Publications and preprints
[this research
is/was supported by the following grants
ANR-09-JCJC-0099-01 / 2009-2013
ANR-13-BS01-0007-01, ANR-13-JS01-0006 /
2013-2017
ERC Consolidator grant IPFLOW
/ 2017-2023 ]
Recent preprints
Conformal field theory and probability:
C. Guillarmou, R. Rhodes, B. Wu
Conformal Bootstrap for surfaces with boundary in Liouville CFT. Part 1: Segal axioms
,
Preprint [arXiv:2408.13133]
C. Guillarmou, T. Gunaratnam, V.Vargas,
2d Sinh-Gordon model on the infinite cylinder
,
Preprint [arXiv:2405.04076]
C. Guillarmou, A. Kupiainen, R. Rhodes,
Review on the probabilistic construction and
conformal bootstrap in Liouville theory
,
Preprint [arXiv:2403.12780]
G. Baverez, C. Guillarmou, A. Kupiainen, R. Rhodes,
Semigroup of annuli in Liouville Theory
,
Preprint [arXiv:2403.10914]
C. Guillarmou, A. Kupiainen, R. Rhodes,
Compactified Imaginary Liouville Theory
,
Preprint [arXiv:2310.18226]
G. Baverez, C. Guillarmou, A. Kupiainen, R. Rhodes, V. Vargas,
The Virasoro structure and the scattering matrix for Liouville conformal field theory
,
Probability and Math. Physics [arXiv:2204.02745]
C. Guillarmou, A. Kupiainen, R. Rhodes, V. Vargas,
Segal axioms and bootstrap for Liouville Theory
,
preprint [arXiv:2112.14859]
C. Guillarmou, A. Kupiainen, R. Rhodes, V. Vargas,
Conformal bootstrap in Liouville Theory,
Acta Mathematica, to appear. [arXiv:2005.11530].
The article by Quanta Magazine and the Video on our work
Rigidity and inverse problems:
C. Guillarmou, M. Mazzucchelli,
An introduction to geometric inverse problems
,
Book, preliminary version (comments welcome)
C. Guillarmou, T. Lefeuvre, G. Paternain,
Marked length spectrum rigidity for Anosov surfaces
,
Duke Math J, to appear. [arXiv:2303.12007]
M. Cekic, C. Guillarmou, T. Lefeuvre,
Local lens rigidity for manifolds of Anosov type
,
Analysis and PDE, to appear [arXiv:2204.02476]
Y. Guedes Bonthonneau, C. Guillarmou,
T. Weich,
SRB measures for Anosov actions,
Journal of Differential Geometry [arXiv:2103.12127]
Y. Guedes Bonthonneau, C. Guillarmou, J. Hilgert,
T. Weich,
Ruelle-Taylor resonances of Anosov actions
Journal of the EMS, to appear. [arXiv:2007.14275]
Published papers organized by theme :
Quantum resonances and scattering theory in hyperbolic geometry
C. Guillarmou, Resonances sur les
varietes asymptotiquement hyperboliques.
2004. PhD thesis.
C. Guillarmou, Meromorphic
properties of the resolvent on asymptotically hyperbolic manifolds.
Duke Math. Journal 129 (2005),
no. 1.,
1-37. [Arxiv math.SP/0311424].
C. Guillarmou, Absence
of
resonance near the critical line on asymptotically hyperbolic manifolds.
Asymptotic Analysis 42 (2005),
no. 1-2, 105-121. [Arxiv math.SP/0406496].
C. Guillarmou, Resonances
and scattering poles on asymptotically hyperbolic manifolds.
Math. Research Letters 12
(2005), no. 1, 103-119. [Arxiv math.DG/0403545].
C. Guillarmou, Resonances on
some geometrically finite hyperbolic manifolds.
Communications. in Partial Differential Equations 31
(2006), 445,467. [Arxiv math.SP/0412064].
C. Guillarmou, F. Naud, Wave 0-trace and
length spectrum on convex co-compact hyperbolic manifolds,
Communications in Analysis and Geometry 14
(2006), no 5, 945-967. [Arxiv math.DG/0606223]
C. Guillarmou, Scattering on
geometrically finite hyperbolic quotients with rational cusps.
Cubo Journal (special issue for the Proceedings of
the second symposium in Spectral Theory and Scattering) (2009), 33
pages.
C. Guillarmou, Generalized Krein
formula, determinants and Selberg zeta function in even dimension.
American Journal of Math. 131
(2009), no 5. [Arxiv math.SP/0512173] .
C. Guillarmou, A. Sa Barreto, Scattering
and inverse scattering on ACH manifolds,
J. Reine Angew. Math. 622
(2008), 1-55. [Arxiv math.AP/0605538]
C. Guillarmou, F. Naud, Wave decay on
convex co-compact hyperbolic manifolds.
Comm. Math. Physics. 287, (2009),
no 2, 489-511.[arXiv:0802.1345]
C. Guillarmou, S. Moroianu, J. Park, Eta invariant
and Selberg zeta function of odd type over convex co-compact hyperbolic
manifolds.
Advances in Math.
225 (2010),
no 5, 2464-2516.
[arXiv:0901.4082].
C. Guillarmou, R. Mazzeo, Resolvent of the Laplacian on
geometrically finite
hyperbolic manifolds
Inventiones Math 187 (2012) no 1, 99-144.
[arXiv: 1002.2165].
C. Guillarmou, A. Hassell, K. Krupchyk
Eigenvalue bounds for non-self-adjoint Schrodinger operators with non-trapping metrics,
Analysis and PDE 13(2020), no 6, 1633-1670. DOI 10.2140/apde.2020.13.1633.[arXiv:1709.09759]
R. Graham, C. Guillarmou, P. Stefanov,
G. Uhlmann, X-ray transform and boundary rigidity for
asymptotically hyperbolic manifolds.
Ann. Inst. Fourier, 69 (2019), no. 7, 2857-2919.
Past, Present and Future an homage to Marcel Berger. [arXiv:1709.05053]
C.
Guillarmou, M. Salo, L. Tzou, The linearized Calderon problem on complex
manifolds
Acta Math Sinica, English Series, 35 (2019), no 6 1043-1056.
Special volume in honour of Carlos Kenig. [arXiv:1805.00752]
C.
Guillarmou, T. Lefeuvre, The marked length spectrum of Anosov manifolds
Annals of Math 190 (2019), no 1., 321-344. [arXiv:1806.04218]
C. Guillarmou, M. Mazzucchelli, L. Tzou,
Boundary and
lens rigidity for non-convex manifolds,
American J. Math. . 143 (2021), no 2, 533--575. [arXiv:1711.10059]
C. Guillarmou, G. Knieper,
T. Lefeuvre, Geodesic stretch, pressure metric and
marked length spectrum rigidity,
Ergodic Theory and Dynamical Systems, special volume in memory of Anatole Katok, to appear. [arXiv:1909.08666]
C. Guillarmou, M. Lassas,
L. Tzou, X-ray transform in
asymptotically conic spaces,
International Mathematics Research Notices, (2020), rnaa286.
[arXiv:1910.09631]
C. Guillarmou, M.
Mazzucchelli, L. Tzou, Asymptotically Euclidean metrics without
conjugate points are flat,
Journal of Geometric Analysis 33 (2023) no 37 (2023).[arXiv:1909.01488]
Y. Guedes Bonthonneau, C. Guillarmou, M. Jezequel,
Scattering rigidity for analytic metrics
,
Cambridge Journal of Math. 12 (2024), no 1, 165--222 [arXiv:2201.02100]
V. Arnaiz, C. Guillarmou,
Stability estimates in inverse problems for the Schrodinger and wave equations with trapping
,
Rev. Mat. Iberoam. 39 (2023), no. 2, pp. 495--538. [arXiv:2106.11167]
Hyperbolic dynamics and Ruelle resonances:
N.V. Dang, C.
Guillarmou, G. Riviere, S. Shen, Fried Conjecture in small dimensions,
Inventiones Math. 220 (2020), 525-579. [arXiv:1807.01189]
C.
Guillarmou, J. Hilgert, T. Weich, High
frequency limits for invariant Ruelle densities
Annales Henri Lebesgue, Volume 4 (2021) , pp. 81-119. [arXiv:1803.06717]
C. Guillarmou, B. Kuster,
Spectral theory of the frame flow on hyperbolic 3-manifolds (with an appendix by Charles Hadfield),
Annales Henri Poincare 22 (2021), 3565--3617. [arXiv:2005.08387]
M. Cekic, C. Guillarmou,
First band of Ruelle resonances for contact Anosov flows in dimension 3,
Comm. Math. Phys. 386 (2021), 1289--1318
[arXiv:2011.05959]
C. Guillarmou,
T. de Poyferré, with an Appendix by Y. Guedes Bonthonneau
A paradifferential approach for hyperbolic dynamical systems and applications,
Tunisian Journal of Math 4 (2022), No. 4, 673--718. [arXiv:2103.15397]
C.
Guillarmou, R. Rhodes, V. Vargas, Polyakov's formulation of 2d bosonic
string theory.
Publications mathematiques de l'IHES,130
(2019), 11-185. [arXiv:1607.08467]
Proceedings, Survey, and others:
Scattering
for the geodesic flow on surfaces with boundary, (2015),
Mini course in Montreal.
Rigidités spectrales: un bref état de l'art, (2021),
Article for la Gazette des mathématiciens (SMF)
Books
Operateurs
géometriques, invariants conformes et variétés asymptotiquement
hyperboliques. Joint with Zindine
Djadli and Marc
Herzlich.
Panorama et Synthèse SMF, (2008).
An Introduction to Geometric Inverse Problems, joint with M. Mazzucchelli.