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introduction

The purpose of the talk is to explain basic notions in complex geometry. In the
first part, we define real and complex structures on topological spaces, which leads
to the definitions of real and complex manifolds, almost complex structures and the
Newlander-Nirenberg’s theorem. In the second part, we study Kähler manifolds.
They are complex manifolds in which the (1,1) form associated to the hermit-
ian metric is closed. This special structure on the space gives rise to the Kähler
identities and a nice form of the Hodge decomposition for de Rham cohomology.
Finally, we end with an introduction to Chern-Weil theory, a basic construction
in the theory of characteristic class. The theory associates to each vector bundle
certain closed forms in the de Rham cohomology, which are topological invariants
depending only on the vector bundles. We give an example in the case of Kähler
manifolds, the Ricci form, which up to multiplication by a real constant, is the first
Chern class of the anti-canonical bundle.

1. Complex manifold. Complex Structure. Newlander-Nirenberg’s
Theorem. (Reference: [5, 2])

In the following, let X be a topological space, Hausdorff, separable (having a
countable basis for the topology). We introduce the structures of real and complex
manifolds on X. A question one can ask is when does a real manifold admit the
structure of a complex manifold. This question can be answered completely by
studying a special kind of endomorphism on the tangent bundle of the manifold,
which motivates the definition of an almost complex structure.

Definition 1.1. We say that X is a differentiable manifold if X can be covered
by open sets Ui, together with a system of local charts φi : Ui → Rn such that the
transition functions φj ◦ φ−1

i : φi(Ui ∩Uj)→ φj(Ui ∩Uj) are differentiable. We say
that X is smooth if all the transition functions are infinitely differentiable.

Definition 1.2. We say that X is a complex manifold if X can be covered by open
sets Ui, together with a system of local charts φi : Ui → Cn such that the transition
functions φj ◦ φ−1

i are bi-holomorphic.

Definition 1.3. Let X be a smooth manifold. The tangent space at x ∈ X is the
real vector space of all derivations from the space of germs of C∞ functions defined
on a neighborhood of X to R. We denote it by TX,x.

Remarks 1.4. Suppose X is a complex manifold then X also has the structure of a
real manifold. At every point x ∈ X, the real tangent space of X has the structure
of a complex vector space. See Remarks 1.10.
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Definition 1.5. The tangent bundle is defined as TX =
⋃
p∈X TX,x, which can

given the structure of a manifold, and a canonical projection π : TX → X : (x, δ) 7→
x ∈ X. It is an example of a differentiable real vector bundle.

Definition 1.6. Let X be a differentiable manifold. A real differentiable vector
bundle of rank k on X consists of a differentiable manifold E and a differentiable
map π : E → X such that
1) Each fibre Ex = π−1(x) has the structure of a real vector space
2) Each point x ∈ X has an open neighborhood U and trivialization ψ : E|U ∼=
U × Rk such that prU ◦ ψ = π and for all x ∈ U , the map ψ(x) : Ex → Rk is an
isomorphism of real vector spaces.

Remarks 1.7. Similarly, one can define complex differentiable vector bundle, where
the fibre are C vector spaces.

Definition 1.8. A differentiable morphism between vector bundles is a differen-
tiable map such that the fibres are preserved.

Definition 1.9. An almost complex structure on a differentiable manifold X is an
endomorphism J of the tangent bundle satisfying J2 = −Id.

Remarks 1.10. By the definition of morphism of vector bundles, each real tangent
space TX,x is given an endomorphism Jx : TX,x → TX,x such that J2

X,x = −Idx. It

is the same as giving TX,x the structure of a complex vector space, with i∗u = Jx(u)
for u ∈ TX,x, and TX is given the structure of a differentiable complex vector bundle.

Remarks 1.11. LetM be a complex manifold. Then M has a natural almost complex
structure. In particular, suppose the local coordinates of M are z1, z2, ..., zn, zj =

xj + iyj . We can define J( ∂
∂xj

) = ∂
∂yj

, J( ∂
∂yj

) = − ∂
∂xj

locally, and glue them

together. This definition does not depend on the charts, because the transition
functions are holomorphic.

Definition 1.12. An almost complex structure J on a real manifold X is said to
be integrable if there exists a complex manifold structure on X which induces J .

Question 1.13. Given an almost complex structure on a real manifold M . Which
ones are integrable?

Given an almost complex structure J on a real manifold X, one can extend J to
the complexified tangent bundle TX⊗RC by Jx(u⊗i+v⊗1) = Jx(u)⊗i+Jx(v)⊗1.
We also have J2 = −Id on TX ⊗ C, hence in this action, Jx has eigenvalues i and
−i.

Corollary 1.14. The almost complex structure J on X induces a decomposition
of sub-vector bundles:

TX ⊗ C = T 1,0
X ⊕ T 0,1

X

where at each point x ∈ X, the space T 1,0
X,x is the eigenspace with eigenvalue i and

T 0,1
X,x is the eigenspace with eigenvalue −i.

Theorem 1.15. (Newlander-Nirenberg) An almost complex structure J is inte-
grable if and only if

[T 0,1
X , T 0,1

X ] ⊆ T 0,1
X .
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Remarks 1.16. Here, the Lie bracket is extended by C− linearity from the vector
fields over X to complexified-vector fields.

If X is a complex manifold, one can prove the (0, 1) tangent bundle on X satisfies
the above property by doing calculation on local coordinates. The other direction,
however is a much more difficult theorem in analysis. For J smooth or differen-
tiable of class C k, more difficult techniques in analysis (PDE) are required because
the manifold X was only assumed to be differentiable, now it must also have the
structure of a real analytic manifold. If M and J are assumed to be real analytic,
then the theorem follows from the Frobenius theorem.

Theorem 1.17. (Analytic version of Frobenius theorem) Let X be a complex man-
ifold of dimension n, and let E be a holomorphic distribution of rank k over X, i.e.
a holomorphic vector sub bundle of rank k of the holomorphic tangent bundle TX .
Then E is integrable in the holomorphic sense if and only if we have the integrability
condition:

[E,E] ⊆ E.
Here, the integrability in the holomorphic sense means that X is covered by open
sets U such that there exists a holomorphic submersive map

φU : U → Cn−k

satisfying

Eu = Ker(φ∗ : TU,u → TCn−k,φ(u))

for every u ∈ U .

Proof. See [5], Theorem 2.26, page 51. �

Here, a differentiable complex vector bundle πE : E → X over a complex mani-
fold X is said to be holomorphic if we have trivializations τi : π−1

i (Ui) ∼= Ui × Cn
such that the transition matrices τi,j = τjτ

−1
i have holomorphic coefficients.

Proof. (Sketch, see [5], Theorem 2.24, page 52) Assume X and J are analytic. The
idea is that when complexifying both X, and TX,R, one will get a complex manifold
and a holomorphic tangent bundle, and J can be extended to a holomorphic endo-
morphism of the holomorphic tangent bundle TXC of XC. We also have J2 = −Id.
Let EC be the eigenspace associated to the eigenvalue −i of J . Then EC is a holo-
morphic sub-bundle of TXC . One has EC,u = T 0,1

X,u for all u ∈ X.
The bundle EC satisfies the condition of the Frobenius theorem, and one can find
an open cover for XC, such that for each U ⊆ XC, the map φU : UC → Cn is
submersive and satisfies EC,u = Ker(φ∗ : TUC → Cn). It implies φ∗|TU

is an iso-
morphism and φ|U is a diffeomorphism in a neighborhood of u ∈ U . One needs to
check that the induced operator of the complex manifold structure from Cn on TU
is the same as the operator J . �

2. Hermitian metric, Kähler metric, Kähler identities, Hodge theory
for Kähler manifolds. (Reference [[5, 2]])

We introduce the definition of Kähler metric, and gives a characterization in
terms of connections on vector bundles. The existence of Kähler metric makes it
easier to study the manifold. In particular, one has the Kähler identities, which
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are relationship between operators acting on differential forms. An important con-
sequence of these identities is the Hodge-Decomposition of de Rham cohomology
applying to complex manifolds.

2.1. Hermitian metric and Kähler metrics.
Let (X,J) be an almost complex manifold.

Definition 2.1. A Hermitian metric on X is a collection of Hermitian metrics hx
on tangent spaces TX,x (seen as a complex vector spaces via Jx). The metric h is
said to be continuous (differentiable) if in local coordinates x1, x2, ..., xn for M, the
map x→ hx( ∂

∂xi
, ∂
∂xj

) is continuous (differentiable).

Remarks 2.2. By the definition one has h(Ju, Jv) = h(iu, iv) = h(u, v).

Definition 2.3. In general, a Hermitian vector bundle is complex vector bundle
E, together with Hermitian metrics hx for each of its fibre such that, for all δ, β
smooth sections of E, the map x→ hx(δ, β) is infinitely differentiable.

Definition 2.4. Let h = g − iω, i.e ω = −Im(h), g = Real(h)

Remarks 2.5. Any one of three forms h, g, ω uniquely determines the other two, for
example, ω(u, v) = g(Ju, v) and g(u, v) = ω(u, Jv).

Remarks 2.6. Any almost complex manifold admits Hermitian metric. Choose an
arbitrary Riemannian metric g′, and define g(X,Y ) = g′(X,Y ) + g′(JX, JY ).

Proposition 2.7. The metric g is a Riemannian metric, and ω is a real 2-form of
type (1,1), i.e ω ∈ A1,1(X) ∩A2

X,R.

Definition 2.8. We say that the Hermitian metric h is Kähler if J is integrable,
and the 2-form ω is closed.

One has a characterization of Kähler metric in terms of connections on the
tangent bundles.

Definition 2.9. Let E → X be a differentiable real vector bundle, and C∞1 (X,E)
be the C∞ sections of the bundle ∧T ∗X ⊗ E = Hom(TX , E). A connection ∇ on
E is an R− linear map

∇ : C∞(E)→ C∞1 (X,E)

which satisfies the Leibniz rule: ∇(fσ) = df ⊗ σ + f∇σ.

Remarks 2.10. Similar to the exterior differential of forms, one can extend ∇
uniquely to C∞k (E)→ C∞k+1(X,E).

Two popular connections in complex geometry are the Levi-Civita connection on
the tangent bundle of a real manifold, and the Chern connection on holomorphic
vector bundles of a complex manifold. They are characterized by the following
propositions:

Proposition 2.11. Let (X, g) be a Riemannian manifold. There exists a unique
connection ∇ : C∞(TX) → A1(TX) on the tangent bundle TX satisfying the prop-
erties:
i) ∇ is compatible with g, i.e. d(g(χ, ψ)) = g(χ,∇ψ)+g(∇χ, ψ) for χ, ψ ∈ C∞(TX).
ii) ∇ is without torsion, i.e. it satisfies ∇χψ −∇ψχ = [χ, ψ]
This connection is called the Levi-Civita connection on (X, g).



SEMINAIRE DE M2 5

(See [3]: Chapter 2, section 8)

Proposition 2.12. Let E be a holomorphic vector bundle, and h a hermitian metric
on E. There exists a unique connection ∇ on E satisfying the following properties:
i) ∇ is compatible with h, i.e. d(h(χ, ψ)) = h(χ,∇ψ) + h(∇χ, ψ)
ii) ∇0,1 = ∂E
This connection is called the Chern connection of (E, h).

Remarks 2.13. In a holomorphic vector bundle E of rank k, the operator ∂E :
C∞(A0,q ⊗E)→ C∞(A0,q+1⊗E) is defined as follow. In a holomorphic trivializa-
tion of E, τU : E|U ∼= U × Ck, any section α can be written as (α1, ..., αk), where

αi are C∞ forms of type (0, q) on U . We then set ∂E(α)|U = (∂α1, ..., ∂αk). It is
well-defined because E is a holomorphic vector bundle.

Theorem 2.14. (Characterization of Kähler metric). The following properties are
equivalent:
i) The metric h is Kähler.
ii) The complex structure endomorphism J is flat for the Levi-Civita connection.
This means that it satisfies:

∇(Jχ) = J∇χ,∀χ ∈ A0(TX,R).

iii) The Chern connection on the holomorphic tangent bundle TX = T 1,0
X coincides

with the Levi-Civita connection on TX,R.

Proof. iii)→ ii) and ii) → i): From the definition of the bundles, and connections.
i)→ iii), use the proposition that if h is a Kähler metric then locally, it is isomorphic
to a constant metric up to the first order, i.e. in the neighborhood of every point x ∈
X, there exists holomorphic coordinates z1, z2, ..., zn such that in these coordinates
h = In + O(

∑
i |zi|2)

(See [5] Theorem 3.13, page 72) �

2.2. Kähler identities. Hodge Theory for compact Kähler manifolds.

2.2.1. Summary of Hodge Theory for Riemannian manifolds.
(Reference: [5], chapter II.5)
Let X be a compact, oriented Riemannian manifold. The Riemannian metric (−,−)
on X induces the metric (−,−) on Ak(X), and hence a L2 metric (−.−)L2 on the
space Ak(X) of C∞ differential forms:

(α, β)L2 =

∫
X

(α, β)V ol

where V ol is the volume form. In addition to the differential exterior d, by using
the L2 metric, one can define the following operators
1) The Hodge star operator

∗ : Ak(X) ∼= An−k(X),

characterized by (α, β)L2 =
∫
X
α ∧ ∗β.

2) The formal adjoint operator d∗ of d for the L2 metric:

d∗ : Ak(X)→ Ak−1(X)

It is characterized by (α, d∗β)L2 = (dα, β)L2 , and can also be defined by d∗ =
(−1)k ∗−1 d∗ on Ak(X).
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3) The Laplace-Beltrami operator ∆d = dd∗ + d∗d : Ak(X)→ Ak(X).

The Laplace-Beltrami operator can be shown to be elliptic, hence there is a
decomposition: Ak(X) = H k ⊕ Imd ⊕ Imd∗, where H k is the vector space of
∆d harmonic differential forms of degree k: α ∈ H k iff ∆dα = 0 iff dα = 0 and
d∗α = 0.

Corollary 2.15. Let H k be the vector space of ∆d- harmonic differential forms
of degree k. Then the natural map

H k → Hk(X,R)

which to α associates the class of the closed form α in Hk
DR(X,R) = Hk(X,R) is

an isomorphism. Similar when replacing R by C.

2.2.2. Hodge Theory for compact Kähler manifolds.
Let X be a compact Kähler manifold, and Ap,q be the space of differential forms of
bi-degree (p, q). In the case of complex manifolds, we have the following operators:
1) The exterior differential d can be written d = ∂ + ∂ where ∂ : Ap,q(X) →
Ap+1,q(X) and ∂ : Ap,q(X)→ Ap,q+1(X).

2)The operators ∂ and ∂̄ have formal adjoints ∂∗ and ∂
∗
, which can also be defined

by ∂∗ = − ∗ ∂∗ and ∂
∗

= − ∗ ∂∗.
3) The Lefschetz operator defined by taking exterior product with ω :

L : Ak(X)→ Ak+2(X) : α 7→ ω ∧ α
4) The Λ operator is a formal adjoint of L, which can also be defined by

Λ = (−1)k ∗ L∗
5) The Laplacian operators ∆d, ∆∂ , ∆∂̄ .

By the structure of Kähler manifolds, we have relationships between those op-
erators, called the Kähler identities:

Theorem 2.16. The operators L,Λ, ∂, ∂̄∗ satisfy

[Λ, ∂] = −i∂∗, [Λ, ∂] = i∂
∗
, [∂

∗
, L] = i∂, [∂∗, L] = −i∂.

Proof. The idea of the proof is to do calculation on local coordinates. See [5] Prop
6.5, page 139. �

The Kähler identities imply a strong relationship among the three Laplacian
operators ∆d,∆∂ and ∆∂̄ :

Corollary 2.17. Let (X,ω) be a Kähler manifold, and let ∆X ,∆∂ ,∆∂ be the Lapla-

cians associated respectively to the operators d, ∂, ∂. Then:

∆∂ = ∆∂ =
1

2
∆d

Remarks 2.18. The corollary implies that ∆d is bi-homogeneous: ∆d(A
p,q(X) ⊆

Ap,q(X)). Therefore, if α ∈ Ak(X) is harmonic then its components are also
harmonic. This implies the decomposition

H k(X) =
⊕
p+q=k

H p,q

where H p,q is the set of forms of type (p, q) which are harmonic for ∆d or ∆∂ .
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Corollary 2.19. Let X be a Kähler manifold. We have the following decomposition
for the de Rham cohomology groups with complex coefficients:

Hk(X,C) =
⊕
p+q=k

Hp,q(X)

where Hp,q(X) is the set of classes representable by a harmonic form of type (p, q)

Remarks 2.20. In fact, one can show that the decomposition does not depend on
the choice of the Kähler metric by showing that Hp,q = Kp,q where Kp,q is the
subspace consisting of de Rham cohomology classes which are representable by a
closed form of type (p, q).

3. Chern Weil Theory (References: [2, 6, 1, 4])

First, we give a construction of the Chern-Weil homomorphism. Given a vector
bundle E on a manifold X, one can construct a connection∇ on E, and calculate its
curvature. The curvature of a connection is a 2-form with coefficients in End(E).
One can use invariant polynomials to evaluate the curvature, and get certain closed
forms in the de Rham cohomology. These forms can be shown to be independent of
the connection chosen, hence become topological invariants of the vector bundles.
The Chern classes are defined by using certain kinds of invariant polynomials.

In the last part of the talk, we define the Ricci curvature tensor of a Riemannian
manifold. If X is a Kähler manifold, one can define the Ricci form which up to a
real constant is equal to the first Chern form of the anti-canonical line bundle K∗X .
It implies that the Ricci form in this case is a closed (1,1)- form, independent of
the Riemannian metric. It is thus a topological invariant of the complex manifold,
and depends only on the topology of X and the class of the complex structure J .

The exposition for Chern-Weil theory follows from [2, 6] using the language of
connections and vector bundles. The original (and a little more general) exposi-
tion was to use principal bundles, and connections for principal bundles (See the
appendix of [1]). The exposition for the Ricci form follows from [4] .

3.1. Chern-Weil theory.
Denote C∞(E) the C∞ sections of E, and C∞k (X,E) the C∞ sections of the bundle
∧kT ∗X ⊗ E. We have

C∞(E)⊗C C∞(∧kT ∗X) ∼= C∞k (X,E)

Definition 3.1. A (linear) connection ∇ on E is a C linear differential operator
∇ : C∞(E) → C∞1 (X,E) such that for any f ∈ C∞(X), s ∈ C∞(X,E), the
following Leibniz rule holds:

∇(fs) = (df)s+ f∇(s)

Remarks 3.2. One can always construct a connection on a complex vector bundle
by defining locally and glueing them using partition of unity.

Remarks 3.3. Moreover, one can canonically extend ∇ to a map:

∇ : C∞k → C∞k+1(E)

such that for any f ∈ ∧k(T ∗X), s ∈ C∞(E), we have:

∇(fs) = (df)s+ (−1)deg(f)f ∧∇(s)
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Remarks 3.4. The map ∇ and {C∞k (E)}k does not form not a complex, and the
obstruction is given by the notion of curvature.

Definition 3.5. The curvature R∇ of a connection ∇ is defined by

R∇ = ∇ ◦∇ : C∞(E)→ C∞2 (M,E)

Lemma 3.6. The curvature satisties:

R∇X,Y s = ∇X∇Y s−∇Y∇Xs−∇[X,Y ]s, X, Y ∈ TM, s ∈ C∞(E)

Lemma 3.7. Let α ∈ C∞k (X,E) then ∇2(α) = R∇ ∧ α.

Remarks 3.8. The curvature R∇ is C∞(X) linear, hence it might be thought of
as an element of C∞(End(E)) with coefficients in C∞(∧2T ∗X), where End(E) is
the vector bundle with fibre End(Ex, Ex). To get a form on the cohomology, we
want a map of bundle End(E)→ C, and it can be done using the idea of invariant
polynomials.

Definition 3.9. Let V be a vector space, and g = End(V ). An (ad)-invariant
symmetric k-linear form on g is a symmetric multilinear form S : g⊗g⊗ ....⊗g→ C
satisfying S(A1, A2, ..., Ak) = S(gA1g

−1, ....gAkg
−1) for A1, ..., Ak ∈ g and g ∈

GLn(C).

Remarks 3.10. To any such form, we can associate an invariant polynomial P (A) =
S(A,A, ..., A) satisfying P (gAg−1) = P (A). Then P is a polynomial with complex
coefficients, homogeneous of degree k, variables ai,j are the entries of the matrix A.
For example, the trace and the determinant of A are invariant polynomials. More
generally, let det(Id + A) =

∑
σk(A) where σk(A) are homogeneous parts of degree

k then σk(A) then σk(A) are examples of invariant polynomials.

Lemma 3.11. Let E
p−→ X be a vector bundle with fiber V, and let S be an invariant

symmetric multilinear form on End(V). Then S induces a multilinear bundle map:

SE : End(E)⊗ End(E)⊗ ....⊗ End(E)→ C

given in a frame f, by Sf (A1, ..., Ak) = S(Af1 , ..., A
f
k), where Afj is the element in

End(V ) defined by Aj ∈ End(E) and the frame f . The invariance of S ensures
that Sf is independent of the frame and hence SE is well-defined.

Theorem 3.12. (Chern-Weil) Let E
p−→ X be a vector bundle with fiber V, and

P an invariant polynomial on End(V ) of degree k, and ∇ a connection on E, with
curvature R∇. Then the 2k-form P (R∇) is closed, and moreover, the cohomology
class P (R∇) ∈ H2k(X,C) is independent of the choice of connection ∇.

Proof. To show P (R∇) is closed, use Bianchi’s identity: [∇, R∇] = 0 and the
following lemma:

Lemma 3.13. Let αj ∈ C∞pj (End(E)) and S an invariant symmetric multilinear
form of degree k. Denote by ej = p1 + ...+ pj−1. Then

d(S(α1, ..., αk)) =

k∑
j=1

S(α1, ...., (−1)ej∇αj , ..., αk)
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To show independence, take two connections ∇ and ∇′. Consider the curve
connecting the two ∇t = ∇ + t(∇′ − ∇) then ∇0 = ∇ and ∇1 = ∇′. In order to
show

P (R∇) = P (R∇
′
) + dβ

we will first show that
d

dt
P (R∇

t

) = dβt

then take β =
∫ 1

0
βtdt for the above.

(See [2, 1] for the calculation.)
�

Proposition 3.14. Let C[g] be the graded algebra of invariant polynomials. The
homomorphism:

C[g]→ (⊕Hk(X,C),∧), P → [P (R∇)]

is a ring homomorphism. It is called the Chern-Weil homomorphism.

In case E is a holomorphic vector bundle over a complex manifold M , the cur-
vature form of E, with respect to some Hermitian metric is not just a 2-form, but
is a (1,1) form. The Chern-Weil homomorphism takes the form :

C[g]k → Hk,k(X,C), P → [P (R∇)]

3.2. Chern classes. Let E
π−→ X be a complex vector bundle of rank r, and let

σk(A) be invariant polynomials in the Remark 3.10. The Chern forms of a vector
bundle of rank r endowed with a connection are defined by

ck(E,∇) = σk(
i

2π
R∇) ∈ A2k

C (X)

and the k-th Chern class is the induced cohomology class ck(E) = [ck(E,∇)] ∈
H2k(M,C).

3.2.1. The Ricci form as curvature form on the canonical bundle. (Reference: [4])
Let (X, J, h) be a Kähler manifold of complex dimension n. Let g = Real(h).
The manifold (X, g, J) is then a Riemannian manifold and has the Levi-Civita
connection ∇. Let R be its curvature tensor then R can be given by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, X, Y, Z ∈ C∞(TX,R)

This defines a tensor of type (3, 1). The Ricci tensor of (X, g) is a 2-form defined
by

Ric(X,Y ) = Tr(V → R(V,X)Y )

On a Kähler manifold, one can show that Ric(X,Y ) = Ric(JX, JY ) hence as in
the case of a Hermitian metric (See Prop 2.7), Ric(JX, Y ) is skew symmetric in X
and Y .

Definition 3.15. The Ricci form ρ of a Kähler manifold is defined by

ρ(X,Y ) = Ric(JX, Y ), ∀X,Y ∈ TX
On the manifold X, we can form the n-th exterior power of the holomorphic

cotangent bundle. This is a holomorphic vector bundle of rank 1, denoted by KX ,
and is called the canonical bundle of X:

KX = ∧nA1,0(X) = An,0(X)
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In local coordinates, a trivialisation of KX is given by dz1 ∧ dz2 ∧ .... ∧ dzn, and
the transition functions are given by Jacobian determinants. A Hermitian metric
on the anti-canonical line bundle K∗X is given by a nowhere non vanishing section

of KX ⊗ KX = An,n(X). On a Kähler manifold, the volume form ωn

n! is a non-
vanishing section of An,n(X), and it can serve as a Hermitian metric on K∗X . By
Prop 2.12, there is the Chern connection on KX , and one can define its curvature
r∗ and the first Chern class c1(X) = c1(K∗X).

Proposition 3.16. The curvature of the anti-canonical bundle (with its induced
metric) is given by r∗ = −iρ. In particular, the Ricci form is closed, and its
cohomology class is independent of the Kähler metric: [ρ] = 2πc1(X).
(See [4] Prop 17.4, page 120)

References

[1] Shiing-shen Chern. Complex manifolds without potential theory : with an appendix on the
geometry of characteristic classes. Springer-Verlag, New York, 1979.

[2] Daniel Huybrechts. Complex geometry an introduction. Springer, Berlin New York, 2005.

[3] John Willard Milnor. Morse theory. Number 51. Princeton university press, 1963.
[4] Andrei Moroianu. Lectures on Kähler geometry. Cambridge University Press, Cambridge, 2007.

[5] Claire Voisin. Hodge theory and complex algebraic geometry. Cambridge University Press,

Cambridge, 2007.
[6] R. O. Wells. Differential analysis on complex manifolds. Springer-Verlag, New York, 2008.


