TD 03 : Opérateurs de transfert

1. APPLICATION DE GAUSS

Soit $\Omega := [0, 1]$, muni de la métrique $d(x, x') = \left| \log \frac{1+x}{1+x'} \right|$. On souhaite étudier la transformation de Gauss :

$$T : \left\{ \begin{array}{ccc} \Omega & \to & \Omega; \\ x & \mapsto & \frac{1}{x} - \lfloor \frac{1}{x} \rfloor. \end{array} \right.$$

On note $\Omega_k := \left\lceil \frac{1}{k+1}, \frac{1}{k} \right\rceil$. Pour tout $k \geq 1$, soit $\psi_k(y) = \frac{1}{y+k}$ un difféomorphisme de Ω sur Ω_k . La famille $(\psi_k)_{k \geq 1}, k \geq 1$ est l'ensemble des branches inverses de l'application de Gauss

Soit $X := Lip(\Omega, d)$. On définit l'opérateur de transfert agissant sur X par :

$$(\mathcal{L}f)(y) := \sum_{k \ge 1} \frac{1}{(k+y)^2} f\left(\frac{1}{k+y}\right) \quad \forall f \in X, \ \forall y \in \Omega.$$

$$(0.1)$$

(a) Montrer que \mathcal{L} est un opérateur continu sur X.

On définit une famille de cônes. Pour a > 0, soit :

$$K_a:=\left\{f\in X\ :\ f\geq 0\ \mathrm{et}\ f(x)\leq f(x')e^{ad(x,x')}\ \forall\ x,x'\in\Omega\right\}.$$

- (b) Montrer que chaque ψ_k est 1/2-lipschitzien pour la distance d.
- (c) Montrer que que $\mathcal{L}(K_a^*) \subset K_{2+a/2}^*$. En déduire qu'il existe a>0 et $\sigma\in(0,1)$ tels que $\mathcal{L}(K_a^*)\subset K_{\sigma a}^*$
- (d) Donner une estimation du taux de contraction pour la métrique de Hilbert.
- (e) Sous ces mêmes conditions, montrer que $\ensuremath{\mathcal{L}}$ admet un trou spectral.
- (f) Montrer que $h(x) = \frac{1}{\ln(2)} \frac{1}{1+x}$ est un vecteur propre de \mathcal{L} . À quels cônes K_a^* appartient-il? (g) Montrer que l'application de Gauss admet une unique mesure invariante absolument continue par rapport à la mesure de Lebesgue, et que cette mesure est mélangeante (donc ergodique).

2. TRANSFORMATIONS CONTINUES PAR MORCEAUX

On considère des transformations dilatantes par morceaux de l'intervalle. On pose $\Omega := [0, 1]$, et on se donne une transformation T de Ω et des nombres $0 = a_0 < a_1 < \ldots < a_r = 1$ tels que, sur chaque intervalle (a_k, a_{k+1}) ,

- T est de classe C^2 , et T'' est bornée;
- $\inf |T'| > 1$.

Le but de cet exercice est de démontrer qu'il existe une mesure de probabilité T-invariante sur Ω et absolument continue par rapport à la mesure de Lebesgue. Pour cela, on fait agir l'opérateur de transfert \mathcal{L} sur un espace de fonctions bien choisi.

Soit f une fonction intégrable sur un intervalle d'intérieur I. On dit que f est à variation bornée si elle admet une version càdlàg \tilde{f} telle que¹:

$$Var_{I}(f) := \sup_{N \geq 2} \sup_{\substack{x_{1} < \dots < x_{N} \\ x_{i} \in I}} \sum_{i=1}^{N-1} |\tilde{f}(x_{i+1}) - \tilde{f}(x_{i})| = \sup_{\substack{g \in C_{c}(I,\mathbb{R}) \\ ||g||_{-} < 1}} \int_{I} fg' \, dx = |d\tilde{f}|(I),$$

où $d\tilde{f}$ est la dérivée de \tilde{f} au sens de Stieltjes, et est une mesure signée sur I. On note $\|f\|_{\mathbb{BV}(\Omega)} := \|f\|_{\mathbb{L}^1} + Var_{\Omega}(f)$. On admettra que l'espace $\mathbb{BV}(\Omega)$ ainsi défini est un espace de Banach.

- (a) Calculer $Var_I(f)$ dans les cas suivants : f est C_c^1 , monotone bornée ou indicatrice d'un intervalle J proprement inclus dans
- (b) Soit ψ un difféomorphisme. Montrer que $Var_I(f \circ \psi) = Var_{\psi(I)}(f)$.
- (c) Posons $I_k := T((a_k, a_{k+1}))$. Soit $f \in \mathcal{B}(\Omega)$ positive et $g \in \mathcal{C}^1(\Omega, \mathbb{R})$. Montrer que :

$$Var_{\Omega}(\mathbf{1}_{I_{k}}f) \leq 2\min_{I_{k}}(f) + 2Var_{I_{k}}(f) \leq \frac{2}{\min_{k}|a_{k+1}-a_{k}|} \int_{a_{k}}^{a_{k+1}} f \, dx + 2Var_{I_{k}}(f);$$

 $Var_{\Omega}(fg) \leq Var_{\Omega}(f) \|g\|_{\infty} + \|f\|_{\mathbb{L}^{1}} \|g'\|_{\infty}.$

¹On admettra que, si elles sont finies, les quantités suivantes sont égales.

(d) En déduire qu'il existe une constante $C \geq 0$ telle que, pour tout $f \in \mathbb{BV}(\Omega)$ positive:

$$\|\mathcal{L}(f)\|_{\mathbb{BV}(\Omega)} \le C \|f\|_{\mathbb{L}^1} + \frac{2}{\lambda} \|f\|_{\mathbb{BV}(\Omega)}.$$

Dans la suite de l'exercice, on supposera que $\lambda > 2$.

- (e) En déduire que si $f \in \mathbb{BV}(\Omega)$ est positive, alors $(\mathcal{L}^n(f))_{n\geq 0}$ est bornée dans $\mathbb{BV}(\Omega)$.
- (f) On admet le théorème de sélection de Helly : la boule unité de $\mathbb{BV}(\Omega)$ est séquentiellement compacte dans $\mathbb{L}^1(\Omega, Leb)$. Montrer que $n^{-1} \sum_{k=0}^{n-1} \mathcal{L}^k(\mathbf{1})$ a un point d'adhérence non trivial h en norme \mathbb{L}^1 , puis que $\mathcal{L}(h) = h$.
- (g) En déduire qu'il existe une mesure de probabilité T-invariante absolument continue.
- (h) Que pouvez-vous dire si $\lambda \in (1, 2]$?

3. β -transformations

Dans le cadre des β -transformations, on peut simplifier significativement l'argument de l'exercice précédent. Soit $\beta > 1$. On définit :

$$T_{\beta}: \left\{ \begin{array}{ccc} [0,1) & \rightarrow & [0,1) \\ x & \mapsto & \beta x \ [1] \end{array} \right.$$

On note K le cône des fonctions réelles sur [0,1) positives, décroissantes, càdlàg. Soit \mathcal{L} l'opérateur de transfert associé à T_{β} et à la mesure de Lebesgue sur [0,1).

- (a) Montrer que K est préservé par \mathcal{L} .
- (b) Montrer qu'il existe une constante $C \ge 0$ telle que, pour tout $f \in K$:

$$\mathcal{L}(f)(0) \le \frac{f(0)}{\beta} + C \int_0^1 f(x) \, \mathrm{d}x.$$

En déduire que $(\mathcal{L}^n(f))_{n>0}$ est uniformément bornée.

(c) En déduire que $(\mathcal{L}^n(f))_{n\geq 0}$ est borné dans $\mathbb{BV}((0,1))$, puis qu'il existe une mesure de probabilité T_β -invariante et absolument continue par rapport à la mesure de Lebesgue. Que pouvez-vous dire de plus sur sa densité ?

4. OPÉRATEURS DE TRANSFERT ET QUASICOMPACITÉ

Le but de cet exercice est d'exploiter autrement les propriétés des opérateurs de transfert, en démontrant leur quasicompacité.

Soit Σ un ensemble fini, de cardinal au moins 2. On pose $\Omega := \Sigma^{\mathbb{N}}$, et $T(x_0, x_1 \ldots) = (x_1, \ldots)$ le décalage unilatère sur Ω . Pour $x, y \in \Omega$, on définit le *temps de séparation* de x et y par :

$$s(x,y) := \inf\{n \ge 0 : x_n \ne y_n\}.$$

Enfin, pour $\theta \in (0,1)$, on pose $d_{\theta}(x,y) := \theta^{s(x,y)}$.

(a) Vérifier que (Ω, d_{θ}) est un espace métrique compact, et que T est continue.

On note \mathcal{F}_{θ} l'espace des fonctions complexes lipschitziennes pour la distance d_{θ} , que l'on munit d'une norme $\|\cdot\|_{\theta}$:

$$\begin{aligned} |\varphi|_{\theta} &:= \inf\{C \geq 0 : |\varphi(x) - \varphi(y)| \leq C d_{\theta}(x, y) \, \forall x, y \in \Omega\}, \\ |\varphi|_{\infty} &:= \inf\{C \geq 0 : |\varphi(x)| \leq C \, \forall x \in \Omega\}, \\ ||\varphi||_{\theta} &:= |\varphi|_{\theta} + |\varphi|_{\infty}. \end{aligned}$$

On admettra que $(\mathcal{F}_{\theta}, \|\cdot\|_{\theta})$ est un espace de Banach complexe, et que l'injection $id : (\mathcal{F}_{\theta}, \|\cdot\|_{\theta}) \to (\mathcal{F}_{\theta}, |\cdot|_{\infty})$ est compacte². Pour $g \in \mathcal{F}_{\theta}$ telle que $g \geq 0$, on note \mathcal{L}_g l'opérateur de tranfert associé :

$$\mathcal{L}_g(\varphi)(x) := \sum_{y \in T^{-1}(\{x\})} g(y)\varphi(y).$$

On supposera de plus que $\mathcal{L}_q 1 \equiv 1$, ce qui peut se faire en normalisant³ g.

- (b) Montrer que $|\mathcal{L}_g \varphi|_{\infty} \leq |\varphi|_{\infty}$ pour toute fonction $\varphi \in \mathcal{F}_{\theta}$.
- (c) Trouver une constante $C_1 \geq 0$ telle que, pour tout $\varphi \in \mathcal{F}_{\theta}$,

$$\frac{\|\mathcal{L}_g \varphi\|_{\theta} \le \theta \|\varphi\|_{\theta} + C_1 |\varphi|_{\infty}.}{\|\mathbf{L}_g \varphi\|_{\theta} \le C_1 \|\varphi\|_{\infty}}$$

²C'est le théorème d'Arzelà-Ascoli.

 $^{^{3}}$ Cest-à-dire en ajoutant à g une constante et un cobord.

(d) En déduire l'inégalité de Doeblin-Fortet : il existe une constante C>0 telle que, pour tout $\varphi\in\mathcal{F}_{\theta}$,

$$\left\|\mathcal{L}_{q}^{n}\varphi\right\|_{\theta} \leq \theta^{n} \left\|\varphi\right\|_{\theta} + C|\varphi|_{\infty}.$$

Soit \mathcal{L} un opérateur continu sur un espace de Banach complexe. Le rayon spectral essentiel de \mathcal{L} est le plus petit réel $\rho_{ess}(\mathcal{L}) \geq 0$ tel que, pour tout $r > \rho_{ess}(\mathcal{L})$, le spectre $Spec(\mathcal{L}) \cap B(0,r)^c$ soit l'union d'un nombre fini de valeurs propres de multiplicité finie⁴. On peut borner le rayon spectral essentiel à l'aide d'un théorème de H. Hennion.

Théorème 1.

Soit $(\mathcal{B}, \|\|)$ un espace de Banach. Soit \mathcal{L} un opérateur continu de $(\mathcal{B}, \|\|)$ dans lui-même. Soit $|\cdot|$ une norme sur \mathcal{B} . Supposons que :

- *l'identité* $(\mathcal{B}, ||||) \rightarrow (\mathcal{B}, |\cdot|)$ *est compacte* ;
- il existe des suites positives $(r_n)_{n\geq 0}$ et $(C_n)_{n\geq 0}$ telles que, pour tout $n\geq 0$ et tout $\varphi\in\mathcal{B}$:

$$\|\mathcal{L}^n \varphi\| \le r_n \|\varphi\| + C_n |\varphi|.$$

Alors $\rho_{ess}(\mathcal{L}) \leq \liminf_{n>1} r_n^{1/n}$.

- (e) En utilisant le théorème de Hennion, borner le rayon spectral essentiel de \mathcal{L}_g agissant sur \mathcal{F}_{θ} .
- (f) Montrer que \mathcal{L}_g n'a pas de valeur propre de module strictement supérieur à 1, et que 1 est valeur propre de \mathcal{L}_g .

On suppose pour finir que \mathcal{L}_g est l'opérateur de transfert associé à une chaîne de Markov sur Σ , de matrice de transition apériodique. On rappelle que la mesure invariante associée $\hat{\mu} \in \mathcal{P}(\Omega)$ est mélangeante pour T.

- (g) Montrer que la valeur propre 1 de \mathcal{L}_q est de multiplicité 1, et que \mathcal{L}_q n'a pas d'autre valeur propre de module 1.
- (h) En déduire qu'il existe une décomposition $\mathcal{L}_g = Q \oplus \pi$, où :
 - $\pi^2 = \pi$ et $\pi(f) = \int_{\Omega} f \, d\hat{\mu}$;
 - $\bullet \ \pi \circ Q = Q \circ \pi = 0 ;$
 - $\rho(Q) < 1$.
- (i) Montrer qu'il existe des constantes $C \ge 0$ et $r \in [0,1)$ telle que, pour toutes fonctions $f \in \mathcal{F}_{\theta}$ et $g \in \mathbb{L}^1(\Omega, \hat{\mu})$,

$$|Cov(f, g \circ T^n)| \leq Cr^n ||f||_{\theta} ||g||_{\mathbb{L}^1(\Omega, \hat{\mu})}.$$

⁴On dit aussi que $Spec(\mathcal{L}) \cap B(0,r)^c$ est Fredholm. L'opérateur \mathcal{L} est compact si et seulement si $\rho_{ess}(\mathcal{L}) = 0$.