TD 03: Systèmes hyperboliques

1. MILNOR-THURSTON ET APPLICATIONS UNIMODALES

Soit [a,b] un intervalle réel. On considère une application $T:[a,b] \to [a,b]$ continue et unimodale, c'est-à-dire telle qu'il existe $c \in (a,b)$ telle que $T_{|[a,c]}$ soit strictement croissante et $T_{|[c,b]}$ strictement décroissante.

On rappelle que:

- Un point directionnel $\hat{x} = (x, \varepsilon)$ est la donnée d'une valeur $x \in \mathbb{R}$ et d'une direction $\varepsilon = +1$ ou -1.
- s représente le signe de monotonicité de $T: s(\hat{x}) = +1$ sur $[a^+, c^-]$ et s = -1 sur $[c^+, b^-]$.
- On note $\hat{T}: [a^+, b^-] \to [a^+, b^-]$ le prolongement naturel de T. Puisque T est continue,

$$\hat{T}: \hat{x} = (x, \varepsilon) \mapsto (T(x), s(\hat{x}) \cdot \epsilon).$$

• Le signe de monotonicité de \hat{T}^n s'obtient de la façon suivante : $s_0(\hat{x}) \equiv 1$, et :

$$s_n(\hat{x}) = s(\hat{x}) \ s_{n-1}(\hat{T}(\hat{x})) = \prod_{k=0}^{n-1} s(\hat{T}^k(\hat{x})).$$

• La position relative de \hat{x} par rapport à un point de base est définie par :

$$\sigma(\hat{x}, y) = \begin{cases} +1/2 & \text{si} \quad \hat{x} > y \\ -1/2 & \text{si} \quad \hat{x} < y \end{cases}.$$

Rappelons aussi la définition de "coordonnée de pétrissage" (utilisée avec u=a ou u=c):

$$\Theta_u(\hat{x},t) = \sum_{n>0} t^n s_n(\hat{x}) \sigma(\hat{T}^n(\hat{x}), u),$$

et de "matrice de pétrissage"² :

$$R(t) = \left(\begin{array}{cc} \Theta_a(a^+,t) + \Theta_a(b^-,t) & \Theta_c(a^+,t) + \Theta_c(b^-,t) \\ \Theta_a(c^+,t) - \Theta_a(c^-,t) & \Theta_c(c^+,t) - \Theta_c(c^-,t) \end{array} \right).$$

- (a) Soit $u \in [a, b]$. Montrer que $\Theta_u(\hat{x}, t) = \sigma(\hat{x}, u) + ts(\hat{x})\Theta_u(\hat{T}(\hat{x}), t)$.
- (b) Calculer $\Theta_a(a^+,t) + \Theta_a(b^-,t)$ lorsque T(a) = T(b). Trouver dans ce cas une expression plus simple pour $DMT(t) = \det(R(t))$.
- (c) Esquisser le graphe d'une application telle que T(a) = T(b) et que $T^2(c) < T^3(c) < c = T^4(c) < T(c)$.
- (d) Sous les hypothèses de la question précédente, calculer DMT(t) et montrer que $t^* := \exp(-h_{top})$ est une racine d'un polynôme que l'on précisera.
- (e) Déterminer également dans ce cas une partition de Markov de l'intervalle $[T^2(c), T(c)]$ et une matrice de transition pour T qui permettent de calculer l'entropie topologique. Vérifier que l'on obtient le même résultat.

2. MESURES DE GIBBS

Dans cet exercice, nous allons étudier les mesures de Gibbs dans des cas simples. Soit Σ un ensemble fini de cardinal au moins 2. On travaille tout d'abord avec le décalage sur $\Sigma^{\mathbb{N}}$.

(a) Soit $\varphi: \Sigma \to \mathbb{R}$. On pose :

$$\hat{\varphi}: \left\{ \begin{array}{ccc} \Sigma^{\mathbb{N}} & \to & \mathbb{R} \\ (x_n)_{n\geq 0} & \mapsto & \varphi(x_0) \end{array} \right..$$

Calculer $P(\hat{\varphi})$.

- (b) Soit $\mu \in \mathcal{P}(\Sigma)$ tel que p(x) > 0 pour tout $x \in \Sigma$. La mesure de Bernouilli correspondante $\hat{\mu} := \mu^{\otimes \mathbb{N}}$ est invariante par le décalage. Quelle est son entropie ? Que vaut $P_{\hat{\mu}}(\hat{\varphi})$?
- (c) Trouver un potentiel $\hat{\varphi}$ dont $\hat{\mu}$ soit la mesure d'équilibre correspondante.

On se donne maintenant un sous-décalage markovien. Soit A une matrice de transition sur Σ ; on suppose que A est irréductible. Soit $\hat{\varphi}$ un potentiel sur Σ_A construit comme précédemment.

^{1&}quot;kneading coordinate"

²"kneading matrix"

(d) Comment calculer $P(\hat{\varphi})$?

3. FLOT GÉODÉSIQUE EN COURBURE CONSTANTE NÉGATIVE

Soit M une surface compacte, connexe, orientable, de genre $g \geq 2$. On munit M d'une métrique Riemannienne de courbure constante, égale à -1. Le but de cet exercice est d'étudier le flot géodésique sur T^1M , c'est-à-dire la trajectoire d'une particule circulant sans frottements ni forces extérieures sur M.

Soit $X_0 \in M$, et $\Gamma := \pi_1(M, x_0)$. Alors le revêtement universel de M est isométrique au demi-plan de Poincaré $\mathbb{H} := \{x+iy: x\in M\}$ $x \in \mathbb{R}, y > 0$ munit de la métrique hyperbolique :

$$\langle v, w \rangle_z = \frac{(v, w)}{\Im(z)^2}.$$

Le groupe Γ agit librement et par isométries directes sur \mathbb{H} . L'espace \mathbb{H} a cependant un groupe d'isométries beaucoup plus gros : ce groupe est isomorphe à $PSL_2(\mathbb{R})$, et l'action est par homographies :

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \cdot z = \frac{az+b}{cz+d}.$$

Le groupe $PSL_2(\mathbb{R})$ agit naturellement sur $T^1\mathbb{H}$. Cette action est libre et transitive.

- (a) Vérifier que l'action par homographies est bien une action de groupe.
- (b) Montrer que $\Im(A \cdot z) = |cz + d|^{-2}\Im(z)$.
- (c) Vérifier que l'action par homographies est bien une action par isométries.
- (d) Soit $z \in 0 + i\mathbb{R}_+^*$. Calculer d(i, z).
- (e) Soit $(\hat{g}_t)_{t\in\mathbb{R}}$ le flot géodésique sur $T^1\mathbb{H}$. En utilisant la question précédente, trouver $\hat{g}_t(i,i)$. Quelle est la trajectoire d'un point quelconque de $T^1\mathbb{H}$ par (\hat{g}_t) ?

On définit les flots horocycliques stable et instable par :

$$\hat{h}_t^+(i,i) = \left(\left(\begin{array}{cc} 1 & t \\ 0 & 1 \end{array} \right) \cdot (i,i) \right),\,$$

et:

$$\hat{h}_t^-(i,i) = \left(\left(\begin{array}{cc} 1 & 0 \\ t & 1 \end{array} \right) \cdot (i,i) \right),$$

puis en étendant ces flots à $T^1\mathbb{H}$ par multiplication à droite.

- (f) Dessiner la trajectoire de (i, i) suivant (\hat{h}_t^+) et (\hat{h}_t^-) .
- (g) Montrer que:

$$\begin{cases} \hat{g}_{t} \circ \hat{h}_{s}^{+} & = \hat{h}_{se^{-t}} \circ \hat{g}_{t}; \\ \hat{g}_{t} \circ \hat{h}_{s}^{+} & = \hat{h}_{se^{t}} \circ \hat{g}_{t}; \\ \hat{h}_{\frac{t^{-1}-1}{\varepsilon}}^{+} \circ \hat{h}_{\varepsilon}^{-} \circ \hat{h}_{\frac{t-1}{\varepsilon}}^{+} \circ \hat{h}_{-\frac{\varepsilon}{t}}^{-} & = \hat{g}_{2\ln(t)}. \end{cases}$$

Les flots géodésique et horocycliques passent au quotient en des flots (g_t) , (h_t^+) et (h_t^-) sur T^1M , qui vérifient toujours les relations de commutation ci-dessus. Nous allons maintenant nous intéresser à leurs propriétés dynamiques sur T^1M . On montre notamment que le flot géodésique est mélangeant sur T^1M , munit de la mesure de Liouville Liouv (qui est invariante par chacun des trois flots) 3 .

- (h) Montrer que $h_{top}(h^+) = h_{top}(h^-) = 0$. (i) Montrer que $(T^1M, (g_t), Liouv)$ est mélangeant si et seulement si, pour tout $f \in \mathbb{L}^2(T^1M, Liouv)$ d'intégrale nulle, toute valeur d'adhérence \mathbb{L}^2 -faible de $(f \circ g_t)_{t>0}$ est nulle.
- (j) Soit f comme ci-dessus. Montrer que toute valeur d'adhérence \mathbb{L}^2 -faible de $(f \circ g_t)_{t>0}$ est (h_s^+) -invariante. De même, montrer que toute valeur d'adhérence \mathbb{L}^2 -faible de $(f \circ g_t)_{t < 0}$ est (h_s^-) -invariante.
- (k) Montrer que toute fonction de $\mathbb{L}^2(T^1M, Liouv)$ qui est (h_s^+) -invariante est aussi (g_t) -invariante.
- (1) En déduire que toute valeur d'adhérence \mathbb{L}^2 -faible de $(f \circ g_t)_{t \geq 0}$ est à la fois (g_t) , (h_s^+) et (h_s^-) -invariante. Conclure.

³La preuve utilisée ici est due à Yves Coudène.

4. UN THÉORÈME CENTRAL LIMITE

Le but de cet exercice est de démontrer un théorème central limite pour des chaînes de Markov⁴. Soit Σ un ensemble fini, de cardinal au moins 2. Soit A la matrice de transition d'une chaîne de Markov apériodique sur A. Soit μ la mesure de probabilité stationnaire de la chaîne de Markov, c'est-à-dire l'unique covecteur dont la somme des coordonnées vaut 1 et tel que $\mu A = \mu$. Soit F une fonction réelle sur Σ telle que $\mathbb{E}_{\mu}(f) = 0$.

Soit \mathcal{F} l'espace des fonctions complexes sur Σ . Pour tout $\omega \in \mathbb{R}$, on définit des opérateurs sur \mathcal{F} par :

$$\mathcal{L}(g) = A^t(\mu^t \cdot g);
\mathcal{L}_{\omega}(g) = \mathcal{L}(e^{i\omega F} \cdot g).$$

- (a) Montrer que 1 est valeur propre simple de \mathcal{L} , et que toute autre valeur propre est de module strictement inférieur.
- (b) Montrer que, pour tous f et g dans \mathcal{F} ,

$$\sum_{k \in \Sigma} f(k)(\mathcal{L}g)(k) = \mathbb{E}_{\hat{\mu}}(f \circ T \cdot g).$$

En déduire que, pour tous $n \geq 0$ et $\omega \in \mathbb{R}$,

$$\sum_{k \in \Sigma} (\mathcal{L}_{\omega}^{n} 1)(k) = \mathbb{E}_{\hat{\mu}} \left(e^{i\omega S_{n} F} \right).$$

On admettra que, pour tout ω suffisamment petit, il existe une application $\omega \mapsto \lambda_{\omega} \in \mathbb{C}$ analytique, telle que λ_{ω} soit la valeur propre de \mathcal{L}_{ω} de plus grand module. On admettra de plus qu'il existe un application $\omega \mapsto g_{\omega} \in \mathcal{F}$ elle aussi analytique, telle que g_{ω} soit l'unique fonction propre associée à g_{ω} telle que $\mathbb{E}_{\hat{\mu}}(g_{\omega}) = 1$.

Soit P_{ω} la projection sur le sous-espace propre associé à λ_{ω} , et $Q_{\omega} := \mathcal{L}_{\omega} - \lambda_{\omega} P_{\omega}$. Alors $\omega \mapsto P_{\omega}$ est analytique sur un voisinage de 0. En particulier, il existe C > 0 et $\theta \in [0,1)$ tels que $\|Q_{\omega}^n\| \le C\theta^n$ pour tout $n \ge 0$ et tout ω assez petit.

- (c) Que valent λ_0 et g_0 ?
- (d) On rappelle que:

$$\lambda_{\omega} g_{\omega} = \mathcal{L}_{\omega} g_{\omega}. \tag{0.1}$$

En développant cette équation au premier ordre et en prenant l'espérance, montrer que $\partial_{\omega}\lambda_{|0}=0$. Exploiter ensuite l'équation (0.1) pour montrer que $\partial_{\omega}g_{|0}=i(I-\mathcal{L})^{-1}\mathcal{L}(F)$.

(e) Développer l'équation (0.1) au second ordre et prendre l'espérance. En déduire que :

$$\sigma(F)^2 := -\partial^2_{\omega\omega} \lambda_{|0} = \mathbb{E}_{\mu}(F^2) + 2\sum_{n \ge 1} \mathbb{E}_{\mu}(F \cdot \mathcal{L}^n F).$$

(f) Montrer que $\mathbb{E}_{\hat{\mu}}\left(e^{i\omega\frac{S_nF}{\sqrt{n}}}\right)$ converge vers $e^{-\frac{\sigma(F)^2\omega^2}{2}}$ quand n tend vers $+\infty$. Conclure.

⁴Ce théorème peut se voir comme donnant une vitesse de convergence dans le théorème de Birkhoff. Il est à mettre en parallèle avec l'exercice 7 du TD 2, où l'on obtenait une vitesse de convergence dans le théorème de Birkhoff pour des rotations irrationelles sur le cercle.