PCSO 2020-2021 Géométrie S1

Devoir surveillé n° 2 de géométrie

7 janvier 2021 – Durée : 2 heures

Les calculatrices, documents et téléphones portables sont interdits.

Pour les figures, des dessins à main levée suffisent.

Attention: ce sujet fait 2 pages.

Exercice 1. Soit (O, \vec{i}, \vec{j}) un repère du plan. On considère les vecteurs $\vec{v} \begin{pmatrix} 2 \\ -5 \end{pmatrix}$, $\vec{w} \begin{pmatrix} -1 \\ 3 \end{pmatrix}$, $\vec{c} \begin{pmatrix} 1, 5 \\ -4, 5 \end{pmatrix}$ et $\vec{d} \begin{pmatrix} 3 \\ -5 \end{pmatrix}$.

- 1. Dessinez les vecteurs \vec{v} , \vec{w} et $\vec{c} + \vec{d}$. Votre dessin doit rendre apparente la construction du vecteur $\vec{c} + \vec{d}$ à partir des vecteurs \vec{c} et \vec{d} .
- 2. Calculez les coordonnées du vecteur $-\vec{v} + 2\vec{w}$.
- 3. Les vecteurs \vec{v} et \vec{w} sont-ils colinéaires? Et les vecteurs \vec{c} et \vec{w} ?
- 4. Calculez les coordonnées du vecteur \vec{d} dans la base (\vec{v}, \vec{w}) .

Exercice 2. Dans un repère orthonormé, on considère les points $A \begin{pmatrix} -3 \\ 5 \end{pmatrix}$, $B \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ et $C \begin{pmatrix} 3 \\ 4 \end{pmatrix}$.

- 1. Déterminez une équation cartésienne de la droite Δ passant par C et pente 2/3.
- 2. Déterminez une équation cartésienne de la droite (AB).

Exercice 3. Dans le plan, soient \mathcal{D}_1 la droite d'équation cartésienne 4x - y + 5 = 0 et \mathcal{D}_2 la droite d'équation cartésienne 3x - 2y + 15 = 0.

- 1. Trouvez un vecteur directeur de \mathcal{D}_1 et un vecteur directeur de \mathcal{D}_2 .
- 2. Soient A(-2; -3) et B(-3; 3) deux points du plan. Montrez que $A \in \mathcal{D}_1$ et $B \in \mathcal{D}_2$.
- 3. Dessinez les droites \mathcal{D}_1 et \mathcal{D}_2 . Expliquez votre construction.
- 4. Les droites \mathcal{D}_1 et \mathcal{D}_2 sont-elles parallèles?
- 5. Si c'est possible, déterminez les coordonnées du point d'intersection de \mathcal{D}_1 et \mathcal{D}_2 .

Exercice 4. Dans un repère orthonormé, on considère les points $D \begin{pmatrix} -3 \\ -3 \end{pmatrix}$, $E \begin{pmatrix} 3 \\ -1 \end{pmatrix}$ et $F \begin{pmatrix} -3 \\ 7 \end{pmatrix}$. Soit I le milieu du segment [DE].

- 1. Calculez les coordonnées du point I. Faites un dessin.
- 2. Le triangle DIF est-il isocèle? Équilatéral? Rectangle?

Exercice 5. Le but de cet exercice est de construire la bissectrice d'un angle. On considère les points du plan $A \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $B \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ et $C \begin{pmatrix} 5 \\ -2 \end{pmatrix}$.

- 1. Calculez les distances \overrightarrow{AB} et AC.
- 2. Soit M(x;y) un point du plan. Montrez que, si M appartient à la bissectrice de l'angle \widehat{BAC} , alors

$$\cos(\widehat{BAM}) = \cos(\widehat{CAM}).$$

3. En utilisant le produit scalaire, montrez que $\cos(\widehat{BAM}) = \frac{y-1}{AM}$ et $\cos(\widehat{CAM}) = \frac{4x-3y-1}{5AM}$.

- 4. Déduisez-en une équation de la bissectrice de l'angle \widehat{BAC} (il n'est pas nécessaire d'avoir résolu les questions précédentes pour répondre à celle-ci).
- 5. Trouvez un point (différent de A) sur cette bissectrice, puis tracez le triangle ABC et cette bissectrice.

 $\overline{Bar\`eme\ indicatif: 4-3-5-2,5-5,5}$