Devoir maison

Fonctions: injectivité, surjectivité

- 1. Question de cours.
 - (a) Qu'est-ce qu'une fonction injective? Surjective?
 - (b) Donner un exemple de fonction $f: \mathbb{R}_+ \to \mathbb{R}_+$ qui soit injective mais pas surjective.
 - (c) Donner un exemple de fonction $g: \mathbb{R} \to \mathbb{R}$ qui soit surjective mais pas injective.
- 2. Les fonctions suivantes sont-elles des bijections ? Si oui, donner leur inverse.
 - (a) La fonction:

$$f: \left\{ \begin{array}{ccc} \mathbb{R} & \to & [-1,1] \\ x & \mapsto & \sin(x) \end{array} \right. ;$$

(b) La fonction 1:

$$g: \left\{ \begin{array}{ccc} \{0,1,2,3,4\} & \rightarrow & \{0,1,2,3,4\} \\ x & \mapsto & 2x \, [5] \end{array} \right. .$$

Opérations sur les ensembles

- 3. Soit Ω un ensemble, et soient A et B des parties de Ω . Montrer par double inclusion que $A=(A\cap B)\cup (A-B)$.
- 4. Soit Ω un ensemble, et soient A, B et C des parties de Ω . Posons $D(A, B, C) := (A \cap B) \cup (B \cap C) \cup (A \cap C)$
 - (a) Tracer le diagramme de Venn correspondant à D(A, B, C).
 - (b) En utilisant un tableau, montrer que $2.1_{D(A,B,C)} = 1_A + 1_B + 1_C 1_{A\Delta B\Delta C}$.
 - (c) En déduire que :

$$|D(A, B, C)| \le \frac{|A| + |B| + |C|}{2}.$$

Dénombrement

- 5. Question de cours. Soient A et B deux ensembles finis tels que |A| = 4 et |B| = 6.
 - (a) Combien y a-t-il de parties à deux éléments de A?
 - (b) Combien y a-t-il de fonctions de A dans B? Parmi elles, combien sont des injections, et combien des surjections?
- 6. Calculer $\binom{5}{n}$ pour $n \in \{0, 1, \dots, 5\}$.
- 7. Combien les mots suivants ont-ils d'anagrammes : COMPTER, CUBE, DODECAEDRE ? Parmi les anagrammes de DODECAEDRE, combien commencent par la lettre C, et combien par la lettre D ?

^{1.} On rappelle que si k et n sont des entiers, $n \neq 0$, alors k [n] désigne le reste dans la division Euclidienne de k par n.