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Abstract

This dissertation covers the work conducted by the author mostly as “mâıtresse de conférences”
at the Laboratoire de Probabilités, Statistique & Modélisation (LPSM) of Sorbonne Université since
2016. During this period, the author strengthened her contributions to the compressed sensing
community and investigated new fields of research that may be summarized under the following
labels “powerful methods in supervised learning” and “missing data in machine learning”. This
report is not meant to present an exhaustive description of the results developed by the author,
but rather a synthetic view of her main contributions. The interested reader may consult the cited
articles for further details and the precise mathematical formalism of the topics presented there.
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jadis. Je suis ravie de le compter encore aujourd’hui comme membre interpolateur des comités qui
ponctuent ma vie académique. Je remercie également Gersende Fort, spécialiste et référence des
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insu, la diaspora audoise dans le 5ème arrondissement, qui revisite Glivenko-Cantelli à l’envi, et
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5
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et empressé.
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Introduction

This manuscript describes the research contributions and developments that I have carried out since
obtaining my Ph.D.

Scientific background

After engineering studies, I conducted my PhD work (2012-2015) at the Toulouse Institute of Math-
ematics (IMT) under the supervision of Jérémie Bigot and Pierre Weiss. Motivated by applications
in MRI imaging, the aim was to study a theory of compressed acquisition, area of applied mathe-
matics opened by Emmanuel Candès and David Donoho, that would better capture the mechanisms
at work in practice (block constrained acquisition in particular).

To celebrate my PhD, I spent two weeks in Saint-Flour, a country of cheese which, if it is a
July vacationer, can only be oozing, but also and above all, a country of high-level mathematics.
I followed with assiduity and pleasure the courses, and in particular the one given by Sara van de
Geer that year. Her lecture actually inspired a whole article reported later, written with Yohann
de Castro (Université d’Orsay) and Joseph Salmon (Télécom Paris), who I met during my evening
revisions in Saint-Flour, and with whom I still collaborate for one, and probably again one day for
the other.

For personal reasons, I had to give up the post-doctorate that was planned under the direction
of Ben Adcock (Simon Fraser University), thus preventing me from singing Véronique Sanson at the
top of my lungs on a Pacific port. So I took in extremis a full time position as an ATER position
(teaching and research assistant position including about 180h of teaching) at INSA Toulouse - I
would like to thank the Toulouse team who helped me in the emergency to find a solution and
also for their benevolence which facilitated among other things the absorption of the teaching load.
During the ATER(moiement), I therefore worked with the aforementioned Yohann de Castro and
Joseph Salmon on the themes of super-resolution (Boyer et al., 2017), conjugating an approach
studied by Sara van de Geer and a theme also dear to Emmanuel Candès.

Pushed in large part by the director of the Toulouse mathematics doctoral school, Jean-Michel
Roquejoffre, I participated in my first MCF application campaign in 2016. I had the pleasure of
joining the LSTA, which later became the LPSM, within the Pierre and Marie Curie University,
which later became Sorbonne University. I found there a welcoming and stimulating team. I
collaborated with Maxime Sangnier (Fouillen et al., 2022) and Antoine Godichon-Baggioni (Boyer
and Godichon-Baggioni, 2020).

I was also able to visit Ben Adcock (Simon Fraser University) at last during a two-month research
visit to Canada in 2017. We worked in collaboration with Simone Brugiapaglia (SFU), to obtain
“optimal” reconstruction bounds for structured compressed acquisition (Adcock et al., 2021).
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From 2017 to 2020, I was an associate member of the mathematics department of the Ecole
Normale Supérieure, rue d’Ulm. I had the opportunity to interact with exceptionally talented
students, among whom one will soon start his thesis under my co-supervision.

I also took advantage of the richness of the Parisian academic world and of my roots in Toulouse
to pursue research projects related to inverse problems involving convex regularizations. I thus col-
laborated (again) with Yohann de Castro (Orsay), Vincent Duval (Inria Paris), Antonin Chambolle
(Ecole Polytechnique), Frédéric de Gournay (University of Toulouse III), Pierre Weiss (CNRS,
Toulouse), Jonas Kahn (CNRS, Toulouse) and Maximilian Marz (TU Berlin) concerning the pa-
pers Boyer et al. (2019b); März et al. (2020). On this occasion, we realized that Francis Bach had
already asked himself similar questions, almost 10 years earlier, and had answered them exhaustively
in his book Bach et al. (2013).

Through my teaching and my responsibilities (direction of the Master 2 of Statistics of SU), I
have progressively oriented my research towards statistics and machine learning.

From adventure to adventure, I met Julie Josse (Ecole Polytechnique) with whom I co-supervised
Aude Sportisse’s thesis from 2018 to 2021. We worked on the statistical and methodological aspects
of the missing data problem (Sportisse et al., 2020a,b,c; Descloux et al., 2022; Sportisse et al., 2021).
Since 2020, I co-supervise with Erwan Scornet (Ecole Polytechnique) the thesis of Ludovic Arnould
studying the connections between neural networks and tree ensemble methods (Arnould et al., 2021;
Lutz et al., 2022; Arnould et al., 2022). Since 2021, Aymeric Dieuleveut (Ecole Polytechnique)3,
Erwan Scornet and myself are supervising Alexis Ayme’s thesis in machine learning with missing
data (Ayme et al., 2022). I also have had the opportunity to work with a postdoc, Kimia Nadjahi,
on related temporal aspects since December 2021.

These few lines already announce that my research is a real collective experience and I really
enjoy it this way. I sincerely thank my collaborators (I obviously include the students) for making
research a joyful journey.

Mathematics of sparsity

In this prelude, I allow myself to set out the theoretical framework of the theory of compressed
sensing in order to situate my thesis work in a concise manner. The objective will be twofold: to
give context to the work presented in Chapter 2, but also to help the reader measure the path taken
since then.

I therefore entered the research through the door of compressed sensing (CS), or how, from
a limited number of measurements, one can be confident on the reconstruction of high or even
infinite-dimensional objects.

The latter can be a vector in finite dimension (this is in general what compressed sensing refers
to), or a matrix with missing entries (this is therefore called matrix completion), or a Radon measure
(usually termed off-the-grid compressed sensing). To compensate for the lack of information on these
objects, a strong structural a priori must be considered to disambiguate the reconstruction: the
sparsity is invoked in the vector case, a low-rank prior in the matrix case, and an atomic structure
(as a finite sum of Dirac masses) as for a Radon measure.

The CS problem, often encountered in practice, covers a wide range of applications such as
medical, radar imaging or even finance. This is why research in this field has been very popular in the
2000s and 2010s, posing beautiful problems at the frontier of optimization, statistics, probabilities,

3After 4 mentions to Polytechnique, I guess that we can legitimately call it the X-factor.
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and signal processing. The interested reader may consult Chen et al. (2001); Tibshirani (1996);
Fuchs (2005); Candès and Tao (2006) for seminal papers and Bühlmann and Van De Geer (2011);
Chafäı et al. (2012); Foucart and Rauhut (2013); Giraud (2021); Hastie et al. (2009); Vershynin
(2018) for reviews and book chapters.

Canonical results of compressed sensing (CS)

CS formalism The standard CS problem can be stated as follows. Let x⋆ ∈ Rd denote an s-
sparse vector. The signal x⋆ is unknown but (noiseless) linear measurements y are performed such
that

y = Ax⋆ ∈ Cm A =



a∗1
...
a∗m


 ∈ Cm×d (1)

for some sensing matrix A with m ≪ n, denoting its rows (ai)1≤i≤m. The goal is to reconstruct
the signal x⋆ from y, by using the sparse prior in x⋆. Indeed, to promote the sparsity of the target,
it is natural to consider a reconstruction via an ℓ1-minimization problem, called the basis pursuit,

min
x∈Rn

∥x∥1 such that y = Ax. (2)

The principle of basis pursuit is to choose, among the infinity of solutions of the underdetermined
linear system (1), the one that minimizes the ℓ1-norm, which has the good grace to be a convex
surrogate of the pseudo ℓ0-norm, counting the nonzero elements in the vector of interest. Hence,
the basis pursuit is a convex problem that can be solved with efficient algorithms (e.g. simplex or
Douglas-Rachford algorithms).

Note that we consider the case without noise, for simplicity, but the theoretical analysis extends
to the case of noisy observations.

Key elements in CS Typical CS results ensure that x⋆ can be reconstructed solving (1), usually
requiring measurements to be “incoherent”, which means that although small in number compared
to the dimension of the object to be reconstructed, they have the ability to capture the total energy
of the signal with high probability. Therefore they are usually assumed to be random in theoretical
analyses as it leverages concentration tools and allows to derive recovery guarantees with high
probability. Historically, two types of measurements have been mainly considered:

(i) randomized Fourier measurements: The Fourier transform is often used in practice to model
the physics of acquisition, e.g., as in MRI, although the sampling patterns are usually deter-
ministic for practical purposes. Its randomization actually helps the mathematician to benefit
from theoretical concentration results.

(ii) Gaussian measurements: each measurement vector is made of independent Gaussian entries.
These types of sensors are more abstracted than acquisition models in practice, but remain
suitable for theoretical purposes. They allow, in particular, characterizing phase transitions
about the sampling rate of a convex program, i.e., the required number of measurements to
ensure successful recovery via the convex program at stake. We will return to these notions
when developing our work on phase transition when the signal is represented in redundant
dictionaries; see Section 1.2.
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An archetypal result in CS Typical results in compressed sensing focus on providing recon-
struction guarantees via ℓ1-minimization for any s-sparse vector, under conditions often expressed
in terms of the number of measurements to observe.

Theorem 1. Let s ∈ {1, . . . , d} be a degree of sparsity, and let A ∈ Rm×d be a Gaussian sensing
matrix. Then any s-sparse vector x can be reconstructed from measurements y = Ax via the basis
pursuit (2), with probability 1− δ, if

m ≳ s log

(
ed

s

)
+ log

(
2

δ

)
.

This result exhibits that exactly recovering a high-dimensional vector is possible using a nonlin-
ear reconstruction method as soon as the number of (incoherent) measurements is of the order of
the degree of sparsity of the given vector, the ambient dimension only intervening in a logarithmic
factor; hence the name of compressed sensing. A noticeable fact about this result is its uniformity:
it controls the probability of reconstruction of any s-sparse vector given a random Gaussian matrix.
There exist an extension of this theorem in terms of robustness (to some noise in the observations)
and stability (to the assumed sparse model). Under similar conditions, the reconstruction error
typically reads

∥x̂− x∥2 ≲ η

︸ ︷︷ ︸
robustness

+
minz s−sparse ∥x− z∥1√

s︸ ︷︷ ︸
stability

where x̂ is the solution of the BP given y = Ax+ ϵ with a bounded noise ∥ϵ∥2 ≤ η.

PhD. contributions

The work conducted during my doctoral studies (Bigot et al., 2016; Boyer et al., 2019a) provides
better theoretical guarantees of reconstructions when data acquisition is strongly constrained, which
is often the case in applications. For instance, in MRI, Fourier measurements are typically sensed,
not arbitrarily in the phase domain, but grouped by blocks, see for instance Figure 1 (a). And
still, nonlinear reconstruction methods give good performances in such a case (see Figures 1 (b)(c)
compared to (d)(e)). The most popular results at that time in the literature actually failed to explain
this phenomenon, as they usually provided uniform guarantees, by quantifying the probability
of exact recovery of any s-sparse vector. In particular, we have shown that it is impossible to
uniformly reconstruct the whole class of s-sparse signals (which forces us to resort to other proof
techniques based on dual certificates as in Candès and Plan (2011) instead of using the restricted
isometry property (RIP)). Our results are therefore non-uniform, in the sense that they allow the
reconstruction of a given signal, and that the reconstruction success depends on the structure of the
signal, and more precisely on its support. We exemplify the theoretical contributions on the case of
block-constrained acquisition in the Fourier basis, when the object to reconstruct can be sparsely
represented in a (Haar) wavelet basis, matching to some extent the setting of MRI. From this thread
of research, one can try to minimize the theoretical required number of measurements with respect
to the sampling probability. This gives a target distribution from which samples should be drawn.
However, in practice, using random sampling schemes is far from being efficient: we should prefer
deterministic surrogates. Based on this observation, we have proposed new deterministic sampling
techniques (Boyer et al., 2016), (i) mimicking a target sampling distribution advocated by the CS
theory, (ii) complying with admissible sampling patterns (dictated by the sensing device), and (iii)
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(a) (b) SNR = 24.1 dB (c)

(d) SNR = 21 dB (e)

Figure 1: An example of reconstruction of a 2048× 2048 MR image from blocks of measurements.
(a) Sampling pattern horizontal lines (13% of measurements). (b) Corresponding reconstruction by
ℓ1-minimization. (c) A zoom on a part of the reconstructed image. (d) Image obtained by using
the pseudo-inverse transform. (e) A zoom of a part of this image.

covering the space efficiently. These strategies have been implemented on real MR scanners, during
the Ph.D. thesis of Carole Lazarus (Lazarus et al., 2019a,b) at Neurospin (CEA Saclay), thanks to
her pugnacity and that of Pierre Weiss (CNRS, Toulouse).

Overview of contributions

I present here a summary of my work conducted after my Ph.D. studies: they are organized in
three thematic axes, instead of any chronological order.

Contributions in convex regularization In Chapter 1, I present results obtained in relation
to convex regularization techniques. In Adcock et al. (2021), we propose improved sampling com-
plexity bounds for stable and robust sparse recovery in compressed sensing. The unified analysis
based on ℓ1-minimization encompasses the case where (i) the measurements are block-structured
samples to reflect the structured acquisition that is often encountered in applications; (ii) the signal
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has an arbitrarily structured sparsity, so that the results directly depend on its support. Within
this framework and under a random sign assumption, the number of measurements needed by ℓ1-
minimization can be shown to be of the same order than the one required by an oracle least-squares
estimator. Moreover, these bounds can be minimized by adapting the variable density sampling to
a given prior on the signal support and to the coherence of the measurements.

In März et al. (2020), we investigate the problem of signal recovery from undersampled noisy
sub-Gaussian measurements under the assumption of a synthesis-based sparsity model. Solving the
ℓ1-synthesis basis pursuit allows us to simultaneously estimate a coefficient representation as well
as the sought-for signal. However, due to linear dependencies within redundant dictionary atoms,
it might be impossible to identify a specific representation vector, although the actual signal is still
successfully recovered. We study both estimation problems from a nonuniform, signal-dependent
perspective. By utilizing results from linear inverse problems and convex geometry, we identify the
sampling rate describing the phase transition of both formulations: it involves the Gaussian width
of a linearly transformed polyhedral descent cone. We propose a “tight” estimate of this quantity
which can be evaluated on a computer.

Then, we leave the finite-dimensional setting to study sparse spike deconvolution over the space
of complex-valued measures when the input measure is a finite sum of Dirac masses. In Boyer et al.
(2017), we introduce a modified version of the Beurling Lasso (BLasso), a semidefinite program
that we refer to as the Concomitant Beurling Lasso (CBLasso). This procedure estimates the
target measure and the unknown noise level simultaneously. Contrary to previous estimators in the
literature, the obtained theoretical results, including spikes localization and prediction bounds, hold
for a tuning parameter that depends only on the sample size, so that it can be used for unknown
noise-level problems.

Finally, we step back to consider very general optimization programs that include any convex
regularizer (while the fidelity-to-data term does not necessarily need to be convex). In Boyer et al.
(2019b), we characterize the structural properties of minimizers that can be expressed as convex
combinations of a small number of atoms. These atoms are identified with the extreme points and
elements of the extreme rays of the regularizer level sets. This very general analysis embraces many
regularization problems that have been extensively studied in the past years. As a by-product, we
characterize the minimizers of the total gradient variation, which was still an unresolved problem
at that time.

Contributions in general supervised learning In Chapter 2, I give a quick overview of my
work related to general learning methods. In supervised learning, predictors are usually learned
by minimizing some (empirical) risk. To do so, we propose two general learning algorithms that,
respectively, belong to the classes of boosting methods and stochastic optimization.

First, gradient boosting is a prediction method that iteratively combines weak learners to pro-
duce a complex and accurate model. From an optimization point of view, the learning procedure of
gradient boosting mimics a gradient descent on a functional variable to minimize a risk. In Fouillen
et al. (2022), we introduce a proximal boosting algorithm and its residual version, building upon
the proximal point algorithm. Theoretical convergence rates are obtained; in particular, they do
not require the differentiability of the objective function in the case of the residual algorithm. The
relevancy of Nesterov’s acceleration in such a setting is also questioned, as it introduces instabilities
in the algorithm behaviour.

In Boyer and Godichon-Baggioni (2020), we define general (weighted averaged) stochastic New-
ton algorithms to perform a learning task when the data comes in a streaming fashion. The
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implementation does not require the inversion of a Hessian estimate at each iteration, but leverages
from the possibility to directly update the inverse of the Hessian matrix at each iteration in O(d2)
operations, with d the ambient dimension. Asymptotic convergence results are derived without
requiring the strong convexity of the considered risk, and they also shed some light on the fact that
the choice of the averaging technique is not always innocuous.

Then, we explore tree-ensemble methods and neural networks, 2 classes of powerful machine
learning predictors, and how one can benefit from the other. In Arnould et al. (2021), we provide
a numerical and theoretical analyses of the deep forest algorithm, which is a meta neural network
model in which each neuron consists of a (non-differentiable) random forest. In particular we study
a toy model of a 2-layer tree network shown to enhance the performance of classical decision trees
in a specific theoretical framework. In Lutz et al. (2022), we propose a new sparse initialization
technique for (potentially deep) multilayer perceptrons (MLP): we first train a tree-based procedure
to detect feature interactions and use the resulting information to initialize the network, which
is subsequently trained via standard stochastic gradient strategies. This wise MLP initialization
actually raises the performances of the resulting NN methods to that of gradient boosting on tabular
data.

Finally, in Arnould et al. (2022), we study the performances of the popular random forest al-
gorithm in interpolation regimes. Even if it is commonly admitted that very complex models,
interpolating training data, will be generally poor at predicting unseen examples, this statistical
wisdom has been recently challenged. Benign overfitting regimes have indeed been identified, es-
pecially in the case of parametric models: generalization capabilities may be preserved despite the
model high complexity. While it is widely known that fully-grown decision trees interpolate and, in
turn, have bad predictive performances, we show that (median) random forests can be consistent
despite of interpolation.

Contributions in the problem of missing data In Chapter 3, I address the issue of missing
data in machine learning, reconnecting with medical applications as well. Missing values are becom-
ing more and more present as the size of datasets always increases, hindering standard statistical
analyses.

A first attractive idea can be to fill in the missing entries in order to get a completed data set
that can then be processed by any learning algorithm. In Sportisse et al. (2020c,b), we propose
imputation techniques using a low-rank prior and an EM strategy, on the one hand, and a graphical
approach, on the other. Both works are intended to deal with a particular complex type of missing
values said to be missing not at random (MNAR). In Muzellec et al. (2020), we take advantage of
optimal transport distances to define a loss function that is used as an imputation criterion. This
approach, versatile enough to allow for building non-parametric or parametric imputers, exploits the
idea that two batches extracted randomly from the same dataset should share the same distribution.
OT-based methods are shown to match or out-perform state-of-the-art imputation methods, even
for high percentages of missing values.

Then we turn to the problem of model estimation in linear regression for which we prefer to
adapt the estimation method to missing values instead of resorting to a pre-processing imputation
step. In Sportisse et al. (2020a), we study a debiased averaged stochastic gradient algorithm that
handles missing features to perform linear regression in an online context. Under a mechanism of
“missing completely at random (MCAR) data”, we show that this algorithm achieves convergence
rate of O(1/n) at iteration n, the same as without missing values.

Note that being able to perform model estimation despite missing data does not help for predic-
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tive purposes: the estimated model parameters cannot be directly used for prediction on the test
data that may contain missing entries.

Therefore, in Ayme et al. (2022), we focus on linear predictors that handle missing values. Under
some mild assumptions on the data distribution, the Bayes rule associated with an underlying linear
model can be decomposed as a sum of linear predictors corresponding to each missing pattern. We
thus propose a rigorous setting to analyze a least-squares type estimator adapted to the variety of
missing patterns, and we establish a bound on the excess risk which increases exponentially in the
dimension. Then, we leverage the missing data distribution to propose a new algorithm, and derive
associated adaptive risk bounds that turn out to be almost minimax optimal.

Outline

The organization of the following chapters mirrors the organization of the axes previously men-
tioned. Chapter 1 is therefore dedicated to inverse problems and convex regularization. Chapter
2 summarizes my contributions in general supervised learning. Chapter 3 covers different ways of
handling missing values in the practice of data science.

I have chosen to indicate my research directions by the symbol K throughout the document. It
materializes the quantity of holy beverage4 necessary (and probably not sufficient) to get there.

4Note that cognitive bias makes us believe this is a coffee cup, but I would like to pay tribute to tea cups, herbal
tea cups, or even quaint chicory cups that are the great forgotten of mathematical and engineering achievements.
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Chapter 1

Contributions in convex
regularization

Contents
1.1 Oracle-type bounds for structured CS . . . . . . . . . . . . . . . . . . . 19

1.2 Sampling rates for ℓ1-synthesis . . . . . . . . . . . . . . . . . . . . . . . 25

1.3 Off-the-grid compressed sensing . . . . . . . . . . . . . . . . . . . . . . . 29

1.4 Representer theorem for convex regularization . . . . . . . . . . . . . 33

1.1 Oracle-type bounds for structured CS

During a research visit to Vancouver in 2017 funded by a PIMS-CNRS “Distinguished Visitor” grant,
I initiated a collaboration with Ben Adcock (Simon Fraser University) and Simone Brugiapaglia
(Concordia University). The purpose of this section is to present the resulting work (Adcock et al.,
2021) of this collaboration.

Context In the seminal paper of Candès and Romberg (2007), under a random sign assumption
on the s-sparse signal to reconstruct x ∈ Cd, the authors proposed to draw uniformly at random
rows from an isometry A = (ak)1≤k≤d, leading to stable reconstruction with probability at least
1− δ with the following required number of measurements:

m ≳ s · d max
k
∥ak∥2∞ · ln (d/δ) . (1.1)

This result can be of interest when considering totally incoherent transforms such as the Fourier
matrix for which d maxk ∥ak∥2∞ = O(1) . However, this is not relevant anymore in the case of
coherent transforms, such as the Fourier-Haar transform used to model MRI acquisition (meaning
that sensing is performed in the Fourier domain, and the signal is represented in the Haar wavelet
domain), where d maxk ∥ak∥2∞ = O(d).

In Adcock et al. (2021), our results include the previous ones, but are also extended to: (i) the
case of variable density sampling; (ii) stability robustness results when measurements are corrupted
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CHAPTER 1. CONTRIBUTIONS IN CONVEX REGULARIZATION

with bounded noise; (iii) structured measurements using blocks of measurements; (iv) optimization
of the sampling density with respect to prior information on the signal support, such as structured
sparsity.

A general sampling strategy Given some distributions (Fℓ)1≤ℓ≤m respectively on sets of pℓ×d
matrices, with pℓ ≥ 1 for ℓ = 1, . . . ,m, the sampling strategy consists in drawing m independent
matrices B1, . . . , Bm where Bℓ ∼ Fℓ for ℓ = 1, . . . ,m and forming the sensing matrix as follows:

A =
1√
m



B1

...
Bm


 , with Bℓ ∼ Fℓ, for ℓ = 1, . . . ,m. (1.2)

We assume the sampling to be isotropic, in the sense that

E(A∗A) = E

(
1

m

m∑

ℓ=1

B∗
ℓBℓ

)
= Id.

In particular, this framework encompasses the two following cases, the former having been con-
sidered in my PhD. works (Bigot et al., 2016; Boyer et al., 2019a), the latter in Candès and Plan
(2011).

(i) Block-structured sampling from a finite-dimensional isometry. Let (Ik)1≤k≤M

denote a partition of the set {1, . . . , d}, i.e. a family of disjoint subsets

Ik ⊂ {1, . . . , d} s.t.

M⊔

k=1

Ik = {1, . . . , d}.

The rows (ai)1≤i≤d ∈ Cn of an orthogonal matrix A ∈ Cd×d can be partitioned accordingly
into a block dictionary (Bk)1≤k≤M , such that

Bk = (ai)i∈Ik
∈ C|Ik|×d.

Define the random blocks B1, . . . , Bm to be i.i.d. copies of a random block B such that

P (B = Bk/
√
πk) = πk, for k = 1, . . . ,M,

where (πk)1≤k≤M is a discrete probability distribution on {1, . . . ,M}. Note that in this case,
all the distributions (Fℓ)’s are the same one, characterizing the law of the random block B
described right above. The sensing matrix A is then constructed by randomly drawing blocks
as follows:

A =
1√
m

(Bℓ)1≤ℓ≤m . (1.3)

Moreover, thanks to the renormalization, the random sensing matrix A satisfies E(A∗A) = Id.
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1.1. ORACLE-TYPE BOUNDS FOR STRUCTURED CS

(ii) Isolated measurements from a finite-dimensional isometry (standard CS). This is a
particular case of the setting described in (i): each block corresponds to a row of the matrix
A = (a1|a2| . . . |ad)∗. Therefore, the sensing matrix is constructed by stacking random vectors
drawn from the set of row vectors {a∗1, . . . , a∗d} and can be written as follows:

A =
1√
m

(aℓ)1≤ℓ≤m , (1.4)

where the random vectors (aℓ)1≤ℓ≤m are i.i.d. copies of a random vector a such that

P(a = aj/
√
πj) = πj ,

for all 1 ≤ j ≤ d. Here again all the (Fℓ)’s consists in the same distribution, designating the

law of the random vector a. The isotropy condition, i.e. E(A∗A) = E
(

aℓa
∗
ℓ

πℓ

)
= Id, is also

satisfied.

We should mention in passing that our sampling strategy can be adapted to the case wherem blocks
of measurements could be sensed deterministically, and m −m random blocks would be drawn as
previously described. But for the sake of conciseness we will only present the case of randomly
drawn blocks.

Main result Let S be the set of s largest absolute entries of a target signal and let F be the
probability model used to draw random (possibly block-structured) measurements from a finite-
dimensional isometry A. Our recovery guarantees are based on a notion of local coherence, denoted
as Λ(S, F ), and on a global coherence measure Γ(F ).

Definition 2. Consider a block sampling strategy as previously described in (1.2) where (Bk)1≤k≤m

are random blocks such that Bk ∼ Fk, with F = (Fk)1≤k≤m the associated collection of probability
distributions. Let S ⊂ {1, . . . , d} denote the support of the target vector. Define the quantities
Λ(S, F ), and Γ(F ) to be positive real numbers such that for all ℓ = 1, . . . ,m, when Bℓ ∼ Fℓ,

Λ(S, F ) ≥
∥∥B∗

ℓ,SBℓ,S

∥∥
2→2

a.s. (1.5)

Γ(F ) ≥ ∥Bℓ∥21→2 = max
1≤i≤d

∥Bℓei∥22 a.s. (1.6)

where (ei)1≤i≤d denote the vectors of the canonical basis, and for a matrix M the norm ∥ · ∥p→q is
defined by ∥M∥p→q = sup∥x∥p≤1 ∥Mx∥q.

Theorem 3. Let x ∈ Rd or Cd be a vector supported on S with |S| = s ≤ n/2, such that sign(xS)
forms a Rademacher or Steinhaus sequence. Let A be the random sensing matrix defined in (1.2)
associated with parameters Λ(S, F ). Then, for every 0 < δ < 1, if

Λ(S, F ) ≥ 50 · Γ(F ) · ln(3d/δ), (1.7)

and if

m ≥ 100 · Λ(S, F ) · ln
(
3d

δ

)
,

then, with probability at least 1− δ, the signal x is exactly recovered via (2) with probability at least
1− δ.
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The proof is based on the construction of a dual certificate, a standard path to non-uniform
(signal-based) approaches. Note that similar conditions ensure also stable and robust recovery
by solving a quadratically-constrained Basis Pursuit, given a level of noise η. Condition (1.7)
actually holds (see Section 5 in Adcock et al. (2021)) in realistic settings such as the case of
Fourier-Haar measurements (either sensed in a isolated way or by entire lines of the spatial acqui-
sition domain). Existing CS results for such a constrained acquisition generally involve considering
the maximum between different types of complex coherence (e.g. Θ(S, F ) ≥ ∥B∗

ℓBℓ,S∥∞→∞ =
max1≤i≤d ∥e∗iB∗

ℓBℓ,S∥1 a.s.). The strength of Theorem 3 is that the simple quantity Λ(S, F ) is
governing the required number of measurements for a signal-based reconstruction. This comes at
the price of the random signs assumption. The quantity Λ(S, F ) seems to be sharp in the sense that
it is actually driving a sufficient condition on the number of measurements needed by an oracle-type
estimator that would know the support S of the target vector, and that would simply make the
inversion of a linear system with s unknowns.

Proposition 4. For every 0 < δ < 1, provided

m ≳ ·Λ(S, F ) · ln
(
2s

δ

)
, (1.8)

then, with probability at least 1− δ, the matrix AS has full column rank and the oracle-least squares
estimator x⋆ ∈ Cn of the system y = Az, defined by

x⋆S = (AS)
†y, x⋆Sc = 0. (1.9)

matches the target signal x.

The proof relies on the control of the least singular value of AS , ensuring that the oracle estimator
is well-defined. One can note that when ∥A∗

SAS − IdS∥2→2 ≤ τ , then σmin(AS) ≥
√
1− τ and

∥(A∗
SAS)

−1∥2→2 ≤ 1
1−τ . Using Bernstein concentration results, the condition ∥A∗

SAS−IdS∥2→2 ≤ τ
is ensured provided that

m ≥ 1 + 2τ/3

τ2/2
· Λ(S, F ) · ln

(
2s

δ

)
.

K We must certainly temper the significance of the results, as we compare the bound obtained
in Theorem 3 to the one in Proposition 4, which is only a sufficient condition for the oracle-type
estimator to be well-defined. However, this is the only result that I know that is coming closer to
understanding the phase transition of the basis pursuit program when the sensing matrix is very
structured (as drawn from an orthogonal transform). More precisely, the phase transition in the
case of BP can be described as the characterization of a function Ψ giving m = Ψ(s) such that
the probability of successful reconstruction is 1/2. This is a powerful information on the convex
program in question since it entails that when m ≳ Ψ(s), the exact reconstruction is ensured with
high probability, and when m ≲ Ψ(s), the reconstruction fails w.h.p.. In Amelunxen et al. (2014),
the authors describe the phase transitions of several convex programs (including (2)), but their
proof strategy heavily relies on the Gaussian assumption of the sensing matrix A (using, in some
extent, Gordon’s escape through a mesh theorem). This question remains totally open in the case
of more structured acquisition such as in (1.4).
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Optimizing the sampling strategy With Theorem 3 at hand, considering for instance the case
of isolated measurements ii, one can optimize the sampling distribution π in order to minimize the
required bound on m, as follows,

∀k ∈ {1, . . . , d}, πk = πΛ
k =

∥ak,S∥22∑d
ℓ=1 ∥aℓ,S∥22

. (1.10)

The required number m of measurements in Theorem 3 can be then rewritten as follows:

m ≳
d∑

ℓ=1

∥aℓ,S∥22 · ln(6d/δ). (1.11)

In practice, the sampling distributions can be significantly modified when structure is considered in
the sensing vectors and in the sparsity of the target vector. Fix the sensing basis to be the Fourier
one. Often in image processing (such as MRI or involving any “natural” image), the representation
basis is chosen as a wavelet one: hence the support of the target signal is likely to be structured
w.r.t. to the decomposition levels of the wavelet transform, hence the name of sparsity-in-level. In
such as case, the optimal sampling distribution is depicted in Figure 1.1 (b)(d) and formally reads:

∀k ∈ {1, . . . , d}, πΛ
k =

2−j(k)
∑J

p=0 2
−|j(k)−p|sp

∑n
ℓ=1 2

−j(ℓ)
∑J

p=0 2
−|j(ℓ)−p|sp

, (1.12)

where j(k) is the corresponding subband of index k, J is the number of decomposition levels used
in the wavelet transform, and sℓ is the sparsity of the signal relative to the subband ℓ.

By optimizing the bound obtained in standard results of the literature (Candès and Plan, 2011),
in the case of isolated measurements, one would choose

∀k ∈ {1, . . . , d}, π∞
k =

∥ak∥2∞∑d
ℓ=1 ∥aℓ∥2∞

.

This sampling distribution, as shown in Figure 1.1 (a)(c), does not take into account how the
support of the signal of interest interacts with the sensing vectors (ak)k. Given a same number of
measurements, drawing samples according to either (π∞

k )k or (πΛ
k )k can lead to significant difference

in terms of the quality of reconstruction, see Figure 1.2.
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Figure 1.1: Comparison between sampling probability distributions chosen according to different
strategies: in (a,b) for 1D signals with a sparse-in-level structure, in (d,e) for 2D signals with the
corresponding tensorized structured sparsity. In (a) and (c), the sampling probability distribution
π∞ is optimized to minimize the global coherence, i.e. πk ∝ ∥ak∥2∞; in (b) and (d), the sampling
probability distribution πΛ is optimized to minimize an upper bound to Λ(S, π).
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Figure 1.2: Boxplot of reconstruction PSNR (the higher, the better) in (b) of 100 random signals of
length d = 2048 having a structured sparsity in the wavelet decomposition as in (a) (s/n = 6%) from
25% measurements drawn according to π∞ and πΛ displayed in Figure 1.1 (a,b). More precisely
in (a), we represent the sparsity in levels structure of the randomly generated signals: each bar
corresponds to the percentage of nonzero coefficients in the subband.
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1.2 Sampling rates for ℓ1-synthesis

Context Most of contributions in the CS literature focus on the reconstruction of vectors, ob-
served through a random sensing matrix A, but sparsely represented in orthogonal bases. In
practice, there is a real interest in using redundant transforms: think about a signal which would
be the superposition of some vector of the canonical basis (hence, sparse in the canonical basis) and
of a sine function (sparse in the Fourier domain); this signal can be therefore more efficiently rep-
resented in a (redundant) dictionary resulting from the concatenation of the canonical and Fourier
bases.

In such a case, there exist two ways to formulate the reconstruction problem for a level of noise
η > 0:

(i) the ℓ1-synthesis formulation: consider a signal x ∈ Rd sparsely represented in the synthesis
operator D ∈ Rd×d′

(d′ ≫ d) with coefficients z ∈ Rd′
, i.e., x = Dz, so that z is of low

complexity (not x). In order to reconstruct the signal x, one can reconstruct its coefficient z,
which leads to the ℓ1-synthesis program,

min
z∈Rd′

∥z∥1 such that ∥y −ADz∥2 ≤ η. (1.13)

(ii) the ℓ1-analysis formulation: for a signal x ∈ Rd, consider the analysis operator Ψ ∈ Rd′×d, so
that Ψx is assumed of low complexity. The ℓ1-analysis program reads as

min
x∈Rd

∥Ψx∥1 such that ∥y −Ax∥2 ≤ η. (1.14)

Of course, Problems (1.13) and (1.14) are equivalent when Ψ (or D) form an orthogonal basis.
However, introducing redundancy in these representation operators changes the geometry of the
problem depending on whether we consider its analysis or synthesis version. One could however es-
tablish the following link between both. Let gK(x) := infλ>0 {x ∈ λK} denote the gauge associated
to some convex set K. Consider the gauge gDBd′

1
, then

DẐ = inf
x∈Rd

gDBd′
1
(x) such that ∥y −Ax∥2 ≤ η, (1.15)

where Ẑ is the solution set of the ℓ1-synthesis program (1.13). Moreover, if the atoms {d1, . . . , dd′}
of the dictionary D are the extreme points of the level set {x, ∥Ψx∥1 ≤ 1}, then the solution set of
the analysis problem (1.14) matches the one of the synthesis program (1.13). This sheds light on
the fact that an analysis program can always be reformulated into a synthesis one.

The ℓ1-analysis formulation has gained considerable attention in the past years, see e.g., Nam
et al. (2013); Candès et al. (2011); Krahmer et al. (2015); Kabanava and Rauhut (2015); Kabanava
et al. (2015) compared to its synthesis counterpart Rauhut et al. (2008).

In 2016, Pierre Weiss, Jonas Kahn and I started a collaboration with Maximilian März who was
at that time a brilliant PhD. student (Deutsche Qualität) under the supervision of Gitta Kutyniok
at TU Berlin. A few years later, we finalized the paper März et al. (2020), recently accepted
at Foundations of Computational Mathematics, that I personally find elegant and that yet has
difficulty in finding its audience. The rest of the section is dedicated to presenting the insights it
contains.
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(a) (b) (c)

(d) (e) (f)

Figure 1.3: Phase transitions of signal recovery: the empirical success rates for the signal recovery
are shown in the first column. The different signals are shown in the second column, they admit a
sparse representation in a redundant Haar wavelet frame displayed in the third row. Note that in
both examples, the coefficient recovery is not possible.

At the risk of sounding repetitive, I want to emphasize the cruel need for non-uniform (i.e.
signal-dependent) results in the case of ℓ1-synthesis, and all the more so as we use redundant
representation bases. To convince you, I invite you to look at Figure 1.3, which shows that it is no
longer the degree of sparsity of the coefficient representations, which was sufficient to summarize
the structure of the signal so far with orthogonal bases, that seems to govern the sampling rate
with redundant dictionaries.

Toolkit on phase transition Consider the following generalized regularization framework, in-
volving a convex regularizer f ,

min
x∈Rd

f(x) such that ∥y −Ax∥2 ≤ η. (1.16)

where the observations y ∈ Rm satisfy y = Ax + ε with A ∈ Rm×d a sensing operator, x ∈ Rd

the target vector, and ε a bounded noise vector such that ∥ε∥2 ≤ η. A quite straightforward
recovery guarantee can be established as follows, involving the descent cone D(f, x) of f at x
defined by D(f, x) := cone ({h, f(x+ h) ≤ f(x)}), and the minimal singular value σmin (A,D(f, x))
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of A restricted to the set D(f, x), i.e., σmin (A,D(f, x)) := minx∈D(f,x) ∥Ax∥2
Proposition 5 (Tropp, 2015).

1. (Noiseless measurements) If η = 0, then the following conditions are equivalent

• x̂ = x, with x̂ the unique solution of (1.16),

• null(A) ∩ D(f, x) = {0},
• σmin (A,D(f, x)) > 0.

2. (Noisy measurements) For η > 0, any solution x̂ of (1.16) satisfies the error bound

∥x̂− x∥2 ≤
2η

σmin (A,D(f, x)) .

The quantity σmin (A,D(f, x)) contains all the keys to the success of the reconstruction in both
study settings, with or without noise. The bad news is that it is generally NP-hard to evaluate it
(as an instance of testing the co-positivity of matrices). The good news is that we can theoretically
do it when the sensing operator is assumed to be a Gaussian matrix.

Theorem 6 (Tropp, 2015). Assume that A is a Gaussian matrix. Then, with a probability larger

than 1− e−u2/2,
σmin (A,D(f, x)) ≥

√
m− 1− ω(D(f, x))− u,

where the Gaussian width ω(K) of a cone K is given by

ω(K) := Eg∼N (0,Idd)

[
sup

h∈K∩Sd−1

⟨g, h⟩
]
.

The Gaussian width ω(D(f, x)) determines a sufficient condition for the (robust) recovery of x
as soon as m ≳ ω2(D(f, x)) + 1. It actually provides more information about the reconstruction in
the noiseless case: it governs the phase transition of the recovery success.

Theorem 7 (Amelunxen et al., 2014). When A is a Gaussian matrix, and η = 0,

• if m ≥ ω2(D(f, x))+ 1− ln(δ)
√
d, the resolution of Problem (1.16) recovers x with probability

larger than 1− δ;

• if m ≤ ω2(D(f, x)) + 1 + ln(δ)
√
d, the resolution of Problem (1.16) fails to recover x with

probability larger than 1− δ.

Some selected results Based on the previous tools, in März et al. (2020), we derive sampling
rates for the coefficient and signal reconstruction through the following ℓ1-synthesis approach,

1. first we recover a candidate coefficient ẑ ∈ Ẑ by solving (1.13), with Ẑ the solution set of
(1.13);

2. then we apply the dictionary D to get the signal solution x̂ := Dẑ ∈ X̂ := DẐ, with X̂ the
solution set of the signal ℓ1-synthesis.

27



CHAPTER 1. CONTRIBUTIONS IN CONVEX REGULARIZATION

We will not comment in details on how our results highlight that the signal reconstruction can
depart from the coefficient one, but one can refer to Figure 1.4 to get more intuition. Figure 1.4
shows the phase transitions for both signal and coefficient recoveries. What is striking is that when
the sparsity increases, the coefficient reconstruction fails no matter how many measurement we
perform, whereas the signal reconstruction is still possible. This emphasizes that the signal can be
uniquely determined, without disambiguating its coefficient representation got by solving the ℓ1-
synthesis problem. We also notice that on the left hand side of both plots, when the reconstructions
of the coefficient and the signal are concomitant, they seem to share the same phase transition.
Sampling rates for coefficient and signal reconstruction are indeed shown to match, so we only

(a) (b)

Figure 1.4: Phase transitions of coefficient and signal recovery by ℓ1-synthesis. In (a), we show the
empirical probability that atomic coefficient representations are successfully recovered via solving
(1.13), whereas in (b) we show the empirical probability for the associated signal reconstruction.
The underlying dictionary is a redundant Haar wavelet frame with three decomposition levels and
the defining s-sparse coefficients are chosen at random. The brightness of each pixel reflects the
observed probability of success, reaching from certain failure (black) to certain success (white). The
dotted line shows our predictions for the location of the phase transitions.

present in the sequel the developments for the signal recovery.

Theorem 8. Let x ∈ Rd be the target signal, y = Ax + ε with A ∈ Rm×d a Gaussian matrix and
∥ε∥2 ≤ η. If

m ≥ m := ω2 (DD(∥ · ∥1, z))
for any ℓ1-representer z ∈ argminx=Dz∥z∥1, then for any x̂ ∈ X̂,

∥x− x̂∥2 ≤
2η√

m− 1−√m− 1

The proof mainly relies on recasting the procedure of the signal reconstruction in the form of
(1.16). If, as previously said, the sampling rates of the signal and coefficient recoveries match,
the stability to noise can actually drastically differ, as the error bound for the coefficient involves
σmin (D,D(∥ · ∥1, z)). Now all the efforts are to be deferred on a fair evaluation of the conic mean
width ω2 (DD(∥ · ∥1, z)) of a linearly transformed cone. This is the purpose of the following result,
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using a brilliant idea of Jonas Kahn: (i) decompose the polyhedral cone D(∥ · ∥1, z) into its lineality
(containing all the lines of the cone) and range parts, (ii) embed its range, which is a pointed
polyhedral cone into a circular cone of circumangle α, (iii) bound the initial squared conic mean
width by the sum of the squared mean widths of the lineal (this is the easy part as, it is a vector
space, and its squared mean width boils down to its dimension) and of the range (using a clever
upper bound through (ii) involving the circumangle α and the number of extreme rays of the range
- that we know to be finite).

Theorem 9 (Unformal). Let C := DD(∥ · ∥1, z), such that C = CL ⊕ CR with CL (resp. CR) the
lineality (resp. range) part of C. Then, CR is a polyhedral cone generated by at most k extreme
rays, with k of the order of d, and embedded into a circular cone of circumangle α. An upper-bound
on the critical number of measurement m is given by

m ≲ s̄+ tan2(α) ln(d′).

where s̄ is the maximal degree of sparsity of the ℓ1-representers argminx=Dz∥z∥1 of x.

The bound in Theorem 9 encloses the bound s̄ on the squared conic mean width of the lineality
part and the bound tan2(α) ln(d) of the squared conic mean width of any k(≃ d)-polyhedral cone
embedded into an α-circular cone. Of course, it requires to compute the circumangle α: this is a
convex problem! Recall that

cos(α) = sup
∥θ∥1=1

inf
x∈DD(∥·∥1,z)

∥x∥2=1

⟨x, θ⟩.

We actually manage to theoretically evaluate all these quantities (k and α) by dissecting the convex
cones in presence of dictionaries chosen as orthogonal bases, but also as the concatenation of
convolution matrices. The former matches (up to log factor) the existing bound on the number
of measurements required by the state-of-the-art results, which underlines the sharpness of the
derived upper-bound in Theorem 9. The latter provides the first meaningful bound showing that
compressive sensing of a signal sparsely represented in a redundant transform is indeed possible,
without the need of exact reconstruction of its coefficients!

K There is clearly room for improvement, as the quantities considered here remain partly
cryptic, and necessitate a case-by-case study depending on the dictionary in play. A first step
would be to try to use this approach to evaluate sampling rates for some dictionary class such as
tight frames.

1.3 Off-the-grid compressed sensing

Context Until now, the models considered in CS are discrete models, which do not reflect the
continuous intrinsic nature of the objects in play. For example, when we think of an astronomy
image, there is no reason for galaxies and stars to be positioned naturally on a discretization grid.
Off-the-grid CS compensates for this finite-dimensional simplification by considering that the object
to be reconstructed is no longer a vector, but an atomic Radon measure. The degree of sparsity
then becomes the number of Dirac masses in the target measure. This refers to an old problem
considered in the 1930’s by Beurling (1938). After a long scientific winter, Yohann De Castro during
his PhD. thesis has brought it up to date in 2012 (De Castro and Gamboa, 2012; Azais et al., 2015),
and then Emmanuel Candès and Carlos Fernandez-Granda made it even more popular, see Candès
and Fernandez-Granda (2013, 2014) but also Bredies and Pikkarainen (2013).
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I met Yohann De Castro and Joseph Salmon during the summer school of Saint-Flour, edition
2015. We were enjoying the lecture given by Sara Van de Geer, on the finite-dimensional square-root
lasso (Owen, 2007; Belloni et al., 2011; Sun and Zhang, 2012, 2013; Chrétien and Darses, 2014),
which is a version of the sparse regression problem, whose goal is to estimate simultaneously the
sparse vector of interest and the unknown noise level contaminating the observations. To make the
memory of Saint-Flour last, and as Yohann is a specialist of the continuous counterpart of the lasso,
we started a collaboration aiming at adapting these robust strategies dissected in the lecture notes
(van de Geer, 2016) to the case of the infinite dimension. While some of the works may not have a
major impact on the community, they do nonetheless remain significant to a young academic who
is plagued by doubts and uncertainty. I sincerely thank Yohann and Joseph for their support, their
enthusiasm in this project and their friendship since then.

Setting We aim at estimating an atomic measure µ =
∑s

i=1 αiδti ∈ M(T), where M(T) is the
space of Radon measures supported on the one-dimensional torus T, so that (α)1≤i≤s ∈ Rs and
(ti)1≤i≤s ∈ Ts respectively denote the amplitudes and the spike locations of the target measure.
We observe

y = Fm(µ) + ε ∈ C2m+1 (1.17)

where Fm is the sensing operator mapping a Radon measure to its m first Fourier coefficients, i.e.

Fm :M(T) −→ C2m+1

µ 7−→
(∫

T
exp(−2ιπkt)µ(dt)

)

|k|≤m

,

and ε ∈ C2m+1 is a complex Gaussian vector, such that ε = Real(ε) + ιIm(ε), Real(ε), Im(ε) ∼
N (0, σ2Id) with unknown σ > 0. Since the noise level is unknown, we define and study the
Concomitant Beurling Lasso (CBLasso)1, which is a convex penalization of a joint log-likelihood
estimator:

(µ̂, σ̂) ∈ argmin
µ∈M(T)

σ>0

1

2nσ
∥y −Fm(µ)∥22 +

σ

2
+ λ∥µ∥TV (1.18)

where ∥ · ∥TV is the total variation norm, defined by duality on the space of bounded continuous
functions equipped with the ℓ∞-norm,

∥µ∥ := sup
∥f∥∞≤1

Real

(∫

T
f̄dµ

)
.

When the measure is atomic, the TV norm boils down to the ℓ1-norm of the spike amplitudes,
hence the continuous counterpart of the ℓ1-norm.

When the solution is reached for µ̂, σ̂ > 0, optimality conditions provide:

{
σ̂ = ∥y −Fm(µ̂)∥2 /

√
n

µ̂ ∈ argminµ∈M(T)
1

2nσ ∥y −Fm(µ)∥2 + λ∥µ∥TV

1Persifiers could see a “Claire Boyer Lasso” there.
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where the last expression looks like a (continuous) lasso problem without any square on the data-
fidelity term, hence the name of square-root lasso.

Regarding the numerical resolution, we resort to solve an SDP formulation of the dual problem
of (1.18). Note that since then, other algorithmic approaches have been explored, in particular
working directly with the primal formulation, see Denoyelle et al. (2019).

Proposition 10. Denote ∆ =
{
c ∈ C2m+1 : ∥F∗

m(c)∥∞ ≤ 1, mλ2∥c∥22 ≤ 1
}
, the dual problem of

the CBLasso (1.18) reads

ĉ ∈ argmax
c∈∆

λ⟨y, c⟩. (1.19)

The following equation holds between the primal and dual solutions:

y = mλσ̂ĉ+ Fm(µ̂). (1.20)

The dual vector ĉ actually corresponds to coefficients of the so-called dual polynomial p̂ = F∗
m(ĉ).

By strong duality, p̂ interpolates the spike signs of µ̂ (which is informative as soon as the dual
polynomial is non-constant). By the constraint ∥F∗

m(ĉ)∥∞ ≤ 1 in Proposition 10, the support of µ̂
is then included in the roots of the derivative of the dual polynomial. The dual problem has the
advantage to work with finite-dimensional objects but involves functional constraint. Luckily, they
admit an SDP representation.

Lemma 11 (Candès and Fernandez-Granda, 2013). For any c ∈ C2m+1, the following conditions
are equivalent,

(i) ∥F∗
m(c)∥2∞ ≤ 1,

(ii) ∃Λ ∈ C(2m+1)×(2m+1)s.t.





Λ∗ = Λ,(
Λ c
c∗ 1

)
⪰ 0,

∑n−j+1
i=1 Λi,i−j−1 = δj,1 ∀j,

where δk,ℓ is the Kronecker symbol.

With this at hand, the dual problem (1.19) can be reformulated as

max
c∈Cm′

Λ∈Cm′×m′

λ⟨y, c⟩ such that





Λ∗ = Λ,(
Λ c
c∗ 1

)
⪰ 0,

∑n−j+1
i=1 Λi,i−j−1 = δj,1 ∀j,(

Idm′ λ
√
m′c

λ
√
m′c∗ 1

)
⪰ 0.

(1.21)

setting m′ = 2m+ 1. Finally, the CBLasso is solved by taking the following path:

1. For a fixed λ > 0, compute ĉ the solution of (1.21). To do so, use for instance the cvx toolbox
(Grant and Boyd, 2014);

2. Identify the potential support
{
t̂j
}
j=1,...,ŝ

of µ̂ by computing the roots of 1−|p̂|2 = 1−|F∗
m(ĉ)|2.

Then form the design/sampling matrixX ∈ C(2m+1)×ŝ, defined byX :=
(
exp(−2ιπkt̂j)

)
|k|≤m,j=1,...,ŝ

;
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3. Solve a finite-dimensional square-root lasso with inputs (X,λ, y) to get the amplitudes α̂ and
the noise level σ̂;

4. Output µ̂ =
∑ŝ

j=1 α̂δt̂j .

Contributions First, we show that the conditions (such as compatibility, restricted eigenvalue or
restricted isometry properties) guaranteeing the uniform reconstruction of any sparse measure are
proscribed in such a problem, so that we restrict the study to measure-dependent (non-uniform)
reconstruction results. Then we obtain prediction results of the following form.

Theorem 12. Assume that

• (sampling rate condition) λ · ∥µ∥TV /
√
2σ ≲ 1,

• (separation condition) the distance between the spikes in µ is at least 1.26/m.

Then, the estimator µ̂ solution to CBLasso with λ ≳
√

log(n)/n satisfies w.h.p.,

1

m

∥∥Fm(µ̂− µ)
∥∥2
2
≲ sλ2σ2 = O

(
sσ2 log n

n

)
.

Proofs are adapted from Tang et al. (2014), amended by the Rice method for a non-Gaussian
process to deal with the noise level dependency in the bounds. This bound actually matches the
fast convergence rate exhibited in Tang et al. (2014) when the noise level is assumed to be known.
The proof relies on exploiting the properties of a dual certificate, which is in this specific instance,
a trigonometric polynomial (lying in the range of F∗

m) satisfying first-order optimality (KKT)
conditions of Problem (1.18). We also establish localization results ensuring that the mass in the
reconstructing measure mainly lies in “near” regions (determined by the inverse of the frequency
cut m) of the original spikes. We also show that provided that a given Dirac mass localized at
t with amplitude |α| > Cσsλ large enough, for a numerical constant C > 0, then there exists a
reconstructed spike at t̂ in µ̂, such that

dist(t̂, t) ≲
1

n

√
Cσsλ

|α| − Cσsλ.

Again, the Rice method is used in conjunction of the approaches developed in Azais et al. (2015);
Tang et al. (2014); Fernandez-Granda (2013) for the spike detection. Overall, the spike decon-
volution with unknown noise level through CBLasso enjoys the same guarantees as when using
Beurling lasso with known noise level, provided that the signal-to-noise ratio is bounded. We also
provide guarantees that the no-overfitting regime occurs, i.e., that ∥Fm(µ̂)− y∥22 > 0, as required.
A numerical resolution is possible by a root-finding search, and we ensure the necessary condition
that the dual polynomial is never constant.

K As an ongoing work with Yohann De Castro and Vincent Duval, we are studying how to
leverage off-the-grid approaches to tackle low-rank tensor denoising. This would give a new light
to this problem that has so far been studied through trend filtering (van de Geer and Ortelli, 2021;
Gong et al., 2020); this could have a wider spin-off, particularly for the problem of tensor PCA
(Richard and Montanari, 2014; Arous et al., 2020). The problem of tensor denoising can be actually
lifted to the space of measures: assume we observed a d-dimensional k-way tensor Y such that

Y = X +W

32



1.4. REPRESENTER THEOREM FOR CONVEX REGULARIZATION

where X is an unknown d-dimensional symmetrical k-tensor supposed of rank r, and W is a noise
tensor. Therefore, X admits the following expansion

X =

r∑

ℓ=1

αℓx
⊗k
ℓ

for some amplitudes (αℓ)1≤ℓ≤r and unit d-dimensional vectors (xℓ)1≤ℓ≤r. This parameterization of
rank-r tensors can be embedded into the space of Radon measures, so that denoising Y to estimate
X amounts to reconstructing a target measure

µ =

r∑

ℓ=1

αℓδxℓ
∈M

(
Sd−1

)
.

On can then recast the tensor reconstruction into a Beurling lasso program using, instead of Fourier
sampling, the following sensing operator:

Φ :M
(
Sd−1

)
−→ Rd

µ 7−→
∫

Sd−1

x⊗kdµ(x).

1.4 Representer theorem for convex regularization

The last part of this chapter is dedicated to the work Boyer et al. (2019b), which somewhat bridges
the gap between the community of inverse problems, which has been around until now, and that of
machine learning. This work is the result of two competing teams, respectively based in Toulouse
and Paris, that decided to join forces to deliver a single, higher impact paper. I thank all the
collaborators, Antonin Chambolle, Yohann De Castro, Vincent Duval, Frédéric de Gournay and
Pierre Weiss for this nice output.

Context Representer theorems (Schölkopf et al., 2001) are well-known in machine learning as they
are the reason of the practical success of kernel machines. They characterize structural properties of
minimizers of a regularized empirical risk, without actually needing to explicitly solve the problem.
This prior can be injected in the empirical risk minimization so that learning even in infinite-
dimensional spaces can be recast into a finite-dimensional, and then scalable, optimization problem.

The purpose of this section is to extend representer theorems to a general convex optimiza-
tion program. In some specific instances, some were already known. Consider for example the
ℓ1-minimization problem under m-dimensional equality affine constraints, i.e., the basis pursuit
program (2). Chen and Donoho (1994) show that (2) admits m-sparse solutions, that is to say,
some solution x̂ ∈ Rd to the basis pursuit can be decomposed as

x̂ =

m∑

ℓ=1

αℓeσ(ℓ)

for some amplitudes (αℓ)ℓ, (eℓ)ℓ being the vectors of the d-dimensional canonical basis, and σ some
permutation on {1, . . . , d}. This result is of interest if m ≪ d, meaning that solutions of low-
complexity always exist. The attentive reader will have already noticed that the “atoms” (±eℓ)ℓ

33



CHAPTER 1. CONTRIBUTIONS IN CONVEX REGULARIZATION

used in the decomposition of x̂ are actually extreme points of the ℓ1-ball, i.e., extreme points of level
sets of the regularizer in play. This observation can be extrapolated to a higher level of abstraction,
encompassing standard variational problems.

Contributions Let E be a vector space. Consider the following generalized basis problem

min
u∈E

R(u) such that Φu = y (P)

where R : E → R∪{+∞} is a convex regularizer, and Φ : E → Rm is a linear map. We characterize
the extreme points structure of the solution set (provided that the latter is non-empty), which can
be rewritten as the intersection of a peculiar level set of R and the preimage of y by Φ, i.e.,
{u ∈ E : R(u) ≤ min(P)} ∩ Φ−1({y}).

Theorem 13. Let E be a vector space, R : E → R ∪ {+∞} a convex function, and Φ : E → Rm

linear such that argmin(P) is nonempty. Assume that {R ≤ min(P)} is linearly closed and contains
no line.

If min(P) > infE R, then each extreme point of argmin(P) is

• a convex combination of (at most) M extreme points of {R ≤ min(P)},

• or a convex combination of (at most) M − 1 points, each an extreme point or in an extreme
ray of {R ≤ min(P)}.

If min(P) = infE R, the previous description holds involving an extra point in both cases. The
proof relies on two steps: (i) showing that each extreme point of argmin(P) belongs to a face of
{R ≤ minP} of dimension at most M − 1, (ii) use Klee’s extension (Dubins, 1962; Klee, 1963) of
Caratheodory’s theorem for unbounded sets.

Note that the results presented in this section are obtained using geometrical considerations,
and without relying on optimality conditions, as standard ML representer theorems do.

This theorem allows to characterize the solutions of various problems involving the most popular
penalties:

• in the case of linear programming: Let ψ ∈ Rn be a vector and Φ ∈ Rm×n be a matrix and
consider the following linear program in standard (or equational) form:

inf
u∈Rn

+
Φu=y

⟨ψ, u⟩ (1.22)

The extreme points of its solution set can be shown to be m-sparse, i.e. of the form

u⋆ =

m∑

i=1

αiei, αi ≥ 0; (1.23)

• in the case of ℓ1-analysis prior, we consider an analysis operator L ∈ Rp×n and Φ ∈ Rm×n be
a matrix, and we want to solve

inf
u∈Rn
Φu=y

∥Lu∥1 . (1.24)
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Assuming that L is surjective (so p ≤ n), we can show that the solutions can be written as

u⋆ =
∑

i∈I

αiL
+ei + uK , αi ∈ R, (1.25)

where uK ∈ ker(L) and I ⊂ {1, . . . , p} is a set of cardinality |I| ≤ m− dim(Φker(L)).

• in the case of semi-definite programming, we aim at solving

inf
M⪰0

Φ(M)=y

⟨A,M⟩, (1.26)

and extreme points of its solution set are shown to be matrices of rank m;

• in the case of nuclear norm minimization, as extreme points of the regularizer level set are
matrices of rank-one, we directly obtain that we recover rank-m solutions;

• towards an infinite-dimensional setting, in the case of moment problem: Let Ω be a compact
metric space,M(Ω) be the set of Radon measures on Ω and letM+(Ω) ⊆M(Ω) be the cone of
nonnegative measures on Ω. Let ψ and (ϕi)1≤i≤m denote a collection of continuous functions
on Ω. Now, let Φ :M(Ω)→ Rm be defined by (Φµ)i = ⟨ϕi, µ⟩, where ⟨ϕi, µ⟩ :=

∫
Ω
ϕidµ, and

consider the following linear program in standard form

inf
µ∈M+(Ω)

Φµ=y

⟨ψ, µ⟩. (1.27)

Provided that the solution set of the previous problem is non-empty, its extreme points are
m-sparse, i.e. of the form:

µ⋆ =

m∑

i=1

αiδxi
, xi ∈ Ω, αi ≥ 0; (1.28)

• in the case of total variation gradient penalization which is defined as for any locally integrable
function u as

TV (u) := sup

(∫
udiv(ϕ) dx, ϕ ∈ C1

c (Rd)d, sup
x∈Rd

∥ϕ(x)∥2 ≤ 1

)
.

If the above quantity is finite, we say that u has bounded variation and its gradient Du is a
Radon measure, with

TV (u) =

∫

Rd

|Du| = ∥Du∥(M(Rd))d .

The extreme points of the TV ball have been described by Fleming (1957) and Ambrosio
et al. (2001) as indicator of simple sets (i.e. simply connected sets with no holes). This leads
to the description of the extreme points of the solution set as a sum of m indicator of simple
sets. This description has in particular inspired the PhD. work of Romain Petit at Inria
Paris under the supervision of Vincent Duval and Yohann De Castro to propose efficient
Frank-Wolfe-based algorithms to solve this type of problems.
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Chapter 2

Contributions in machine learning

Contents
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After being recruited as a lecturer in 2016 at Sorbonne University (SU), I took the responsibility
of machine learning courses at master 2 level, but also the direction of the statistics program of
the master of mathematics and applications of SU. Decisive scientific encounters and a consequent
investment in teaching have therefore gradually oriented my research towards the highly competitive
domain of statistical and machine learning.

In the following, I present some of my contributions in learning, and more particularly in su-
pervised learning. Supervised learning is the science of prediction: how from training examples
(X1, Y1) , . . . , (Xn, Yn) ∈ X × Y can one infer a link between the inputs X1, . . . , Xn and their
corresponding outputs Y1, . . . , Yn? And more importantly how can one generalize the learned link
on these examples to unseen data to be able to predict Ynew from only Xnew? This is the central
question of supervised machine learning, to which tree-based methods and neural networks provide
a powerful and efficient answer.

Outline The predictors mentioned just above are usually obtained by minimization of an (em-
pirical) risk. With this in mind, I present in Section 2.1 two new learning algorithms addressing
this issue. They respectively belong to the classes of boosting methods and stochastic optimization,
and have been respectively developed in collaboration with two of my colleagues in the LPSM,
Maxime Sangnier and Antoine Godichon-Baggioni, in the works Fouillen et al. (2022) and Boyer
and Godichon-Baggioni (2020). In Section 2.2, I explore the possible connections between tree-
based methods and neural networks, 2 classes of powerful machine learning predictors, and how
one can benefit from the other. In particular, I present the developments of Arnould et al. (2021)
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and Arnould et al. (2022). Finally, in Section 2.3, I investigate a hot topic related to ML predictors
achieving a zero empirical risk but still performing well on unseen data. The so-called benign over-
fitting regime is in particular studied in the case of interpolating random forests (Arnould et al.,
2022).

The last tree referred papers have been written during the PhD. thesis of Ludovic Arnould
that I co-advise with Erwan Scornet (Ecole Polytechnique). Patrick Lutz, a master 2 intern with
incredible scientific maturity, now in PhD. at Boston University, also made it possible to complete
a research project numerically involved.

2.1 New learning algorithms

2.1.1 Accelerated proximal boosting

Boosting algorithms, and more specifically gradient boosting ones, consist in a class of methods,
currently regarded as one of the best off-the-shelf learning techniques for tabular data in several
real-world situations. They act by sequentially aggregating weak learners, to build a more complex
and accurate model. This assembly is iteratively performed, taking into account the performance of
the model built so far. Gradient boosting can be seen as a greedy optimization procedure (similar
to gradient descent), aimed at minimizing an empirical risk over the set of linear combinations of
weak learners.

Setting More formally, given a pair of random variables (X,Y ) ∈ X ×Y, supervised learning aims
at explaining Y given X, thanks to a measurable function f⋆ : X → R. In this context, f⋆(X) may
represent several quantities, depending on the task at hand, for which the most notable examples
are the conditional expectation x ∈ X 7→ E[Y |X = x] or the conditional quantiles of Y given X
for regression, as well as the regression function x ∈ X 7→ P(Y = 1|X = x) for ±1-classification.
Often, this target function f⋆ is a minimizer of the risk E(ℓ(Y, f(X))) over all measurable functions
f , where ℓ : R×R→ R is a suitable convex loss function (respectively the square function and the
pinball loss in the regression examples previously mentioned).

Since the distribution of (X,Y ) is generally unknown, the minimization of the risk is out of
reach. One would rather deal with its empirical version instead:

min
f∈span(F)

Rn(f) :=
1

n

n∑

i=1

ℓ(Yi, f(Xi)) (2.1)

where {(Xi, Yi)}1≤i≤n is a training sample of i.i.d. copies of (X,Y ), and F is a class of functions from
X to R (usually chosen as the class of classification and regression trees). In practice the objective
function is often regarded as a function from Rn to R, considering that it depends on f only
through the training samples (f(X1), . . . , f(Xn)) ∈ Rn. Therefore, in the following we will denote
by∇nRn(f) the n-dimensional gradient ofRn with respect to the evaluations (f(X1), . . . , f(Xn)) ∈
Rn.

Gradient boosting If Adaboost (Freund and Schapire, 1997) is the seminal boosting algorithm
by excellence, it can be actually viewed as an instance of gradient boosting algorithms (Friedman,
2001) when using the particular exponential loss. The principles of a general gradient boosting
approach are recalled in Algorithm 1. When the function ℓ, used in the definition of Rn, is not
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Algorithm 1 Gradient boosting.

Input: γ1, . . . , γT > 0 (gradient steps).
1: Set f0 ∈ argming∈F Rn(g) (initialization).
2: for t = 0 to T − 1 do
3: Compute r ← −∇nRn(ft) (pseudo-residuals).

4: Compute gt+1 ∈ argming∈F

∥∥∥(g(X1), . . . , g(Xn))
⊤ − r

∥∥∥
2
.

5: Set ft+1 ← ft + γt+1gt+1. (update).
6: end for

Output: fT .

differentiable with respect to its second argument, gradient boosting just uses a subgradient in the
place of the gradient∇nRn(ft). This is, of course, convenient but as subgradients are not necessarily
descent directions, they may damage the convergence of (sub-)gradient boosting. When dealing
with non-differentiable convex losses, an optimizer normally has the reflex to resort to proximal
algorithms. For this reason, we propose a new procedure for non-differentiable loss functions ℓ,
which consists in adapting the proximal point algorithm (Nesterov, 2013) to functional optimization.

Proposal: proximal boosting methods The simple idea underlying the proximal boosting
algorithm proposed in Fouillen et al. (2022), is to replace the update direction of the optimization
variable in Algorithm 1 by a proximal direction (instead of a subgradient), which is1

Proxλt+1
n Rn(f) :=

1

λt+1

(
(f(X1), . . . f(Xn))− proxλt+1Rn

(f(X1), . . . f(Xn))
)
,

where λt+1 > 0 is a proximal step. Thus, proximal boosting computes the pseudo-residuals based
on Proxλt+1

n Rn(ft) instead of ∇nRn(ft) and leaves the rest unchanged. This new algorithm is very
intuitive and proved to converge at the expected rate for differentiable loss functions, while obtaining
a rate of convergence for non-differentiable loss functions remains an open question. To remedy this
limitation, we have introduced a variant of this algorithm, named residual proximal boosting (see
Algorithm 2) and inspired by Grubb and Bagnell (2011), which incorporates a mechanism making
it possible to control the approximation error made at each iteration and to obtain a convergence
rate under weak assumptions.

This algorithm can be shown to converge without requiring strong convexity or differentiability
of the objective function, but relying on an edge hypothesis, quite classical in the boosting literature,
see Grubb and Bagnell (2011). It characterizes the approximation capacity of the class F , as follows:
there exists ζ ∈ (0, 1] such that:

∀r ∈ Rn, ∃g ∈ F : ∥g(Xn
1 )− r∥2 ≤ (1− ζ2)∥r∥2.

A set of weak learners F satisfying such an assumption is said to have edge ζ.

1Note that this corresponds to the update direction in a proximal point algorithm.
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Algorithm 2 Residual proximal boosting.

Input: λ1, . . . , λT > 0 (proximal steps).
1: Set f0 ∈ argming∈F Rn(g), ∆0 ← 0 (initialization).
2: for t = 0 to T − 1 do
3: Compute r ← −Proxλt+1

n Rn(ft) (pseudo-residuals).

4: Compute gt+1 ∈ argming∈F

∥∥∥(g(X1), . . . , g(Xn))
⊤ − (r +∆t)

∥∥∥.
5: Set ft+1 ← ft + λt+1gt+1.
6: Set ∆t+1 ← r +∆t − gt+1(X

n
1 ).

7: end for
Output: fT .

Theorem 14 (Unformal). Under the edge hypothesis, assume that Rn is convex and L-Lipschitz
continuous for some L > 0. Let (ft)t be any sequence generated by Algorithm 2 and fbest ∈
argmin1≤t≤T Rn(ft). Assume that there exists f⋆ ∈ argminf∈spanF Rn(f) and that ∥(ft(X1), . . . ,

ft(Xn))∥ ≤ R and ∥(f⋆(X1), . . . , f
⋆(Xn))∥ ≤ R for some R > 0 and all t. Then, choosing λt =

1√
t

leads to:

C(fbest)− C(f⋆) ≤
2R2

√
T

+
40G2

ζ4
√
T

+
2G2

ζ4T
3
2

.

Since, apart from the boosting world, the convergence rate of the proximal point method for
non-smooth functions is O(1/t) (respectively O(1/

√
t) for the subgradient method), one may expect

that proximal boosting converges in O(1/t) (while subgradient boosting is in O(1/
√
t) (Grubb and

Bagnell, 2011)) but the previous result states a worst case convergence rate in O(1/
√
t). The latter

is in fact not that surprising: for L-smooth and κ-strongly convex objectives, gradient descent

converges in O
((

1− κ
L

)t)
while gradient boosting converges in O(1/t). This highlights that the

approximation step used in boosting iterations is prone to damage the convergence rate.
Numerical experiments on synthetic data confirm the theoretical convergence results and show

a significant impact of the newly introduced parameter λ. Correctly tuned, this parameter pro-
vides a noticeable improvement of proximal-based boosting over gradient-based boosting for non-
differentiable loss function, from both the optimization and the statistical points of view.

As standard proximal methods can be accelerated, we also provide accelerated versions of the
proximal algorithm and conduct a thorough numerical study on different real-world datasets. In-
corporating Nesterov’s acceleration to proximal boosting, as done with gradient boosting by Biau
et al. (2019a) introduce instabilities in (both) algorithms, leading to divergence on the training
and the test sets. Our experience is that accelerated boosting is very sensitive to hyperparameters
and thus tricky to tune. Despite the fact that these procedures rarely provide good generalization
results, accelerated proximal boosting seems to perform better than its gradient counterpart for
non-differentiable losses, and early stopping helps to prevent overfitting.

2.1.2 Theoretical study of stochastic Newton’s algorithm

Learning is often performed through the minimization of an (empirical) risk:

min
fθ∈F

R(f) := E [ℓ(Y, fθ(X))] or min
f∈F
Rn(f) :=

1

n

n∑

i=1

ℓ(Yi, fθ(Xi))
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Figure 2.1: Losses on test datasets for different losses. ∆ Test loss refers to the increment of the loss from
that of gradient boosting. Proposed methods are depicted in blue, orange and green.

for some loss function ℓ, some generic pair of random variables (X,Y ) ∈ X ×Y, a training samples
{(Xi, Yi)}1≤i≤n i.i.d. copies of (X,Y ), and a class F of parameterized functions {fθ; θ ∈ Rd}. First-
order online algorithms have become hegemonic to tackle both problems: by a low computational
cost per iteration (in the case of empirical risk minimization) or the ability to process online data
(in the case of risk minimization), they allow performing machine learning tasks on large and real-
world datasets; see, for instance, the review paper Bottou et al. (2018), including a unified view on
both problems.

SGD, the ruler Stochastic gradient methods (SGD) and their averaged versions are shown to
be theoretically asymptotically efficient (Polyak and Juditsky, 1992a; Pelletier, 2000), and more
recent works focus on the non-asymptotic behavior of these estimates (Bach and Moulines, 2013;
Godichon-Baggioni, 2019; Gadat and Panloup, 2022): more precisely, it was proven that, under
mild assumptions, averaged estimates can converge at a rate of order O(1/n) where we let n denote
the size of the dataset (and the number of iterations as well, in a streaming setting). However,
these first-order online algorithms can be shown in practice to be very sensitive to the Hessian
structure of the risk they are supposed to minimize. To address this issue, first-order optimization
strategies involving adaptive learning rates have been also considered in the literature, see Adagrad
(Duchi et al., 2011) or Adadelta (Zeiler, 2012). In view of avoiding highly costly iterations, they
mimic second-order algorithms by approximating the Hessian matrix by exclusively using gradient
information or by assuming a diagonal structure of it (making its inversion much easier). If this
type of algorithms have been incredibly popularized, they may still under-perform when the Hessian
structure is complex. To address this issue, the attention may be deported towards stochastic
second-order algorithms.
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Stochastic Newton algorithms Stochastic second-order algorithms have been studied in the
literature, essentially under two different prisms: on the one hand, Byrd et al. (2016) relies on
limited-memory BFGS updates. Specifically, local curvature is captured through (subsampled)
Hessian-vector products, instead of differences of gradients, so that the cost is close to the one of
standard SGDs. This quasi-Newton method requires a good conditioning of the estimated Hessian
inverses, and can be seen as a refinement of mini-batches gradient algorithms, which is not explicitly
derived for online purposes. On the other hand, Leluc and Portier (2020) introduce a conditioned
SGD based on a preconditioning of the gradient direction. The preconditioning matrix is typically
an estimate of the inverse Hessian at the optimal point. The proposed conditioned SGD entails a
full inversion of the estimated Hessian, requiring O(d3) operations per iteration in general, which
is less compatible with large-scale data.

Contributions In Boyer and Godichon-Baggioni (2020), we consider a unified and general frame-
work that includes various applications of machine learning tasks, for which we propose a stochastic
weighted Newton algorithm in which an estimate of the Hessian is constructed and easily updated
over iterations using genuine second-order information. Given a particular structure of the Hes-
sian estimates that will be encountered in the most classical applications, this algorithm leverages
from the possibility to directly update the inverse of the Hessian matrix at each iteration in O(d2)
operations, generalizing a trick introduced in the context of logistic regression in Bercu et al. (2020).

Algorithms The stochastic Newton algorithm is defined by

θn+1 = θn −
1

n+ 1
H

−1

n ∇θℓ (Yn+1, fθn(Xn+1))

where Hn is Fn = σ (X1, Y1, . . . , Xn, Yn) measurable. Its weighted version reads as

θ̃n+1 = θ̃n − γn+1S
−1

n ∇θℓ (Yn+1, fθn(Xn+1))

θn+1,τ = θτ,n + τn+1

(
θ̃n+1 − θn,τ

)

where γn =
cγ
nα , with cγ > 0, α ∈ (1/2, 1) and Sn is Fn = σ (X1, Y1, . . . , Xn, Yn) measurable. By

choosing different sequences (τn)n, one can play more or less on the strength of the last iterates in
the optimization. This strategy can be indeed motivated by limiting the effect of bad initialization
of the algorithms. For instance, choosing τn = 1

n+1 leads to the “usual” averaging in stochastic

algorithms. This can be generalized to other weighting, e.g. τn = log(n+1)ω∑n
k=0 log(k+1)ω with ω > 0.

The choice of the weights (τn)n are assumed to satisfy the conditions of Mokkadem and Pelletier
(2006): there is τ > max {1/2,−1/2} such that

n

(
1− τn−1

τn

)
−−−−−→
n→+∞

−1 and nτn −−−−→
n→∞

τ

For both averaging previously introduced, since τ = 1, one has the following unified iterates

θn,1 =
1∑n

k=0 log(k + 1)ω

n∑

k=0

log(k + 1)ω θ̃k, (2.2)

where choosing ω = 0 leads to the “usual” averaging technique.
Theoretical study The iterates of the weighted stochastic Newton algorithm are shown to

asymptotically converge.
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Theorem 15 (Unformal). Assuming that the convergence of Hessian estimates and their inverse
is controlled in terms of the operator norm,

∥θτ,n − θ⋆∥2 = O

(
lnn

n

)
a.s.

and
√
n (θτ,n − θ⋆) L−−−−−→

n→+∞
N
(
0,

τ2

2τ − 1
H−1ΣH−1

)

with

H := ∇2
θE [ℓ(Y, fθ⋆(X))] and Σ := E

[
∇θℓ (Y, fθ⋆(X))∇θℓ ((Y, fθ⋆(X)))

⊤
]
.

Note that the averaging techniques mentioned above give

√
n (θn,1 − θ) L−−−−−→

n→+∞
N
(
0, H−1ΣH−1

)

so that these estimates are asymptotically efficient for both considered averaging methods (the usual
and the logarithmic ones). But the choice of weights remains crucial as it can damage the asymptotic
variance. Indeed, using another non-uniform weighting of the form θn,1+ω = 1∑n

k=0(k+1)ω

∑n
k=0(k+

1)ω θ̃k leads to
√
n (θn,1+ω − θ) L−−−−−→

n→+∞
N
(
0,

(1 + ω)2

2ω + 1
H−1ΣH−1

)
.

Implementation trick Stochastic Newton algorithms involves the inverse of the Hessian esti-
mates at each iteration, requiring generally O(d3) operations. One can take advantage of a special
form of the Hessian estimate Hn = (n+ 1)−1Hn:

Hn = H0 +

n∑

k=1

ukΦkΦ
⊤
k , (2.3)

with H0 symmetric and positive, uk = uk (Xk, θk−1) ∈ R and Φk = Φk (Xk, θk−1) ∈ Rd. Indeed,
the inverse H−1

n+1 can be easily updated thanks to Riccati’s formula (Duflo, 1997), i.e.

H−1
n+1 = H−1

n − un+1

(
1 + un+1Φ

T
n+1H

−1
n Φn+1

)−1
H−1

n Φn+1Φ
T
n+1H

−1
n , (2.4)

making the update costs O(d2). In such a case, one can consider the filtration generated by the
sample again, i.e. Fn = σ (X1, . . . , Xn). The construction of these types of recursive estimates of the
inverse of the Hessian can be made explicit in the cases of linear, logistic and softmax regressions.

Applications We perform numerical simulations in the case of linear, logistic and softmax
models, showing the benefit of stochastic Newton iterates over standard (and averaged) SGD ones,
in particular when the covariance structure is complex. We include in Figure 2.2 the results for the
logistic regression.

K One should remark that the main limitation of this work is that it does not capture the benefit
of stochastic Newton iteration, over stochastic gradient ones (which were known to be already
asymptotically optimal), whereas the improvement is visible on practical experiments (provided
the practitioner is willing to pay a computational cost in O(d2) instead of O(d)). This highlights
that there is still avenue for deriving theoretical guarantees for stochastic Newton algorithms able
to show improvement in non-asymptotic regimes.
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Figure 2.2: (Logistic regression with correlated Gaussian variables) Mean-squared error of the
distance to the optimum θ with respect to the sample size for different initializations: θ0 = θ+r0U ,
with r0 = 1 (left), r0 = 2 (middle) or r0 = 5 (right).

2.2 Connections between tree-based methods and neural net-
works

Tree ensemble methods on the one hand, and neural networks on the other hand, have met great
success in the machine learning community for their predictive performances. In this section, we
explore in two different ways how one technique can benefit from the other to form more powerful
models.

2.2.1 Analyzing the tree-layer structure of deep forests

Figure 2.3: (from Zhou and Feng
(2019)) Deep Forest architecture in
which Breiman’s forests (resp. CRF) are
depicted in black (resp. blue).

What is Deep Forest? The Deep Forest (DF) algo-
rithm (Zhou and Feng, 2019) has received a lot of atten-
tion in recent years in various applications ranging from
hyperspectral image processing, medical imaging, drug
interactions to fraud detection. It consists in a hybrid
learning procedure in which random forests are used as
elementary components of a neural network. More pre-
cisely, each layer of DF is composed of an assortment
of Breiman’s forests (Breiman, 2001) and Completely-
Random Forests (CRF) (Fan et al., 2003), fed by the
outputs of the previous layer and the initial input (entail-
ing therefore residual connections), see Figure 2.3. Each
module of this NN architecture being non-differentiable,
each layer are trained in cascade, one after the other (without any backpropagation training). This
results in an ever more complex forest architecture, and if the empirical evidence of its relevancy
can be outlined on real-world datasets, the real asset of such procedure over standard forests still
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remains theoretically unclear.

Numerical and theoretical analyses of DF As the performances of DF have already been
validated by the literature (see Zhou and Feng, 2019), the main goals of our study in Arnould
et al. (2021) are (i) to quantify the potential benefits of DF over RF, and (ii) to understand the
mechanisms at work in such complex architectures.

Point (i) Deep Forests contain an important number of tuning parameters. Apart from the
traditional parameters of random forests, DF architecture depends on the number of layers, the
number of forests per layer, the type and proportion of random forests to use (Breiman or CRF). In
Zhou and Feng (2019), the default configuration is set to 8 forests per layer, 4 CRF and 4 RF, 500
trees per forest (other forest parameters are set to scikit-learn (Pedregosa et al., 2011) default
values), and layers are added until 3 consecutive layers do not show score improvement. We show
in particular that much lighter configuration can be on par with DF default configuration, leading
to a drastic reduction of the number of parameters in few cases. For most datasets, considering DF
with two layers is already an improvement over the basic RF algorithm. However, the performance
of the overall method is highly dependent on the structure of the first random forests, which leads
to stability issues.

Point (ii) To theoretically understand the benefit of using cascades of tree-based methods
instead of a single instance, we study a simplified version of the DF architecture. By establishing
tight lower and upper bounds on the risk, we prove that a shallow tree-network may outperform
an individual tree in the specific case of a well-structured dataset if the first encoding tree is rich
enough. This is developed in the sequel as it is a first step to understand the interest of extracting
features from trees, and more generally the benefit of tree networks.

We assume to have access to a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)} of i.i.d. copies of the
generic pair (X,Y ) with X living in [0, 1]d and Y ∈ {0, 1} being the label associated to X. We
consider a context of binary classification (in regression): let r(x) = E[Y |X = x] be the regression
function and for any function f , its quadratic risk is defined as R(f) = E[(f(X) − r(X))2], where
the expectation is taken over (X,Y,Dn).

Given a decision tree, we denote by Ln(X) the leaf of the tree containing X and Nn(Ln(X))
the number of data points falling into Ln(X). The prediction of such a tree at point X is given by

r̂n(X) =
1

Nn(Ln(X))

∑

Xi∈Ln(X)

Yi

with the convention 0/0 = 0, i.e. the prediction for X in a leaf with no observations is arbitrarily
set to zero.

Definition 16 (Shallow centered tree network). The shallow tree network consists in two trees in
cascade:

• (Encoding layer) The first-layer tree is a cycling centered tree of depth k. It is built
independently of the data by splitting recursively on each variable, at the center of the cells.
The first cut is made along the first coordinate, the second along the second coordinate, etc.
The tree construction is stopped when exactly k cuts have been made. For each point X, we
extract the empirical mean ȲLn(X) of the outputs Yi falling into the leaf Ln(X) and we pass
the new feature ȲLn(X) to the next layer, together with the original features X.
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Figure 2.4: Arbitrary chessboard (left) or regular chessboard (right) data distribution for k⋆ = 6 and 40
black cells (p is not displayed here). Partition of the (first) encoding tree of depth 4, 6, 8 (from left to right)
is displayed in blue. The optimal depth of a single centered tree for this chessboard distribution is 6.

• (Output layer) The second-layer tree is a centered tree of depth k′ for which a cut can be
performed at the center of a cell along a raw feature (as done by the encoding tree) or along
the new feature ȲLn(X). In this latter case, two cells corresponding to {ȲLn(X) < 1/2} and
{ȲLn(X) ≥ 1/2} are created.

The resulting predictor composed of the two trees in cascade, of respective depth k and k′, trained
on the data (X1, Y1), . . . , (Xn, Yn) is denoted by r̂k,k′,n.

Note in particular that r̂k,0,n(X) is the prediction given by the first encoding tree only and
outputs, as a classical tree, the mean of the Yi’s falling into a leaf containing X.

We manage to exhibit a very structured data setting in which a tree network outperforms a
single tree. The input data X is assumed to be uniformly distributed over [0, 1]d and Y ∈ {0, 1}.
Let k⋆ be a multiple of d and let p ∈ (1/2, 1]. We build a regular partition of the space with cells
C1, . . . , C2k⋆ of generic form

d∏

k=1

[
ik

2k⋆/d
,
ik + 1

2k⋆/d

)
,

for i1, ..., id ∈ {0, ..., 2k
⋆/d− 1}. We arbitrary assign a color (black or white) to each cell, which has

a direct influence on the distribution of Y in the cell. More precisely, for x in a given cell C,

P[Y = 1|X = x] =

{
p if C is a black cell,

1− p if C is a white one.
(2.5)

This distribution corresponds to a generalized chessboard structure, see Figure 2.4.

The theoretical upper and lower bounds on the excess risk of one or two layer tree networks are
summarized in Table 2.1.

This shows that there exists a benefit from using a tree network when the first-layer tree is deep
enough. In this case, the risk of the shallow tree network is O(1/n) whereas that of a single tree
is O(2k/n). In presence of complex and highly structured data in the sense that one can identify
similar distributions in different areas of the input space, the shallow tree network benefits from a
variance reduction phenomenon by a factor 2k. Overall, first-layer trees, and more generally the
first layers in DF architecture, can indeed act as efficient data-driven encoders, helping to reduce
the variance of the subsequent predictive layers.
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Consider the worst data setting for the
cascade tree network (i.e. regular chess-
board). Then, if the encoding is biased
(k < k⋆) (shallow first tree)

Consider the general chessboard when
the encoding is unbiased (over-optimal
1st tree depth, k ≥ k⋆).

Risk of the
first tree
R(r̂k,0,n)

(
p− 1

2

)2

︸ ︷︷ ︸
bias

+O

(
2k

n

)

︸ ︷︷ ︸
variance

Θ




(
2kp(1− p)

n

)

︸ ︷︷ ︸
variance

+C1α
n
k




Risk of the
second tree
R(r̂k,1,n)

(after one cut)
≥
(
p− 1

2

)2

︸ ︷︷ ︸
bias

Θ



2p(1− p)

n︸ ︷︷ ︸
variance

+C2β
n
k,p




Table 2.1: Summary of the lower and upper bounds on a one or two-layer tree network depending
on the depth of the first “encoding” tree.

2.2.2 New initialization technique for MLP learning

Neural networks (NN) are now widely used in many domains of machine learning, in particular
when dealing with very structured data. They indeed provide state-of-the-art performances for
applications with images or text. However, neural networks still perform poorly on tabular inputs,
for which tree ensemble methods remain the gold standards (Grinsztajn et al., 2022). This section
is dedicated on presenting a practical approach, from the original paper Lutz et al. (2022), which
improves the performances of the former by using the strengths of the latter.

NN & tabular data In the absence of a suitable architecture for handling tabular data, the
Multi-Layer Perceptron (MLP) architecture (Rumelhart et al., 1986) remains the obvious choice due
to its generalist nature. Apart from the large number of parameters, one difficulty of MLP training
arises from the non-convexity of the loss function (see, e.g., Sun, 2020). In such situations, the
initialization of the network parameters (weights and biases) are of the utmost importance, since it
can influence both the optimization stability and the quality of the minimum found. Typically, such
initializations are drawn according to independent uniform distributions with a variance decreasing
w.r.t. the size of the layer (He et al., 2015). In the end, how MLP can be used to handle tabular
data remains unclear, especially since a corresponding prior in the MLP architecture adapted to
the correlations of the input is not obvious, to say the least.

Very recently, specific NN architectures have been proposed to deal specifically with tabular
data. For example, TabNet (Arik and Pfister, 2021) uses a sequential self-attention structure
to detect relevant features and then applies several networks for prediction. SAINT (Somepalli
et al., 2021), on the other hand, uses a two-dimensional attention structure (on both features and
samples) organized in several layers to extract relevant information which is then fed to a classical
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MLP. These methods typically require a large amount of data, since the self-attention layers and
the output network involve numerous MLP.

Tree-based methods & NN Several solutions have been proposed to leverage the correspon-
dence between tree-based methods and NN, in order to develop more efficient models for processing
tabular data. For example, TabNN (Ke et al., 2018) first trains a GBDT on the available data,
then extracts a group of features per individual tree, compresses the resulting groups, and uses a
tailored Recursive Encoder based on the structure of these groups (with an initialization based on
the tree leaves). Therefore, TabNN employs pre-trained tree-based methods to design more efficient
NN.

Conversely, Sethi (1990), Brent (1991), and later Welbl (2014), Richmond et al. (2015) and Biau
et al. (2019b) propose to translate decision trees into very specific MLP (made of 3 layers) and use
GD training to improve upon the original tree-based method. Such procedures can be seen as a
way to relax and generalize the partition geometry produced by trees and their aggregation. To our
knowledge, such translations have not been used to boost the training of general NN architectures.
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±1-bits that encodes for the precise location of x in the leaves of the tree.
The leaf node identity of x can now be extracted from this vector using a
weighted combination of the bits, together with an appropriate thresholding.

Let L = {L1, . . . , LK} be the collection of all tree leaves, and let L(x) be
the leaf containing x. The second hidden layer has K neurons, one for each
leaf, and assigns a terminal cell to x as explained below. We connect a unit
k from layer 1 to a unit k′ from layer 2 if and only if the hyperplane Hk is
involved in the sequence of splits forming the path from the root to the leaf
Lk′ . The connection has weight +1 if, in that path, the split by Hk is from
a node to a right child, and −1 otherwise. So, if (u1(x), . . . , uK−1(x)) is the
vector of ±1-bits seen at the output of layer 1, the output vk′(x) ∈ {−1, 1}
of neuron k′ is τ(
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k′), where notation k → k′ means that
k is connected to k′ and bk,k′ = ±1 is the corresponding weight. The offset
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Figure 2.5: (from Biau et al. (2019b)) Illustration of a decision tree, its induced feature space
partition and its corresponding MLP translation on a problem with 2 input variables. The activation
functions involved in the network on the right are indicator ones.

Proposal In the work Lutz et al. (2022), we propose a new method to initialize a potentially
deep MLP for learning tasks with tabular data:

(i) First a tree-based predictor (boosting or random forests) is trained;

(ii) Secondly, the tree-based predictor is translated into a 3-layer NN architectures (following the
procedure of Biau et al. (2019b)), see Figure 2.5, in which typical indicator functions involved
in the tree prediction are relaxed by the use of tanh functions instead. Note that this relaxation
may induce a performance loss for the predictors in play;

(iii) Finally, use this translation, to initialize the 2 first layers of an MLP (forget the last layer of
the translation), the deeper ones being classically randomly initialized.

The whole procedure is represented in Figure 2.6. When the tree-based predictor used for initial-
ization is from boosting (resp. a random forest), we talk about “GBDT init” (resp. “RF init”) in
the numerical results. Note that the boosting algorithm used in the sequel is XGBoost (Chen and
Guestrin, 2016).
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Figure 2.6: Illustration of the initialization technique on an MLP with 2 inputs and 1 output. In (a),
a pre-trained tree-based method composed of 2 trees is represented in a NN fashion involving indicator
functions as activation functions. In (b), an MLP of arbitrary depth and involving tanh activation functions
is represented at initialization: the weights of the first two layers are initialized using the information
captured in (a) (note that all connections marked in transparent blue are initialized to 0). The weights of
the subsequent layers are randomly initialized (orange edges).

Numerical results The proposed procedure is shown to outperform the widely used uniform
initialization of MLP (default initialization in Pytorch Paszke et al., 2019), denoted “random init”,
as follows.

1. Improved performances. For tabular data, the predictive performances of the MLP after
training are improved compared to MLP that use a random initialization. Our procedure
also outperforms more complex deep learning procedures based on self-attention and is on
par with classical tree-based methods (such as XGBoost Chen and Guestrin (2016)).

2. Faster optimization. The optimization following a tree-based initialization is boosted in the
sense that it enjoys a faster convergence towards a (better) empirical minimum: a tree-based
initialization results in faster training of the MLP.

3. Even better in large width regimes. The standard search spaces for the MLP width used
in the literature usually involve a few hundred neurons per layer (e.g. up to 100 neurons in
Borisov et al., 2021); yet, in this work, we consider MLP with a width up to 2048 neurons.
Large MLP are actually very beneficial for tree-based initialization methods as they allow
the use of more expressive tree-based models in the initialization step. We have conducted
numerical experiments in order to compare the performance of an MLP with random/GDBT
initializations and various widths. There is no gain in prediction by using wider (thus more
complex) NN, when randomly initialized. However, an MLP initialized with GBDT signifi-
cantly benefits from enlarging the NN width (justifying a fixed width of 2048 for tree-based
initialized MLP). This confirms the idea that tree-based initialization helps revealing relevant

49



CHAPTER 2. CONTRIBUTIONS IN MACHINE LEARNING

1 20 40 60 80 100
Training epochs

0.0

0.1

0.2

0.3

0.4

0.5

M
SE

Lo
ss

1 20 40 60 80 100
Training epochs

4000

6000

8000

10000

12000

14000

16000

M
SE

Lo
ss

0 5 10 15 20 25 30 35 40
Training epochs

0.3

0.4

0.5

0.6

0.7

Cr
os

sE
nt

ro
py

Lo
ss

(a) Housing (b) Airbnb (c) Adult

0 5 10 15 20 25 30 35 40
Training epochs

0.2

0.4

0.6

0.8

1.0

Cr
os

sE
nt

ro
py

Lo
ss

0.0 2.5 5.0
0.20

0.22

0.24

0.26

0 5 10 15 20 25 30
Training epochs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Cr
os

sE
nt

ro
py

Lo
ss

0 5 10 15 20 25 30
Training epochs

0.0

0.5

1.0

1.5

2.0

Cr
os

sE
nt

ro
py

Lo
ss

0 2 4
1.0

1.1

1.2

1.3

(d) Bank (e) Covertype* (f) Volkert

MLP rand. init.
MLP RF init.

MLP GBDT init. Train set
Test set

Figure 2.7: Optimization behaviour of randomly, RF and GBDT initialized MLP evaluated over a 5 times
repeated (stratified) 5-fold of each data set, according to Protocol P1. The lines and shaded areas report
the mean and standard deviation. *evaluation on a single 5-fold cross validation.

features to the MLP, all the more as the width increases, and by doing so, boosts the MLP
performance after training.

4. Preserved weight distribution after training. Finally, we investigate the structure that
tree-based initialization induces on the MLP after training, by looking at the distribution of
the weights layer by layer before and after training. It indicates that the weight distribution on
the first two layers change significantly during training when the MLP is randomly initialized:
the weights are uniformly distributed at epoch 0 but appear to be Gaussian after training.
When RF or GBDT initializers are used instead, the weights of the first two layers are sparsely
distributed at epoch 0 by construction, and their distribution is preserved during training
(notice the logarithmic y-axis for these plots in Figure 2.8).

KWhile our procedure is quite generic, some restrictions are noticeable. First, our analysis
only allows to initialize neural networks with tanh activation functions; removing this limitation
by considering ReLU is a good avenue for future work. Therefore, our work highlights that SGD
optimizer fails to find the best final weights starting from a random and unstructured initialization.
Hence, the implicit regularization that operates with SGD in some specific theoretical framework
such as diagonal network, see Woodworth et al. (2020), does not seem strong enough in practical

50



2.3. INTERPOLATING REGIMES IN RANDOM FORESTS

Model
UCI data set Housing Airbnb Diamonds Adult Bank Blastchar Heloc Higgs Covertype Volkert

MSE ↓
MSE ↓
(x103)

MSE ↓
(x10-3)

AUC ↑
(in %)

AUC ↑
(in %)

AUC ↑
(in %)

AUC ↑
(in %)

AUC ↑
(in %)

Acc. ↑
(in %)

Acc. ↑
(in %)

Random Forest 0.263±0.009 5.39±0.13 9.80±0.35 91.6±0.3 92.8±0.3 84.5±1.2 91.3±0.6 80.4±0.1 83.6±0.1 64.2±0.3

GBDT 0.208±0.010 4.71±0.15 7.38±0.28 92.7±0.3 93.3±0.3 84.7±1.0 92.1±0.4 82.8±0.1 97.0±0.0 71.3±0.4

Deep Forest 0.225±0.008 4.68±0.16 8.23±0.29 91.8±0.3 92.9±0.2 83.7±1.2 90.3±0.5 81.2±0.0* 92.4±0.1* 66.3±0.4

MLP rand. init. 0.258±0.011 5.07±0.16 15.5±12.5 90.5±0.4 91.0±0.3 81.4±1.2 80.1±0.1 83.2±0.3 96.7±0.0 72.2±0.4

MLP Xavier init. 0.263±0.012 5.05±0.17 12.4±6.19 90.5±0.5 90.8±0.5 81.7±1.3 79.9±1.1 72.1±0.4

MLP LUSV init. 0.295±0.018 4.99±0.14 14.1±5.00 90.5±0.5 90.2±0.5 84.3±1.2 79.9±0.9 70.8±0.5

MLP WT prun. 0.248±0.011 5.26±2.11 9.83±5.07 90.6±0.4 90.9±0.5 84.4±1.2 89.6±0.7 82.9±0.1 97.0±0.0 71.5±0.4

MLP RF init. 0.222±0.009 4.66±0.16 7.93±0.22 92.1±0.3 92.4±0.4 84.4±1.2 91.7±0.4 83.6±0.1 96.7±0.0 74.1±0.4

MLP GBDT init. 0.206±0.007 4.70±0.09 8.15±0.35 92.2±0.3 92.5±0.3 84.6±1.2 91.5±0.6 83.0±0.0 96.2±0.0 73.5±0.5

MLP DF init. 0.234±0.016 4.81±0.13 8.28±0.24 91.9±0.4 92.2±0.3 84.2±1.0 91.4±0.6 83.3±0.1* 94.5±0.3* 71.3±0.5

SAINT 0.258±0.011 4.81±0.15 17.7±3.83 91.6±0.3 92.2±0.4 84.0±0.8 90.2±0.7 83.7±0.1* 96.6±0.1* 70.1±0.4

Table 2.2: Best mean scores and standard deviations based on a 5 times repeated (stratified) 5-fold cross
validation. For each data set, predictors performing at least as well as the best over all (resp. best DL)
score up to its standard deviation are highlighted in bold (resp. underlined). For each model, HP have
been chosen via the “optuna” library with 100 iterations.

NN architectures to lead to a good optimum, without a specific (sparse) weight initialization. The
fact that the weight sparsity is preserved through training could potentially result from a more
complex SGD regularization, which will be definitely interesting to study in future works.

2.3 Interpolating regimes in random forests

Random Forests (RF, Breiman, 2001) have proven to be very efficient algorithms, especially on
tabular data sets as previously highlighted. As any machine learning (ML) algorithm, Random
Forests and Decision Trees have been analyzed and used according to the bias-variance trade-off.
Regularization parameters have been introduced in order to control the variance while still reducing
the bias. For instance, one can increase the variety of the constructed trees (by playing either with
bootstrap samples or feature subsampling) or control the tree structure (by limiting either the
number of points falling within each leaf or the maximum depth of all trees).

A statistical crisis In this line, statistical wisdom suggests that very complex models, interpo-
lating training data, will be poor at predicting unseen examples. However, this paradigm has been
completely questioned in recent years, by the identification of benign overfitting regimes: in par-
ticular, deeper and larger neural networks, achieving a zero training error, still empirically exhibit
high predictive performances (Goodfellow et al., 2016).

Regarding parametric methods, benign overfitting has been exhibited and well understood in lin-
ear regression (Bartlett et al., 2020; Tsigler and Bartlett, 2020; Liang et al., 2020). Many researchers
currently study the implicit bias or implicit regularization of stochastic gradient (SGD) strategies
used during neural network training: the optimization of an over-parametrized one-hidden-layer
neural network via SGD will converge to a minimum of minimal norm with good generalization
properties in a regression setting (Bach and Chizat, 2021), or with maximal margin in a classification
setting (Chizat and Bach, 2020).

Regarding non-parametric methods, practitioners have noticed the good performances of high-
depth RFs for a long time (by default, several ML libraries such as the popular scikit-learn grow
trees until pure leaves are reached). More recently, the use of interpolating (or very deep) trees for
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boosting and bagging methods has been advocated in Wyner et al. (2017). Indeed, Wyner et al.
(2017) believe that the self-averaging process at hand in RF (or in boosting methods) also produces
an implicit regularization that prevents the interpolating algorithm from overfitting. Note that the
regularization properties of RF have also been studied in the light of their complexity (Buschjäger
and Morik, 2021) and tree depth (Zhou and Mentch, 2021). This phenomenon can be put in
parallel with the results proved in Devroye et al. (1998); Belkin et al. (2019) where they show
that an interpolating kernel method using a singular kernel (similar to K(x) = ||x||−α1||x||≤1) is
consistent, reaching minimax convergence rate for β-Hölder regular functions.

In the specific case of random forests, while it is widely known that fully-grown decision trees
interpolate and, in turn, have bad predictive performances, the statistical properties of interpolating
RF have yet to be analyzed.

Study of the consistency of interpolating RF In Arnould et al. (2022), we study the trade-
off between interpolation and consistency in the context of RF regression. Contrary to Nadaraya-
Watson methods involving singular kernels that interpolate regardless of the bandwidth parameter,
note that RF interpolate only for a specific choice of the depth, thus restricting the regime in which
interpolation and consistency may occur in concordance.

(Analysis for centered RF) Centered RF have been historically studied for theoretical purposes
as simplified versions of Breiman RF (Breiman, 2001) that are widely used in practice. These RF
involve centered trees, in which cuts are always performed in the middle of current cells, therefore
independently of the data in play. Theoretically, we prove that interpolation regimes and consistency
cannot be achieved simultaneously for such non-adaptive centered RF. Note that we can only study
their non-consistency in a “mean” interpolating regime, i.e. when each tree of the RF counts only
one training data point per cell in expectation. In such a case, the major problems arise from
empty cells in tree partitions (likely to appear as the cuts are performed independently of the
data). Therefore, we study two versions of centered-type RF, called void-free CRF and kernel RF
(KeRF), for which the aggregation rule is changed in order to avoid taking into account empty
cells. More precisely, void-free CRF do not take into account empty cells and KeRF are built by
averaging over all connected data points. These methods are proved to be consistent for larger tree
depths, respectively in a noiseless and in a general noisy setting, but still for a “mean” interpolation
regime only.

(Analysis for median RF) The Median RF, studied e.g. in Duroux and Scornet (2018), is com-
posed of median trees which first randomly choose the direction to cut over and then cut at the
median of the data points contained in the current cells. In order to avoid points falling on a cell
boundary, whenever the number of points nc in the cell is odd, the cut is made at the quantile
(nc + 1)/2nc. This type of forests therefore inherently avoid the presence of empty cells. For the
first time, we manage to prove the consistency of an infinite interpolating median RF, i.e. involving
an infinite number of fully-grown median trees.

Theorem 17 (Upper bound on the risk of the median forest). Consider a generic pair (X,Y ) ∈
Rd×R of random variables such that Y = f⋆(X)+ε, where ||∂ℓf⋆||2∞ exists for all ℓ ∈ {1, . . . , d}, X
is uniformly distributed on [0, 1]d and the noise ε satisfies E[ε|X] = 0 almost surely, and V[ε] = σ2.

Consider n ≥ 16 i.i.d. observations, where n is a power of two, distributed as the generic pair
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(X,Y ). Then, the risk of the infinite median forest fMedRF
∞,n built on this data set satisfies

E
[(
fMedRF
∞,n (X)− f⋆(X)

)2]

≤ C1d

(
d∑

ℓ=1

||∂ℓf⋆||2∞

)(
1− 3

4d

)log2 n

+ σ2C2,d(log2 n)
−(d−1)/2. (2.6)

with C1 ≤ 256 exp
(

55+
√
5

2−
√
2

)
and C2,d =

(
32 exp

(
10√
2−1

) )d
dd/2.

In particular, the infinite median forest is consistent, that is

lim
n→∞

E
[(
fMedRF
∞,n (X)− f⋆(X)

)2]
= 0. (2.7)

The proof essentially relies on controlling the volume of the resulting cells. This is the first result
showing the consistency of complex predictors relying on fully-grown trees. In previous works,
the tree depth was indeed always carefully chosen to comply with the traditional “bias-variance”
compromise, and thus preventing the choice of high depths. If bootstrap is often considered as a way
to prevent overfitting when dealing with interpolators, here we show that the key randomization
mechanism at work in RF is sufficient on its own to reach consistency in spite of interpolation (and
without the help of bootstrapping). Finally, it is worth noting that if an overfitting regime is benign
for the consistency of Median RF, it seems to be nonetheless malignant for the convergence rate.

Remark 18 (Bootstrap or no bootstrap?). In our theoretical analysis, by switching the RF bootstrap
off, we manipulate trees and forests interpolating the entire training dataset, i.e. achieving a zero
training error (complying with interpolation considered in a NN context). We therefore focus only
on the diversification of the trees to retrieve consistency despite interpolation. By turning the
bootstrap on, the interpolation mode could be relaxed: each fully-grown tree would interpolate p% of
the training data (but the resulting infinite forest will not interpolate any datapoint with probability
1). Bootstrap can actually help turning interpolators into consistent estimates, see for instance Biau
and Devroye (2015) for the nearest neighbour predictor. Zhou and Mentch (2021) consider bootstrap
for interpolating RF in classification (which radically differs from regression). They observe that
with bootstrap on, the probability of interpolation tends to zero with n. This is actually corroborated
in the case of regression with median RF: in Scornet (2015), the consistency of median RF with
fully grown trees is established provided that the size an ∈ {1, . . . , n} of the bootstrap samples is such
that an →∞ and an/n→ 0. Therefore, bootstrap can preserve the RF consistency by counteracting
tree interpolation: as the sample size n grows, the fully-grown trees are less and less interpolating
the training data (since the fraction an/n of samples seen by each tree tends to 0).

(Analysis for Breiman RF) Numerical experiments show that Breiman RF are consistent when
exactly interpolating, i.e. when the whole data set is used to build each fully-grown tree. Breiman
forests rely on CART trees (classification and regression trees) which construction is driven by
sophisticated mechanisms. On the theoretical side, it remains very challenging to bound the risk of
interpolating Breiman RF. We control instead the volume of the interpolation zone for an infinite
Breiman RF (without bootstrap).

Proposition 19. Consider an infinite Breiman forest constructed without bootstrap. Suppose that
for a given configuration of the training data, all cuts have a probability strictly greater than 0 to
appear. Define the interpolation zone of a tree-based predictor as the area of the input space on
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which the prediction relies only on one training data point. Let Amin be the area of the input space
corresponding to the intersection of the interpolation zones of all possible CART trees. Then, the
volume of the minimal interpolation zone verifies

E [µ(Amin)] ≤
1

nd−1

(
1− 2−n

)d
.

This volume tends to 0 at a polynomial rate in the number of samples n and an exponential
rate in the dimension d. This supports the idea that the decay of the interpolation volume could
be fast enough to retrieve consistency despite interpolation. More specifically, this is a necessary
condition for consistency: the volume of the area where the prediction involves only a finite number
of points (a fortiori the interpolation zone) should tend to 0. Indeed, it is not possible to average
the noise of the training dataset with only a finite number of points. Therefore the noise in this
area is of order σ2. Proposition 19 portends the predominant self-averaging property of adaptive
RF, and hence underpins the idea of good capabilities of Breiman RF in interpolation regimes.

K For semi-adaptive forests such as median RF, increasing the tree depth towards the interpo-
lation regime results in a reduced bias and the variance reduction phenomenon only results from the
split randomization effect. The higher the dimension, the more diversified the trees, the stronger
the averaging effect and the variance reduction should be. This remains to be understood for the
complex Breiman RF. A prelude could be to study the consistency of Breiman RF in an asymptotic
dimensional regime. The idea would be to help the RF benefit from an increase of the dimension
by improving its averaging effect and helping reduce the variance. Of course, in such a setting, the
variance is only one part of the story, and a control on the bias becomes a real hindrance (as the
approximation error may explode), unless extra model assumptions are formulated to bound the
bias (if not to make it tend to 0). This would echo in particular the behavior of ridgeless least
squares estimator in modern interpolation regimes, see Hastie et al. (2022).

K I want also to step back to discuss about the practical success of interpolating and powerful
predictors such as RF but above all, neural networks. The recent enthusiasm for theoretically ana-
lyzing the behaviour of interpolators (specially in a NN context) brought the statistical community
face to face with its own limitations: the statistical viewpoint related to the “bias-variance dilemma”
had become the dominant paradigm of supervised machine learning, stimulating a mathematical
research in this direction and increasingly sophisticated research on uniform theoretical bounds (in-
volving VC dimension, Rademacher complexities, etc.). However, the latter remain insufficient to
explain the good predictive behavior of ever more complex methods. This echoes in some way the
rupture encountered in the compressed sensing community when realizing the need for non-uniform
results. It is important to recognize that the good generalization of neural networks is a proven fact
in practice and is maintained across a variety of architectures, optimization methods and data sets.
The ability of neural networks to generalize to new data reveals a fundamental interplay between
the underlying mathematical structures of the hypothesis class involved, the learning (and thus
the optimization algorithms used), and the nature of the data. In this respect, bridging the gap
between optimization and the statistical power of the constructed predictors is a major challenge,
which is in my opinion today the central and extremely delicate issue in this highly competitive
field. To this end, I would like to dedicate research efforts towards a unified theory of learning that
combines optimization and statistics, which would be able to reflect the observed practical success
of learning methods in the established theoretical bounds.
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Figure 2.8: Histograms of the first three and last layers’ weights before and after the MLP training on

Housing. Comparison between random, RF and GBDT initializations.
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Handling missing values in
statistical learning
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The increasing availability of datasets and the multiplication of sources offer hopes for under-
standing, interpreting and predicting many phenomena. However one of the ironies of the so-called
“big data” era is that missing data are unavoidable: the more data there are, the more missing
data there are. Indeed, missing data can occur for many reasons: unanswered questions in a survey,
lost data, sensing machines that fail, aggregation of multiple sources, etc. Classical statistical or
machine learning methods cannot be directly applied on the datasets which contain missing values.

A naive solution is then to simply discard the missing values: by removing either the incomplete
variables or the missing individuals, i.e. either some columns or some rows of the dataset. However,
deleting data is not a good answer in most cases for two main reasons:

(i) this may result in erasing a large proportion of the initial data (think about a dataset in which
each variable can be missing with probability 0.05, the proportion of complete individuals in
expectation is roughly 60% in dimension 10, but 0,5% in dimension 100 !);

(ii) the complete observations can be not necessarily representative of the overall population lead-
ing to bias in subsequent analyses (think about a poll in which rich people would be less
incline to reveal their income, the complete individuals would be therefore circumscribed to
low salaries only).

Therefore two strategies can be envisaged when ML encounters missing data. The first one con-
sists in imputing the missing values to form a completed dataset on which standard ML algorithms
can be subsequently applied. This is an appealing solution, to which much effort has been devoted.
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However, it must be conceded that this may introduce a bias in the imputed data and inevitably
reduce the variability of the data. The second approach entails new statistical methods, specifically
designed for a particular learning task or estimation problem to handle missing values.

I have contributed to both aspects in the recent years. Julie Josse introduced me to this
problem in 2018, which was actually closely related to the matrix completion problems that I
previously encountered in the compressed sensing community, but with radically different tools from
optimization instead of statistics. We have co-advised the PhD. work of Aude Sportisse on these
topics, with dedicated efforts in the case where the missing mechanism is said to be informative.

We were also keen to illustrate and apply our methods on the Traumabase® dataset, which is a
medical register fed from 19 French trauma centers and which counts clinical measurements (250
variables) on 20,000 traumatized patients from the scene of the accident to the hospital admission.
This is an opportunity to pay tribute to the extraordinary work of its founder Sophie Hamada
(�). Since 2021, I also co-advise the PhD. thesis of Alexis Ayme with Erwan Scornet and Aymeric
Dieuleveut on related themes.

In order to present most of my works in this field, I have made some editorial choices: I decided
to go through one of the most canonical models of statistics, the linear model. This seemingly
simple setting yet remains unresolved in the case of missing input entries. Partial answers can be
formulated but they actually depend on the question at stake.

Outline In Section 3.1, as a prelude to linear regression, I present very briefly three different
manners to impute missing entries of the design matrix. The first two rely on low-rank assumptions
and are specifically designed to handle “informative” missing values, they correspond to the works
Sportisse et al. (2020c), Sportisse et al. (2020b). The last one, drawn from Muzellec et al. (2020),
is a heuristics based on optimal transport tools proving to be a versatile imputation method. In
Section 3.2, I study how the estimation of the model parameter can be performed with data arriving
in a streaming fashion, and with the help of an algorithm that has become essential in the practice
of data science, the stochastic gradient algorithm. This section gathers results from Sportisse et al.
(2020a). Finally in Section 3.3, I discuss theoretical considerations henceforth focusing on the task
of predicting the output using a linear model when the inputs may be missing.

The following works will then not be addressed: Descloux et al. (2022), Sportisse et al. (2021).

3.1 Imputation as a preprocessing step

3.1.1 Low-rank models for informative missing data

The low-rank model has become very popular in recent years (Kishore Kumar and Schneider, 2017)
and it plays a key role in many scientific and engineering tasks, including denoising (Gavish and
Donoho, 2017), collaborative filtering (Yang et al., 2018), genome-wide studies (Leek and Storey,
2007; Price et al., 2006), and functional magnetic resonance imaging (Candès et al., 2013). It is
also a very powerful solution for dealing with missing values (Josse et al., 2016; Kallus et al., 2018).
Indeed, the low-rank assumption can be considered as an accurate approximation for many matrices
as detailed by Udell and Townsend (2017). For instance, the low-rank approximation makes sense
when either, one can consider that a limited number of individual profiles exist or, dependencies
between variables can be established.
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Zoology of missing mechanisms The missing-data mechanism is said (i) missing completely
at random (MCAR) when the occurrence of the missing data is totally independent of the data, (ii)
missing at random (MAR) when the unavailability of the data depends on the values of observed
variables and (iii) missing not at random (MNAR) when the process that causes the missing data
depends on the values of missing variable, and possibly observed ones too. This last case is often
qualified as “informative” as the fact that the variable is missing may give information about its
value. MCAR and MAR settings are usually handled more easily than the challenging MNAR
case. In the literature, a mechanism derived from the general MNAR scenario is often considered
(Mohan, 2018), when the unavailability of a missing variable X.j only depends on the values of X.j

themselves. It is the so-called self-masked MNAR mechanism.

Low rank model and fixed effects Our work Sportisse et al. (2020c) focuses on imputing a
data set containing MNAR values, under a prior of a low-rank model with fixed effects. More
precisely, the data matrix X ∈ Rn×d is considered as the sum of an underlying low-rank matrix
Θ ∈ Rn×d corrupted by an additive Gaussian noise:

X = Θ+ ϵ,where

{
Θ with rank r < min{n, p},
ϵi.

⊥⊥∼ N (0n, σ
2In×n),∀i ∈ {1, . . . , n},

and to contain MNAR values. The aim is to estimate Θ and to use it in turn, to impute missing
values in X. Most of the existing methods previously reviewed do not consider the case of MNAR
data.

Our contribution is two-fold. We first propose to maximize the joint distribution of the data
and the missing-data pattern using an EM algorithm. The missing-data pattern is modeled with
the selection models specification and a self-masked mechanism is assumed. As the E-step has no
closed form, a Monte Carlo approximation is performed and coupled with the Sampling Importance
Resampling (SIR) algorithm (Gordon et al., 1993). The M-step is penalized by the nuclear norm
(as a convex relaxation of the rank penalty), i.e.

Θr+1, ϕr+1 ∈ argmax
Θ,ϕ

Q(Θ, ϕ; θr, ϕr) + λ∥Θ∥⋆,

and solved by using an accelerated proximal gradient algorithm, called Fast Iterative Soft-Thresholding
Algorithm (FISTA) (Beck and Teboulle, 2009), which converges faster than the traditional non-
accelerated version ISTA. However, the whole method can be computationally costly and relies on
the specification of the missing-data mechanism. The second contribution is to suggest an efficient
surrogate estimation, without specifying the missing-data mechanism, by concatenating the data
matrix and the missing-data mask Ω ∈ {0, 1}n×d (coding for the occurrence of missing values in X)
as Xaug = [X, (1 − Ω)]. A low-rank structure on this new matrix is assumed in order to take into
account the relationship between the variables and the mechanism. The optimization can thus be
performed as if the data were M(C)AR, because we assume that the information of the missing-data
mechanism is already encoded in (1n×d−M). For this, we use the algorithm in Robin et al. (2020)
which deals with mixed data, as X is assumed to contain continuous variables, and as (1n×d − Ω)
is a binary matrix.

Through a study on synthetic data, the model-based method proves to be extremely relevant
when few variables are missing and the implicit method, which models the mask using a binomial
distribution, is much less costly in terms of computation time and allows a better imputation. The
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performances of our methods are assessed on the Traumabase dataset, when the aim is to complete
the data before using it to predict if the doctors should administrate tranexomic acid to patients
with traumatic brain injury, that would limit excessive bleeding.

K With a lot more perspective on the issue, I would not attack the problem in the same way
today. First, a low-rank model with random effects would allow to study identifiability issues
depending on the missing mechanism in play. Then, an algorithm solving the initial problem
efficiently when many input variables may be missing with different MNAR mechanisms even in
the simple setting of Gaussian data has yet to be developed. This is subject to active discussions
with Kimia Nadjahi, Marine Le Morvan & Julie Josse.

A low-rank model with random effects (PPCA) for MNAR data In Sportisse et al.
(2020b), the data matrix is considered to be generated under a fully-connected probabilistic principal
component analysis (PPCA) model, in the following sense

X = 1α+WB + ϵ,with





W = (W1.| . . . |Wn.)
⊤, with Wi.

⊥⊥∼ N (0r, Idr×r) ∈ Rr,
B of rank r < min{n, d},
α ∈ Rd and 1 = (1 . . . 1)⊤ ∈ Rn,

ϵ = (ϵ1.| . . . |ϵn.)⊤, with ϵi.
⊥⊥∼ N (0d, σ

2Id×d) ∈ Rd,

where σ2 and r are known, and so that the loading matrix B are of full rank. This model implies that
the rows ofX are independent and Gaussian with mean α and covariance matrix Σ = B⊤B+σ2Id×d.
From a theoretical point of view, we first discuss and prove the identifiability of the parameters of
the PPCA and of the missing-data mechanism, by assuming a self-masked MNAR mechanism.

Then, in presence of (general) MNAR values, we propose a strategy to estimate the coefficients
matrix B based on estimations of the mean and the covariance matrix. We show that they can
be consistently estimated in the available-case analysis when only the observed cases are used and
when the noise is assumed to tend to 0. In order to derive such estimators, we leverage linear
connections that can be established between variables under the fully-connected PPCA assump-
tion. Two strategies to derive mean and covariance estimators are suggested: by using algebraic
arguments or graphical models. The latter is inspired by Mohan et al. (2018), which considers
linear models with a self-masked mechanism.

This method has the great advantage of being specification-free for the missing-data mechanism
and of dealing with MNAR data, possibly coupled with M(C)AR data, resulting in a realistic missing
scenario. This comes at a high computational cost for estimation, and by requiring enough complete
data available. To assess the proposed methodology, experiments are conducted on synthetic data
and on two real datasets including the Traumabase dataset and a recommendation system dataset.

3.1.2 Imputation using optimal transport tools

Imputation methods, which consist in filling missing entries with plausible values, are very appealing
as they allow to both get a guess for the missing entries as well as to perform (with care) down-
stream machine learning methods on the completed data. Efficient methods include, among others,
methods based on low-rank assumptions (Hastie et al., 2015), as previously discussed, iterative
random forests (Stekhoven and Bühlmann, 2012) and imputation using variational autoencoders
(Mattei and Frellsen, 2019; Ivanov et al., 2018). A desirable property for imputation methods is that
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they should preserve the joint and marginal distributions of the data. Non-parametric Bayesian
strategies (Murray and Reiter, 2016) or recent approaches based on generative adversarial networks
(Yoon et al., 2018) are attempts in this direction. However, they can be quite cumbersome to
implement in practice.

Proposal We argue in Muzellec et al. (2020) that the optimal transport (OT) toolbox constitutes
a natural, sound and straightforward alternative. Indeed, optimal transport provides geometrically
meaningful distances to compare discrete (empirical) distributions, and therefore data. This work
focuses on an application of entropic optimal transport to missing data imputation based on the
intuitive fact that two random subsets of data (batches) drawn from the same initial dataset should
have similar distributions.

More particularly, we propose an imputation criterion whose loss function uses the (differen-
tiable) Sinkhorn divergence. Indeed, entropic regularization, in addition to being an efficient method
to make optimal transport more computationally tractable in a discrete setting, has also proven to
be a way to improve the unfavorable sampling complexity of OT.

A fast introduction to Sinkhorn divergences. Let α =
∑n

i=1 aiδxi , β =
∑n′

i=1 biδyi be two

discrete distributions, described by their supports (xi)
n
i=1 ∈ Rn×p and (yi)

n′

i=1 ∈ Rn′×p and weight
vectors a ∈ ∆n and b ∈ ∆n′ . Optimal transport compares α and β by considering the most efficient
way of transporting the masses a and b onto each-other, according to a ground cost between the
supports. The (2-)Wasserstein distance corresponds to the case where this ground cost is quadratic:

W 2
2 (α, β) := min

P∈U(a,b)
⟨P,M⟩ , (3.1)

where U(a, b) := {P ∈ Rn×n′
: P1n′ = a, P⊤1n = b} is the set of transportation plans, and

M =
(
∥xi − yj∥2

)
ij
∈ Rn×n′

is the matrix of pairwise squared distances between the support

points. W2 is not differentiable and requires solving a costly linear program via network simplex
methods (Peyré et al., 2019, §3). Entropic regularization alleviates both issues: consider

OTε(α, β) := min
P∈U(a,b)

⟨P,M⟩+ εh(P ), (3.2)

where ε > 0 and h(P ) :=
∑

ij pij log pij is the negative entropy. Then, OTε(α, β) is differentiable
and can be solved using Sinkhorn iterations (Cuturi, 2013). However, due to the entropy term,
OTε is no longer positive. This issue is solved through debiasing, by subtracting auto-correlation
terms. Let

Sε(α, β) := OTε(α, β)−
1

2
(OTε(α, α) + OTε(β, β)). (3.3)

Equation (3.3) defines the Sinkhorn divergences (Genevay et al., 2018), which are positive, convex,
and can be computed with little additional cost compared to entropic OT (Feydy et al., 2019).
Sinkhorn divergences hence provide a differentiable and tractable proxy for Wasserstein distances,
and will be used in the following.

OT gradient-based methods Not only are the OT metrics described above good measures of
distributional closeness, they are also well-adapted to gradient-based imputation methods. Indeed,
let XK:, XL: be two batches drawn from X, for K and L two subsets of {1, . . . , n}. Then, gradient
updates for OTε(µm(XK:), µm(XL:)), ε ≥ 0 w.r.t. a point Xk: of XK: (k ∈ K) correspond to taking
steps along the so-called barycentric transport map. Indeed, with (half) quadratic costs, it holds
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(Cuturi and Doucet, 2014, §4.3) that

∇Xk:
OTε(µm(XK:), µm(XL:)) =

∑

ℓ

P ⋆
kℓ(Xk: −Xℓ:),

where P ⋆ is the optimal (regularized) transport plan. Therefore, a gradient based-update is of the
form

Xk: ← (1− t)Xk: + t
∑

ℓ

P ⋆
kℓXℓ:. (3.4)

In a missing value imputation context, Equation (3.4) thus corresponds to updating values to make
them closer to the target points given by transportation plans.

The imputation algorithm We propose a method using the previous criterion aiming at
imputing missing values for quantitative variables by minimizing OT distances between batches.
First, missing values of any variable are initialized with the mean of observed entries plus a small
amount of noise (to preserve the marginals and to facilitate the optimization). Then, batches are
sequentially sampled and the Sinkhorn divergence between batches is minimized with respect to
the imputed values, using gradient updates (here using RMSprop (Tieleman and Hinton, 2012)).
Taking a step back, one can see that Algorithm 3 essentially uses Sinkhorn divergences between

Algorithm 3 Batch Sinkhorn Imputation

Input: X ∈ (R ∪ {NA})n×d, Ω ∈ {0, 1}n×d, α, η, ε > 0, n ≥ m > 0,
Initialization: for j = 1, . . . , d,

• for i s.t. Ωij = 0 (missing entries),

X̂ij ← Xobs
:j + εij , with εij ∼ N (0, η) and Xobs

:j corresponds to the mean of the observed
entries in the j-th variable (missing entries)

• for i s.t. Ωij = 1 (observed entries),

X̂ij ← Xij

for t = 1, 2, ...,tmax do
Sample two sets K and L of m indices
L(X̂K:, X̂L:)← Sε(µm(X̂K:), µm(X̂L:))

X̂
(imp)
K∪L: ← X̂

(imp)
K∪L: − αRMSprop(∇

X
(imp)
K∪L:

L)
end for

Output: X̂

batches as a loss function to impute values for a model in which “one parameter equals one imputed
value”.

Although Algorithm 3 is straightforward, a downside is that it cannot directly generate imputa-
tions for out-of-sample data points with missing values. Hence, we also propose a natural extension
- that we will not describe here in more details- to fit parametric imputation models, provided
they are differentiable with respect to their parameters. The parametric algorithm is trained in
a round-robin fashion similar to iterative conditional imputation techniques, as implemented for
instance in the mice package (van Buuren and Groothuis-Oudshoorn, 2011).
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Numerical experiments These methods are showcased in extensive experiments on a variety
of datasets and for different missing values proportions and mechanisms, including the difficult case
of informative missing entries. The relevancy of the proposed method is shown in comparison to
the most classical baselines (such as mean imputation, imputation by chained equations (ice) (van
Buuren and Groothuis-Oudshoorn, 2011), softimpute (Hastie et al., 2015)), but also to deep learning
techniques (MIWAE (Mattei and Frellsen, 2019), GAIN (Yoon et al., 2018), imputation via VAEs
(Ivanov et al., 2018)). As noticeable result, we highlight that the linear round-robin model matches
or out-performs scikit’s iterative imputer (ice) on MAE and RMSE scores for most datasets.
Since both methods are based on the same cyclical linear imputation model but with different loss
functions, this shows that the batched Sinkhorn loss is well-adapted to imputation with parametric
models. Moreover, the proposed OT-based methods consistently outperform DL-based methods,
and have the additional benefit of having a lower variance in their results overall.

Ground truth

No NA
1 NA

ICE imputation Sinkhorn imputation

Ground truth
No NA
1 NA

Scikit imputation Sinkhorn imputation

Ground truth

No NA
1 NA

Scikit imputation Sinkhorn imputation

Ground truth

No NA
1 NA

Scikit imputation Sinkhorn imputation

Figure 3.1: Examples w/ 20 % MCAR values on
toy datasets. Blue points have no missing values,
orange points have one missing value on either co-
ordinate. ice outputs conditional expectation im-
putations (irrelevant due to the high non-linearity
of these examples). Since Algorithm 3 does not
assume a parametric form for the imputations, it
is able to satisfyingly impute missing values.

We also provide toy examples including two-
dimensional datasets with strong structures,
such as an S-shape, half-moon(s), or concentric
circles, see Figure 3.1. A 20% missing rate is
introduced (void rows are discarded), and im-
putations performed using Algorithm 3 or the
ice method are compared to the ground truth
dataset. While the ice method is not able to
catch the non-linear structure of the distribu-
tions at all, the Sinkhorn approach performs
efficiently by imputing faithfully to the under-
lying complex data structure (despite the two
half-moons and the S-shape being quite chal-
lenging). This is remarkable, since Algorithm 3
does not rely on any parametric assumption for
the data. This underlines in a low-dimensional
setting the flexibility of the proposed method.
Finally, note that the trailing points which can
be observed for the S shape or the two moons
shape come from the fact that Algorithm 3 was
used as it is, i.e. with pairs of batches both
containing missing values, even though these
toy examples would have allowed to use batches
without missing values. In that case, we obtain
imputations that are visually indistinguishable
from the ground truth.

K The imputation method is extremely flex-
ible in the sense that it can be used to train
a imputation model (with a cyclic scheme), or
to perform an imputation without making any
parametric assumption on the underlying dis-
tribution of the data. This represents a real
applied contribution, but the theoretical ana-
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lysis of such methods is still missing, even in simpler cases. At least the consistency of such a
procedure should be guaranteed in a MCAR (and perhaps even MAR) mechanism. This would be
a necessary step to understand in depth the limitations of the proposed approach.

3.2 Model estimation with online missing data

Context Stochastic gradient algorithms (SGD) (Robbins and Monro, 1951) play a central role
in machine learning problems, due to their cheap computational cost and memory per iteration.
There is a vast literature on its variants, for example using averaging of the iterates (Polyak and
Juditsky, 1992b), some robust versions of SGD (Nemirovski et al., 2009; Juditsky et al., 2011) or
adaptive gradient algorithms like Adagrad (Duchi et al., 2011); and on theoretical guarantees of
those methods (Moulines and Bach, 2011; Bach and Moulines, 2013; Dieuleveut et al., 2017; Shamir
and Zhang, 2013; Hazan and Kale, 2011; Needell et al., 2014).

Standard linear regression & SGD The data (Xi·, Yi)1≤i≤n are considered to be i.i.d. obser-
vations obeying the following linear model

Yi = X⊤
i: β

⋆ + ϵi,

where Yi ∈ R, Xi: ∈ Rd, and ϵi ∈ R are respectively the outcome variable, the input covariates
and the noise term for the individual i; β⋆ ∈ Rd denotes the model parameter, thus the object of
attention in a model estimation context. The latter is also characterized as one minimizer of the
following quadratic risk

minβEX,Y [(Y −X⊤β)2] := R(β).

In practice as the data distribution is unknown, stochastic optimization strategies can be deployed,
relying on the observations (Xi:, Yi)i, and using that a “local” gradient (X⊤

i: β − Yi)Xi:, associated
only to the i-th training point, can be seen as an unbiased estimation of the gradient of R at β.

SGD techniques are therefore natural and efficient answers to perform regression in large-scale
settings and/or with data coming in a streaming fashion. However, if the training data happens to
contain missing entries, the risk minimization with incomplete data becomes intractable and the
usual results cannot be directly applied.

Contributions In Sportisse et al. (2020a), we study a debiased averaged stochastic gradient
(SGD) algorithm to perform linear regression when the input data may be missing completely at
random (MCAR).

The input variables Xi: are assumed to come along, and to contain heterogeneous MCAR data,
meaning that the probabilities (pj)1≤j≤d to be observed may be specific for each input variable
(but independent of the data values). To still perform linear regression despite missing values, we
propose

(i) to naively impute the missing values by zero in order to get completed covariates X̃i: =
Xi:⊙ (1n×d−Ωi:) where Ωi: ∈ {0, 1}d accounts for the missing pattern of the i-th input data;

(ii) to account for the imputation error by debiasing the gradients of the averaged SGD algorithm.

64



3.2. MODEL ESTIMATION WITH ONLINE MISSING DATA

The averaging method has been indeed shown to stabilise the behaviour of the algorithm and
reduce the impact of noise, resulting in better convergence rates (Bach and Moulines, 2013). This
concretely means that instead of considering the traditional iterates βk of SGD, the averaged SGD
uses the Polyak-Ruppert averaged iterates β̄k (Polyak and Juditsky, 1992b), which allows to account
for all the iterates, robustifying the optimization dynamics

βk = βk−1 − αg̃k(βk−1)

β̄k =
1

k + 1

k∑

i=0

βi,

with g̃k unbiased stochastic gradients, such that E [g̃k(βk−1) | Fk−1] = ∇R(βk−1), with the filtration
Fk−1 with respect to (X1:, Y1,Ω1:, . . . , Xk−1:, Yk−1,Ωk−1:). Please refer to Algorithm 4 for details
about the averaged SGD handling missing values in the case of linear regression.

Algorithm 4 Averaged SGD for linear regression with heterogeneous missing data

Input: data (X̃i:)1≤i≤n (imputed-by-0 inputs), (Yi)1≤i≤n, α (step size)
Initialize β0 = 0d
Set P = diag

(
(pj)j∈{1,...,d}

)
∈ Rd×d (probabilities to be observed)

for k = 1 to n do
g̃k(βk−1) = P−1X̃k:

(
X̃⊤

k:P
−1βk−1 − yk

)

−(I− P )P−2diag
(
X̃k:X̃

⊤
k:

)
βk−1 (debiased gradient)

βk = βk−1 − αg̃k(βk−1)

β̄k = 1
k+1

∑k
i=0 βi =

k
k+1 β̄k−1 +

1
k+1βk (averaging)

end for

Note that this type of SGD algorithm is also studied by Ma and Needell (2018) using the same
strategy but this work assumes MCAR data, is restricted to the finite-sample setting in which
the convergence rate is only conjectured, and is not suitable for the high-dimensional setting (as
requiring a strong convexity parameter of the loss function). The main contribution of our work
consists of adapting the powerful supervised learning SGD algorithm to deal with missing values,
adapted both to the streaming setting, when the data arrive progressively, and to the high dimension
setting, without adding strong parametric assumptions. These are the main advantages of our work
compared to classical methods such as multiple imputation or the EM algorithm.

From a theoretical point of view, under weak assumptions on the observations, we derive a
convergence rate of O(k−1) for our algorithm in the streaming setting.

Theorem 20. Assume that for any i, ∥Xi:∥ ≤ γ almost surely for some γ > 0, and consider any
constant step-size α ≤ 1

2L , where L is the Lipschitz constant of the debiased gradients.
Then Algorithm 4 ensures that, for any k ≥ 0:

E
[
R
(
β̄k
)
−R(β⋆)

]
≤ 1

2k




√
c(β⋆)d

1−
√
αL︸ ︷︷ ︸

variance term

+
∥β0 − β⋆∥√

α︸ ︷︷ ︸
bias term




2

,
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where

c(β⋆) =
Var(ϵk)

p2min︸ ︷︷ ︸
classical term

+

(
(2 + 5pmin)(1− pmin)

p3min

)
γ2∥β⋆∥2

︸ ︷︷ ︸
multiplicative noise (induced by naive imputation)︸ ︷︷ ︸

increasing with the missing values rate

,

and pmin = minj=1,...d pj being the minimal probability to be observed.

This convergence rate is remarkable, because it is optimal for the least squares regression and
similar to the rate without missing values (Bach and Moulines, 2013). This result also sheds some
light on the management of missing values in ML as discussed in the following remarks.

Remark 21 (What about discarding incomplete observations instead?). Another approach to solve
the missing data problem is to discard all observations that have at least one missing feature. The
probability that one input is complete, under our missing data model is

∏d
j=1 pj. In the homoge-

neous case, the number of complete observations kco out of a k−sample thus follows a binomial law
kco ∼ B(k, pd). With only those few observations, the statistical lower bound is Var(ϵk)d/kco. In ex-
pectation, by Jensen inequality, we get that the lower bound on the risk is larger than Var(ϵk)d/kp

d.

Our strategy thus leads to an upper-bound which is typically pd−3 times smaller than the lower
bound on the error of any algorithm relying only on complete observations. For a large dimension
or a high percentage of missing values, our strategy is thus provably several orders of magnitude
smaller than the best possible algorithm that would only rely on complete observations - e.g., if
p = 0.9 and d = 40, the error of our method is at least 50 times smaller.

Remark 22 (What do you prefer between having access to 200 half-incomplete training points
or 100 complete training points?). An important question in practice is to understand how much
information has been lost because of the incompleteness of the observations. In other words, it
is better to access 200 input/output pairs with a probability 50% of observing each feature on the
inputs, or to observe 100 input/output pairs with complete observations?

Without missing observations, the variance bound in the expected excess risk is given by the

previous theorem with pm = 1: it scales as O
(

Var(ϵk)d
k

)
, while with missing observations it increases

to O
(

Var(ϵk)d
kp2

m
+ C(X,β⋆)

kp3
m

)
. As a consequence, the variance upper bound is larger by a factor p−1

m for

the estimator derived from k incomplete observations than for k × pm complete observations. This
suggests that there is a higher gain to collecting fewer complete observations (e.g., 100) than more
incomplete ones (e.g., 200 with p = 0.5). However, one should keep in mind that this observation
is made by comparing upper bounds thus does not necessarily reflect what would happen in practice.

In order to assess the convergence behavior and the relevance of our algorithm, we conduct
experiments on synthetic data and on real datasets including the Traumabase dataset.

K In this work, we thoroughly study the impact of missing values for the SGD algorithm when
performing least squares regression. It raises several questions, including how this can be extended
to other types of missing data, but also to generalized loss functions beyond the linear regression
framework (for which it is challenging to build a debiased gradient estimator from observations
with missing values).
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3.3 Consistency of linear models with missing input data

In this section, we remain dedicated to a linear model

Y = X⊤β⋆ + ε

with (X,Y ) ∈ Rd × R the input/output variables, the model parameter β⋆ ∈ Rd and a noise term
ε. In such a linear regression framework, when missing data occur in the input variables X, most
of the literature focuses on the model estimation -as in the previous section-, i.e. on the estimation
of β⋆, (Little, 1992; Jones, 1996; Robins et al., 1994), using sometimes a sparse prior leading to the
Lasso estimator (Loh and Wainwright, 2012) or the Dantzig selector (Rosenbaum and Tsybakov,
2010). The robust estimation literature (Dalalyan and Thompson, 2019; Chen and Caramanis,
2013) can be also invoked to handle missing values, as they can be reinterpreted as a multiplicative
noise in linear models.

On the other hand, prediction with missing values in a parametric framework (even under the
canonical linear model) is in fact not an easy task. Indeed, the prediction task is distinct from
model estimation: estimated model parameters cannot be directly used to predict on a test sample
containing missing values as well. As a matter of fact, the occurrence of missing data turns the linear
regression problem into a semi-discrete one of very high complexity. Furthermore, establishing risk
bounds -even without missing values- for random designs is already a challenge as studied by Györfi
et al. (2006); Audibert and Catoni (2011); Dieuleveut et al. (2017) and more recently by Mourtada
(2019).

Bayes predictor and NA Without missing values, the Bayes predictor (associated to the
quadratic loss) is given as the linear function defined with the model parameter β⋆. However,
when missing data occur, the Bayes predictor f⋆ can be decomposed according to the possible
missing data patterns m ∈ {0, 1}d, as

f⋆(Xobs(Ω),Ω) = E
[
Y |Xobs(Ω),Ω

]
=

∑

m∈{0,1}d

f⋆m(Xobs(m))1Ω=m,

where Xobs(m) (resp. Xmis(m)) is the vector of observed components (resp. unobserved components)

of X, and f⋆m(Xobs(m)) := E
[
Y |Xobs(m),Ω = m

]
can be seen as the Bayes predictor conditionally

on the event “Ω = m”. The function f⋆m can be written as

f⋆m(Xobs(m)) = β0 + β⊤
obs(m)Xobs(m) + β⊤

mis(m)E
[
Xmis(m)|Xobs(m),Ω = m

]
.

Thus, f⋆m remains linear in the observed variablesXobs, provided that x 7→ E
[
Xmis(m)|Xobs(m) = x,Ω = m

]

is a linear function. This is guaranteed by Le Morvan et al. (2020) in various settings: Gaussian
input variables with M(C)AR data or with Gaussian self-masking mechanisms1, Gaussian pattern-
mixture models, or even independent covariates.

1this is a particular case of MNAR data for which P(Ω|X) :=
∏d

j=1 P(Ωj |Xj) =
∏d

j=1 φ(Xj ; aj , bj) where φ is

the Gaussian density with parameters (aj)j and (bj)j .
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Contributions In Ayme et al. (2022), we study pattern-by-pattern predictors for regression with
missing input variables. First, we provide a distribution-free excess risk bound for the pattern-by-
pattern least squares estimator:

f̂(Xobs(Ω),Ω) =
∑

m∈{0,1}d

f̂m(Xobs(Ω))1Ω=m

with f̂m being the traditional least squares estimator trained only on the samples sharing the same
fixed missing pattern m.

Theorem 23 (Unformal). Assume that the input underlying covariates are sub-Gaussian and that

f⋆m is L-Lipschitz for any missing pattern m ∈ {0, 1}d. Consider f̂ to be the pattern-by-pattern least
squares estimator trained with n samples. Then,

E
[(
f̂(Xobs(Ω),Ω)− f⋆(Xobs(Ω),Ω)

)2]

≲ (log(n) + 1)
(
σ2
na ∨ L2

)
2d
d

n
+Approx(f⋆,F),

where σ2
na := sup(x,m) V

[
Y |(Xobs(Ω),Ω) = (x,m)

]
, and Approx(f⋆,F) is an approximation error

made by approximating f⋆ with the help of the class F of linear pattern-by-pattern regressors.

Theorem 23 is the first theoretical result that provides a control on the excess risk of a least-
square-type predictor under very general assumptions on the input variables distribution and with-
out any assumption on the missing pattern distribution. In particular, the bound ensures that
when n > d2d, the considered predictor is better than the zero one. This curse of dimensionality
is unfortunately unavoidable as it naturally arises for some specific worst-case distributions, for
instance when all the missing patterns are equiprobable.

In what follows, we leverage the distribution of the missing patterns in order to derive less
pessimistic theoretical bounds. To this end, we propose a refined version of the predictor previously
introduced. The new predictor f̂ (τ), for τ ∈ [0, 1] is obtained by combining the previous pattern-by-
pattern least squares predictors, but only for all patterns m ∈ {0, 1}d that appear with an empirical

proportion larger than τ . For the least frequent missing pattern, f̂ (τ) arbitrarily returns 0.

Theorem 24 (Unformal). Under the same assumptions as in Theorem 23, set p = (pm)m∈{0,1}d

to be the probability distribution of the missing patterns. Choose τ = d/n with n the sample size,

then the generalization bound for the predictor f̂ (d/n) reads as

E
[(
f̂ (τ)(Xobs(Ω),Ω)− f⋆(Xobs(Ω),Ω)

)2]

≲ (log(n) + 1)
(
σ2
na ∨ L2

)
Cp

(
d

n

)
+Approx(f⋆,F),

where the missing patterns distribution complexity Cp(τ) is defined by

Cp(τ) :=
∑

m∈{0,1}d

pm ∧ τ. (3.5)

68



3.3. CONSISTENCY OF LINEAR MODELS WITH MISSING INPUT DATA

Similar bounds are obtained for a general threshold τ ≥ 1/n, but the obtained upper-bound is
actually minimized for the choice τ = d/n. Theorem 24 is the first result controlling the excess risk
of a pattern-by-pattern least-square-type predictor with a bound depending on the missing pattern
distribution through the complexity Cp, and that holds for any type of missing patterns (including
MCAR, MAR, MNAR scenarios). The adaptivity of Cp to the missing pattern distribution can be
illustrated as follows. Imagine that with a high probability 1− δ, the missing pattern belongs to a
class of K distinct missing patterns. Then,

Cp

(
d

n

)
≲ K

d

n
+ δ.

This reflects the good learning ability of the regressor f̂ (d/n) when there are few frequent missing
patterns.

Optimality of the contributions Finally the optimality of this bound is also studied. To do
so, consider the class of problems Pp(σ, L) assumed to satisfy the following conditions: for all
P ∈ Pp(σ, L)

(i) ∀m ∈ {0, 1}d,P (Ω = m) = pm,

(ii) Y = X⊤β⋆ + ϵ where ϵ ∼ N
(
0, σ2

)
,

(iii) X is a sub-Gaussian vector, and f⋆m is L-Lipschitz for any missing pattern m ∈ {0, 1}d,

(iv) Approx(f⋆,F) = 0.

For any missing pattern distribution p, one can show that

σ2Cp

(
1

n

)
≲ min

f̂
max

P∈Pp(σ,L)
EP

[(
f̂ − f⋆

)2]
.

where the minimum is over all predictor f̂ . Since Cp

(
1
n

)
≥ d−1Cp

(
d
n

)
, this lower bound emphasizes

that previous results are sharp up to a factor d. This lower bound can be shown to be of the
same order as that of the lower bound when we restrict the class Pp(σ, L) to MAR settings only,
meaning that the worst-case scenario of Pp(σ, L) is as hard as the one of Pp(σ, L) restricted to MAR
settings. While the MAR hypothesis is known to facilitate the inference framework (the former
actually originates from the latter, see Rubin (1976)), we emphasize here that MAR scenarios do
not help prediction purposes.

K In a high-dimensional setting d≫ n, the maps are shuffled, such that this is not feasible to
compute a prediction function per pattern anymore, since there are not enough observations to learn
all the patterns. A naive but relatively common strategy is to (i) first impute by 0 (or an arbitrary
constant), in order to obtain a completed dataset and (ii) train the predictor in question (and thus
a single predictor) on it. It is easy to be convinced that this method is biased. Indeed, the imputed
dataset no longer follows the same law as the underlying initial data. We are currently working
to show that under certain assumptions on the missing data mechanism, this bias decreases and
even tends towards 0 when the dimension increases. The bias introduced by this naive imputation
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can be also analyzed through the prism of a bias that would be introduced by a standard ridge
regression based on complete data (relevant in a high dimensional context). This would mean that
imputing by an arbitrary constant is actually harmless for prediction purposes in a high-dimensional
setting. We also hope to make a parallel with dropout strategies (Srivastava et al., 2014; Gal and
Ghahramani, 2016) used in neural network training.
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Gabriel Peyré. Interpolating between optimal transport and MMD using Sinkhorn divergences.
In The 22nd International Conference on Artificial Intelligence and Statistics, AISTATS 2019,
16-18 April 2019, Naha, Okinawa, Japan, pages 2681–2690, 2019.

Wendell H. Fleming. Functions with generalized gradient and generalized surfaces. Annali di
Matematica Pura ed Applicata, 44(1):93–103, 1957.

Simon Foucart and Holger Rauhut. A mathematical introduction to compressive sensing. Springer,
2013.

Erwan Fouillen, Claire Boyer, and Maxime Sangnier. Proximal boosting: aggregating weak learners
to minimize non-differentiable losses. Neurocomputing, 2022. doi: 10.48550/ARXIV.1808.09670.
URL https://arxiv.org/abs/1808.09670.

Yoav Freund and Robert .E. Schapire. A Decision-Theoretic Generalization of On-Line Learning
and an Application to Boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.

Jerome Friedman. Greedy function approximation: A gradient boosting machine. The Annals of
Statistics, 29(5):1189–1232, 2001.

Jean-Jacques Fuchs. Recovery of exact sparse representations in the presence of bounded noise.
IEEE Transactions on Information Theory, 51(10):3601–3608, 2005.

Sébastien Gadat and Fabien Panloup. Optimal non-asymptotic bound of the ruppert-polyak aver-
aging without strong convexity. Stochastic Processes and their Applications, 2022.

Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of dropout in recurrent
neural networks. Advances in neural information processing systems, 29, 2016.

Matan Gavish and David L Donoho. Optimal shrinkage of singular values. IEEE Transactions on
Information Theory, 63(4):2137–2152, 2017.

75

https://arxiv.org/abs/1808.09670


BIBLIOGRAPHY

Aude Genevay, Gabriel Peyre, and Marco Cuturi. Learning generative models with Sinkhorn di-
vergences. In Amos Storkey and Fernando Perez-Cruz, editors, Proceedings of the Twenty-First
International Conference on Artificial Intelligence and Statistics, pages 1608–1617, Playa Blanca,
Lanzarote, Canary Islands, 09–11 Apr 2018. PMLR.

Christophe Giraud. Introduction to high-dimensional statistics. Chapman and Hall/CRC, 2021.

Antoine Godichon-Baggioni. Lp and almost sure rates of convergence of averaged stochastic gradient
algorithms: locally strongly convex objective. ESAIM: Probability and Statistics, 23:841–873,
2019.

Xiao Gong, Wei Chen, Jie Chen, and Bo Ai. Tensor denoising using low-rank tensor train decom-
position. IEEE Signal Processing Letters, 27:1685–1689, 2020. doi: 10.1109/LSP.2020.3025038.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Neil J Gordon, David J Salmond, and Adrian FM Smith. Novel approach to nonlinear/non-gaussian
bayesian state estimation. In IEE proceedings F (radar and signal processing), volume 140, pages
107–113. IET, 1993.

Michael Grant and Stephen Boyd. CVX: Matlab software for disciplined convex programming,
version 2.1. http://cvxr.com/cvx, March 2014.
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