Géométrie (2h)

Exercice 1. Soit \mathbb{R}^3 muni de ses coordonnées (x,y,z). Soient L=(x=y=0) l'axe vertical et $\Gamma=(z=0,x^2+y^2=1),\ \Gamma'=(z=0,(x-2)^2+y^2=1)$ deux cercles horizontaux.

- a) Calculer $\pi_1(\mathbf{R}^3 \setminus L)$.
- b) Soient j et j' les injections canoniques de Γ et Γ' dans $\mathbf{R}^3 \setminus L$. Calculer $j_*(\pi_1(\Gamma))$ et $j'_*(\pi_1(\Gamma'))$.
 - c) Existe-t-il un homéomorphisme f de \mathbf{R}^3 tel que $f(\Gamma) = \Gamma'$ et f(L) = L?

Exercice 2. Soit la bouteille de Klein $K = Q/_{\mathcal{R}}$ avec $Q = [0,1] \times [0,1]$ et \mathcal{R} la relation d'équivalence $(x,0) \sim (x,1)$ et $(0,1-y) \sim (1,y)$ $(0 \le x,y \le 1)$.

a) Montrer que $\pi_1(K)$ a pour présentation $\langle a, b | aba^{-1}b \rangle$ (écrire $K = U_1 \cup U_2$ avec $U_1 = Q^*/_{\mathcal{R}}$ et $U_2 = \overset{\circ}{Q}$, où Q^* est le carré privé de son centre).

Soit G le sous-groupe du groupe des homéomorphismes de \mathbb{R}^2 engendré par s et t où s(x,y)=(x+1,-y) et t(x,y)=(x,y+1).

- b) Montrer que $s \circ t = t^{-1} \circ s$. En déduire que tous les éléments de G s'écrivent $s^n \circ t^m$ avec n, m dans \mathbf{Z} .
 - c) Montrer que G agit proprement et librement sur \mathbf{R}^2 .
- d) Soit $p: \mathbf{R}^2 \to \mathbf{R}^2/G$. Montrer que $p|_Q$ est surjective. En déduire que K s'identifie à \mathbf{R}^2/G .
 - e) Montrer que $\pi_1(K)$ est isomorphe à G.

Exercice 3. Soit $P = S^2/_{x \sim -x}$ le plan projectif. On note [N] = [S] la classe du pôle Nord (c'est aussi celle du pôle Sud) dans P. On pose $X = P_1 \coprod P_2/_{[N_1] \sim [N_2]}$ l'espace obtenu en prenant deux copies de P et en identifiant leurs classes du pôle Nord.

- a) Quel est le revêtement universel de P ? Calculer $\pi_1(P)$.
- b) Montrer que $\pi_1(X) = \mathbf{Z}/_{2\mathbf{Z}} * \mathbf{Z}/_{2\mathbf{Z}}$.
- c) On note a et b les générateurs des deux copies de $\mathbf{Z}/_{2\mathbf{Z}}$. Décrire les éléments de $\mathbf{Z}/_{2\mathbf{Z}}*\mathbf{Z}/_{2\mathbf{Z}}$.
- d) Soit $\tilde{X} = \coprod_{n \in \mathbf{Z}} (S^2)_n / N_n \sim S_{n+1}$ l'espace obtenu en recollant une infinité de copies de la sphère par leurs pôles comme indiqué. Montrer que \tilde{X} est simplement connexe. Expliciter la projection de \tilde{X} sur X qui en fait le revêtement universel.
- e) Dessiner le revêtement connexe de X correspondant au sous-groupe engendré par ab dans $\pi_1(X)$. Expliciter sa projection sur X.