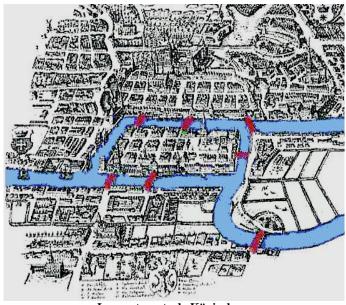
Introduction à la théorie des graphes - exercices divers

Existence de graphes, modélisation, isomorphismes

- 1. Dessiner le graphes suivant : les sommets sont les faces d'un cube, deux sommets sont reliés si les faces correspondantes ont une arête du cube en commun.
- 2. (a) Dans un groupe de 20 enfants, est-il possible que 7 d'entre eux aient chacun exactement 3 amis, 9 d'entre eux en aient exactement 4, et 4 d'entre eux exactement 5 ?
 - (b) Montrer que dans un graphe, le nombre de sommets de degré impair est toujours pair.

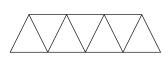
Graphes eulériens et hamiltoniens

3. En 1736, la ville de Königsberg (maintenant Kaliningrad), sise sur la Pregel, se présentait ainsi :

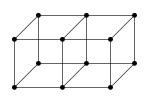


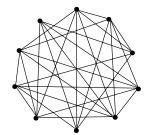
Les sept ponts de Königsberg

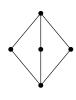
- (a) Est-il possible de parcourir la ville de telle sorte à passer une et une seule fois sur chaque pont ?
- (b) Modéliser le problème à l'aide d'un graphe.
- 4. On souhaite tracer les figures suivantes en ne passant qu'une seule fois sur chaque trait. Combien de fois au minimum faut-il lever le crayon pour chacune des figures ?



- 5. On dispose d'un fil de fer de 120 cm. Est-il possible de fabriquer le squelette d'un cube de 10 cm d'arête sans couper le fil ? Sinon, combien de fois au minimum faut-il couper le fil de fer pour fabriquer ce squelette ?
- 6. Dans chacun des graphes suivants, déterminer s'il existe un cycle hamiltonien. On ne demande pas nécessairement de donner un cycle s'il existe.







Matrices d'adjacence

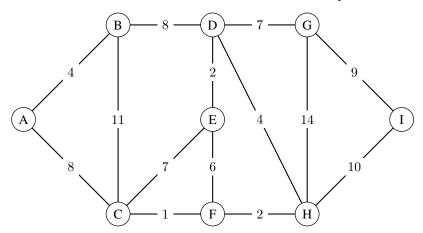
- 7. Dans une mare, 3 nénufars (que nous appelerons A, B et C) sont disposés en triangle. Une grenouille est assise sur le nénufar A. Elle se met à sauter d'un nénufar à l'autre.
 - (a) Combien a-t-elle de façons différentes d'arriver sur le nénufar B après 1 saut ? Après 2 sauts ? Après 3 sauts ?
 - (b) Combien a-t-elle de façons différentes d'arriver sur le nénufar A après 1 saut ? Après 2 sauts ? Après 3 sauts ?
 - (c) On note a_n le nombre de façons d'arriver sur le nénufar A après n sauts, et b_n le nombre de façons d'arriver sur le nénufar B après n sauts. Trouver une relation de récurrence entre (a_{n+1},b_{n+1}) et (a_n,b_n) .
- 8. On se donne les 4 lettres f, a, c et e. On veut former des mots à partir de cet alphabet.
 - (a) Combien y a-t-il de mots de longueur 5 ?

On impose maintenant les deux règles suivantes : deux lettres identiques ne se suivent jamais, et deux consonnes ne se suivent jamais.

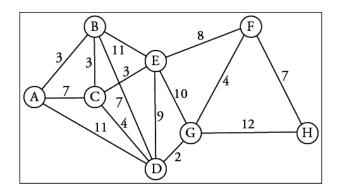
- (b) Combien y a-t-il de mots de longueur 5, commençant par f et finissant par e?
- (c) Combien y a-t-il de mots de longueur 5 commençant par f?
- (d) Combien y a-t-il de mots de longueur 5 au total?
- (e) Quelle proportion de ces mots n'a pas de e?

Algorithme de Dijkstra

9. Dans le graphe pondéré ci-dessous, trouver la distance du sommet I, et expliciter un chemin qui la réalise.



- 10. Dans le graphe ci-dessous, chaque arête représente un chemin. La longueur de chaque chemin (en mètres) est indiquée.
 - (a) Quel type de graphe est-ce?
 - (b) Quelle est le chemin le plus court de A à H ? Quelle est sa longueur ? On utilisera l'algorithme de Dijkstra pour répondre à cette question.



Colorations de graphes

- 11. On veut colorier la carte de l'Amérique du Sud ci-dessous, de telle sorte que deux pays adjacents soient de couleurs différentes, et en utilisant le moins de couleurs possible.
 - (a) Combien de couleurs faut-il?
 - (b) Modéliser le problème à l'aide d'un graphe.

12. Une université doit organiser des examens. On suppose qu'il y a 7 épreuves de même durée à planifier, correspondant aux cours numérotés de 1 à 7, et que les paires de cours suivantes ont des étudiants en commun : 1 et 2, 1 et 3, 1 et 4, 1 et 7, 2 et 3, 2 et 4, 2 et 5, 2 et 7, 3 et 4, 3 et 6, 3 et 7, 4 et 5, 4 et 6, 5 et 6, 5 et 7, 6 et 7. Comment organiser ces épreuves de façon à ce qu'aucun étudiant n'ait à passer deux épreuves en même temps, et cela sur une durée minimale ?