Licence 3 2013–2014

Probabilité et statistique pour l'ingénieur

Examen terminal

Documents, notes de cours ou de TD, téléphones portables, calculatrices sont interdits. Justifiez toutes vos réponses.

Durée: 2h

Question de cours

- Rappeler la définition d'une loi de Poisson.
- Soient X et Y deux variables aléatoires indépendantes. On suppose que X suit une loi de Poisson de paramètre λ et Y une loi de Poisson de paramètre μ . Quelle est la loi de la variable aléatoire X+Y? Justifier votre réponse.
- Rappeler et redémontrer l'inégalité de Markov.
- Enoncer proprement la loi forte des grands nombres.
- Enoncer proprement le théorème central limite.

Exercice 1

Un fumeur veut arrêter de fumer. Il fume le jour n avec probabilité $\frac{1}{2}$ s'il a fumé la veille, et avec probabilité $\frac{1}{4}$ s'il n'a pas fumé la veille. On note p_n la probabilité qu'il fume le jour n.

- Montrer que $p_{n+1} = \frac{1}{4}p_n + \frac{1}{4}$ pour tout $n \ge 1$.
- En déduire une formule explicite pour p_n en fonction de n et p_1 .
- Est-ce que p_n converge? Si oui, quelle est sa limite?

Exercice 2

Soit $X_1,...,X_n$ n variables aléatoires indépendantes et identiquement distribuées. On suppose X_1 est à densité de densité ρ et de fonction de répartition F. On note $M = \max(X_1,...,X_n)$ et $m = \min(X_1,...,X_n)$.

- Calculer la fonction de répartition de la variable aléatoire $M = \max(X_1, ..., X_n)$.
- Calculer la fonction de répartition de la variable aléatoire $m = \min(X_1, ..., X_n)$.
- Est-ce que M et m sont à densité? Si oui, la donner.
- Calculer l'espérance de M lorsque X_1 suit une loi uniforme sur [0,1].
- Calculer l'espérance de m lorsque X_1 suit une loi uniforme sur [0,1].

Exercice 3

- 1. Rappeler une définition de la convergence en loi.
- 2. Soit $\lambda > 0$. Une loi de Laplace de paramètre λ a pour densité $\frac{\lambda}{2}e^{-\lambda|x|}$. Montrer que la fonction caractéristique d'une loi de Laplace de paramètre λ est $\xi \mapsto \frac{1}{1+\frac{\xi^2}{\lambda^2}}$.
- 3. Soit $(\lambda_n)_{n\in\mathbb{N}}$ une suite de réels tendant vers $+\infty$. Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoire de loi de Laplace de paramètre $(\lambda_n)_{n\in\mathbb{N}}$. Montrer que $(X_n)_{n\in\mathbb{N}}$ converge en loi vers 0.
- 4. La suite $(X_n)_{n\in\mathbb{N}}$ converge-t-elle en probabilité vers 0?

Exercice 4

Soit X et Y deux variables aléatoires réelles indépendantes et de même loi. On les suppose d'espérance nulle et de variance 1. On pose Z=X+Y. On suppose que Z suit une loi normale.

- 1. Quels sont les paramètres de la loi de \mathbb{Z} ?
- 2. Exprimer la fonction caractéristique de Z.
- 3. En déduire la fonction caractéristique de X.
- 4. En déduire la loi suivie par X et Y.
- 5. Pouvez-vous énoncer une réciproque au résultat que vous venez de montrer? Est-elle vraie?

On rappelle que la fonction caractéristique d'une loi normale d'espérance m et de variance σ^2 est la fonction $\varphi(t) = e^{imt} e^{-\frac{\sigma^2 t^2}{2}}$.