbb{C})$ sur $\widehat{\mathbb{C}}$.
- (c) Soient $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in PSL_2(\mathbb{R})$ et $z \in \mathbb{H}$. Montrer que $\Im(\gamma \cdot z)$ est bien défini et égal à $|cz + d|^{-2}\Im(z)$.
- (d) En déduire que \mathbb{H} est stable sous l'action de $PSL_2(\mathbb{R})$. Montrer que l'action de $PSL_2(\mathbb{R})$ restreinte à \mathbb{H} est fidèle.

À partir de maintenant, on pose $\Gamma = PSL_2(\mathbb{Z})$. On admettra que Γ est engendré par les matrices :

$$N:=\begin{pmatrix}1&1\\0&1\end{pmatrix}, \ \ \text{et} \ \ E:=\begin{pmatrix}0&1\\-1&0\end{pmatrix},$$

Un domaine fondamental pour l'action de Γ sur \mathbb{H} est un ouvert U de \mathbb{H} tel que :

- $U \cap \gamma U = \emptyset$ pour tout $\gamma \in \Gamma \setminus \{I\}$;
- $\bigcup_{\gamma \in \Gamma} \gamma \overline{U}$;
- U est une union finie de courbes C^1 qui ne se s'intersectent qu'en leurs extrémités.

On pose $D := \{z \in \mathbb{H} : |z| > 1, |\Re(z)| < 1/2\}.$

- (e) Montrer que $E^2 = (EN)^3 = I$. L'action de Γ sur \mathbb{H} est-elle libre?
- (f) Montrer que pour tout $z \in \mathbb{H}$, le maximum des $\{\Im(\gamma \cdot z) : \gamma \in \Gamma\}$ est réalisé.
- (g) Montrer que pour tout $z \in \mathbb{H}$, il existe $\gamma \in \Gamma$ tel que $\gamma \cdot z \in \overline{D}$.
- (h) Soient $z \in D$ et $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma \setminus \{I\}$. On suppose que $\Im(\gamma \cdot z) \ge \Im(z)$. Montrer que c = 0 et |d| = 1. En déduire que $\gamma \cdot z \notin D$.
- (i) En déduire que que D est un domaine fondamental pour l'action de Γ .
- (j) Dessiner la surface modulaire $\Gamma \setminus \mathbb{H}$.

On classifie les éléments de Γ en trois sous-ensembles distincts. On dit que $\gamma \in \Gamma \setminus \{I\}$ est 1 :

- *Elliptique* si $|Tr(\gamma)| < 2$;
- Parabolique si $|Tr(\gamma)| = 2$;
- Hyperbolique si $|Tr(\gamma)| > 2$.

L'action de Γ sur $\mathbb H$ est non libre, ce qui fait que l'espace quotient n'est pas une variété 2 . On va réduire le groupe Γ pour éliminer ses éléments de torsion. Soit p un nombre premier. Soient $\overline{\pi}_p$ la projection canonique $SL_2(\mathbb Z) \to SL_2(\mathbb F_p)$, et π_p la projection canonique $PSL_2(\mathbb Z) \to PSL_2(\mathbb F_p)$. On admet que $\overline{\pi}_p$ est surjective. On pose $\Gamma(p) := Ker(\pi_p)$.

- (k) Montrer qu'un élément $\gamma \in \Gamma \setminus \{I\}$ fixe un point de \mathbb{H} si et seulement s'il est elliptique.
- (l) Trouver une caractérisation similaire des éléments paraboliques et hyperboliques. Indication : regarder l'action de Γ sur $\partial \mathbb{H} \cup \{\infty\}$.
- (m) On pose $\mathbb{H}' := \mathbb{H} \setminus \Gamma\{i, (1+i\sqrt{3})/2\}$. Montrer que l'action de Γ sur \mathbb{H}' est libre.
- (n) Montrer que π_p est surjective.
- (o) Calculer $|SL_2(\mathbb{F}_p)|$ puis $|PSL_2(\mathbb{F}_p)|$. En déduire que la projection canonique $\Gamma(p) \setminus \mathbb{H}' \to \Gamma \setminus \mathbb{H}'$ est un revêtement galoisien dont on donnera le degré. Attention au cas p = 2!
- (p) Montrer que l'action de $\Gamma(p)$ sur \mathbb{H} est libre.
- (q) Trouver un ensemble minimal d'éléments de Γ dont l'image par π_2 est $PSL_2(\mathbb{F}_2)$. Dessiner $\Gamma(2) \setminus \mathbb{H}$.

^{1.} Dans ce qui suit, on remarquera que la trace n'est pas bien définie sur Γ , mais que sa valeur absolue l'est.

^{2.} C'est un orbifold.