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Abstract

In this paper, we study sparse spike deconvolution over the space of complex-valued mea-
sures when the input measure is a finite sum of Dirac masses. We introduce a modified version
of the Beurling Lasso (BLasso), a semi-definite program that we refer to as the Concomitant
Beurling Lasso (CBLasso). This new procedure estimates the target measure and the un-
known noise level simultaneously. Contrary to previous estimators in the literature, theory
holds for a tuning parameter that depends only on the sample size, so that it can be used
for unknown noise level problems. Consistent noise level estimation is standardly proved. As
for Radon measure estimation, theoretical guarantees match the previous state-of-the-art re-
sults in Super-Resolution regarding minimax prediction and localization. The proofs are based
on a bound on the noise level given by a new tail estimate of the supremum of a stationary
non-Gaussian process through the Rice method.

Key-words: Deconvolution; Convex regularization; Inverse problems; Model selection; Concomi-
tant Beurling Lasso; Square-root Lasso; Scaled-Lasso, Sparsity; Rice method;

1 Introduction

1.1 Sparse deconvolution with unknown noise

1.1.1 Super-Resolution

Sparse deconvolution over the space of complex-valued Borel measures has recently attracted a lot
of attention in the “Super-Resolution” community and its companion formulation “Line spectral
estimation”. In the Super-Resolution framework, one aims at recovering fine scale details of an
image from few low frequency measurements, where ideally the observation is given by a low-pass
filter. The novelty in this body of work relies on new theoretical guarantees of the `1-minimization
over the space of discrete measures in a grid-less manner. Some recent works on this topic (when
the underlying dimension is one) can be found in [18, 12, 13, 38, 14, 2, 25, 8, 22] and references
therein.

More precisely, pioneering works were proposed in [12] treating inverse problems on the space
of Borel measures and in [13], where the Super-Resolution problem was investigated via Semi-
Definite Programming and a groundbreaking construction of a “dual certificate”. Exact recovery
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(in the noiseless case), minimax prediction and localization (in the noisy case) have been performed
using the Beurling Lasso (BLasso) estimator [2, 38, 25, 37] which minimizes the total variation
norm over complex-valued Borel measures. Noise robustness (as the noise level tends to zero) has
been thoroughly investigated in [22]; the reader may also consult [23, 20, 24] for more details.
Change point detection and grid-less spline decomposition are studied in [7, 19]. Several interesting
extensions, such as deconvolution over spheres, have been also recently provided in [6, 8, 9]. The
paper [30] considers functional variants of compatibility conditions (see (6)) for general operators
but it does not handle the concomittant formulation presented here.

1.1.2 Concomitant Beurling Lasso: adapting to the noise

Our proposed estimator is an adaptation to the Super-Resolution framework of a methodology first
developed for sparse high dimensional regression. In the latter case, the joint estimation of the
parameter and of the noise level has first been considered in [33, 1], though without any theory. It
was based on concomitant estimation ideas that could be traced back to the work of Huber [29].
The formulation we consider in this work appeared first in [33, 1] with a statistical point of view,
as well as in [40] with a game theory flavor. Note that interestingly, both approaches rely on
the notion of robustness. An equivalent definition of this estimator was proposed and extensively
studied independently in [5] under the name Square-root Lasso. The formulation we investigate is
also closer to the one analyzed in [36] under the name Scaled-Lasso. Yet, we adopt the terminology
of “Concomitant Beurling Lasso” in reference to the seminal paper [33]. Last but not least, our
contribution borrows some ideas from the stimulating lecture notes [39].

Remark that an alternative formulation was investigated in [35] with a particular aim at Gaus-
sian mixture models. The authors have proposed to analyze a different high dimensional regression
variant that also leads to a jointly convex (w.r.t. both the parameter and the noise level) re-
formulation of a penalized log-likelihood estimator. It is to be noted that this estimator is also
sometimes referred to Scaled-Lasso, creating possible ambiguities. In practice though, at least in
high dimensional regression settings, this method seems to be outperformed by the concomitant
formulation [32].

1.2 Model and contributions

1.2.1 Model and notation

Denote E := (C(T,C), ‖ · ‖∞) the space of complex-valued continuous functions over the one di-
mensional torus T (obtained by identifying the endpoints on [0, 1]) equipped with the `∞-norm and
E∗ := (M(T,C), ‖ · ‖TV) its dual topological space. Namely, E∗ is the space of complex-valued
Borel measures over the torus endowed with the total variation norm, defined by

∀µ ∈ E∗, ‖µ‖TV := sup
‖f‖∞≤1

R

(∫
T

f̄dµ

)
, (1)

where R(·) denotes the real part and f̄ the complex conjugate of a continuous function f . Our
observation vector is y ∈ Cn (where n = 2fc+ 1) and our sampling scheme is modeled by the linear
operator Fn that maps a Borel measure to its n first Fourier coefficients as

∀µ ∈ E∗ , Fn(µ) := (ck(µ))|k|≤fc , where ck(µ) :=

∫
T

exp(−2πıkt)µ(dt) =

∫
T

ϕkdµ ,
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and ϕk(·) = exp(2πık·). The statistical model we consider is formulated as follows

y = Fn(µ0) + ε , (2)

with ε is a complex valued centered Gaussian random variable defined by ε
d
= ε(1) + ıε(2) where the

real part ε(1) = R(ε) and the imaginary part ε(2) = I(ε) are i.i.d. Nn(0, σ2
0Idn) random vectors with

an unknown standard deviation σ0 > 0, where Idn is the identity matrix of size n × n. Moreover,
we assume that the target measure µ0 admits a sparse structure, namely it has finite support and
can be written

µ0 =

s0∑
j=1

a0jδt0j , (3)

where s0 ≥ 1, δt0j is the Dirac measure at positions t0j ∈ T and with amplitudes a0j ∈ C. We can now

introduce our Concomitant Beurling Lasso (CBLasso) estimator, that jointly estimates the signal
and the noise level as the solution of the convex program

(µ̂, σ̂) ∈ arg min
(µ,σ)∈E∗×R++

1

2nσ
‖y −Fn(µ)‖22 +

σ

2
+ λ‖µ‖TV , (4)

where R++ denotes the set of positive real numbers and λ > 0 is a tuning parameter. This
formulation, by using a suitable rescaling of the data fitting and adding a penalty on the noise
level, leads to a jointly convex formulation that can be theoretically analyzed. The division by σ is
used for homogeneity reasons, while the σ/2 term helps avoiding degenerate solutions and plays a
regularization role.

When the solution is reached for σ̂ > 0, one can check that our estimator satisfies the identity
σ̂ = ‖y−Fn(µ̂)‖2/

√
n and µ̂ ∈ arg minµ∈E∗ ‖y−Fn(µ)‖2/

√
n+λσ̂‖µ‖TV, which is in our framework,

the analogous version of the square-root formulation from [5] (while the one from (4) is inspired
by [33, 36]).

Remark 1. As defined in (4), the CBLasso estimator is ill-defined. Indeed, the set over which
we optimize is not closed and the optimization problem may have no solution. We circumvent
this difficulty by considering instead the Fenchel biconjugate of the objective function. The actual
objective function accepts σ ≥ 0 as soon as y = Fn(µ). In the rest of the paper, we will write (4)
instead of the minimization of the biconjugate as a slight abuse of notation (see also [32] for more
details).

This new estimator can be efficiently computed using Fenchel-Legendre duality and a semi-
definite representation of non-negative trigonometric polynomials. The dual program estimates the
coefficients of a non-constant trigonometric polynomial (that we refer to as “dual polynomial”)
and the support of the estimated measure µ̂ is included in the roots of the derivative of the dual
polynomial, see Section 3.1 for further details.

1.2.2 Contributions

By tackling the simultaneous estimation of the noise level and the target measure, we revisit the
state-of-the-art results in Super-Resolution theory. In particular, we show (Theorem 1) that the
“near” minimax prediction (i.e., “fast rate” of convergence) is achieved by our new CBLasso esti-
mator. To prove this result, we have adapted the proof of [37] to our estimator and finely controlled
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the noise level dependency in their bounds. This latter task has been carried out thanks to the
Rice method for a non-Gaussian process (Lemma 19) which provides new results in this context,
whose interest could go behind the context of Super-Resolution. Though standardly proved as in
[2, 25, 37], spike localization errors (Theorem 2) are amended by the Rice method as well. In
particular, it allows us control the “no-overfitting” event as shown by Proposition 4. We would like
to emphasize that our contribution provides the first result on simultaneous estimation of both the
noise level and the the target measure in spike deconvolution. We have introduced a new estimator
and theoretically demonstrated that it attains “near” minimax optimal prediction together with
strong localization accuracy. On the numerical side, we show that (i) the root-finding search can
still be adapted to our method; (ii) the constructed “dual polynomial” (see Eq. (15) and (16) for def-
inition) is never constant (see Proposition 7) proving the applicability of our method. Experiments
are conducted to illustrate the benefits of our noise and measure estimation procedure.

1.3 Notation

We denote by [m] the set {1, . . . ,m} for any integer m ∈ N and by Sm−1 the (real) unit sphere
in Rm. For any set A, its indicator function and its cardinality respectively reads 1A and |A|. We
denote by z the complex conjugate of z ∈ C, and by R(z) (resp. I(z)) its real (resp. imaginary) part.
For any bounded linear mapping F , its adjoint operator is denoted by F∗. The standard Hermitian
norm on Cn is written ‖ · ‖, with 〈·, ·〉 being the associated inner product, i.e., 〈z, z′〉 = <(z∗z′).
If a measure µ ∈ E∗ can be written µ =

∑s
j=1 ajδtj , we say that it has a finite support and we

denote it by supp(µ) := {t1, . . . , ts} ⊂ T. The canonical distance between two points t and t′ on
the torus T is written d(t, t′).

2 Main results

2.1 Standard assumptions

In the CBLasso analysis, the following standard assumptions will be useful, see [39] for instance.
The first assumption governs the Signal-to-Noise Ratio (SNR) that can be defined as

SNR :=
‖µ0‖TV√
E[‖ε‖22]/n

=
‖µ0‖TV√

2σ0
,

measuring the strength of the true signal µ0 compared to the noise level σ0.

Assumption 1 (Sampling rate condition). The sampling rate condition holds if and only if

λ · SNR ≤
√

17− 4

2
' 0.0616 . (5)

The main point of the article is to consider a noise-free tuning parameter λ that depends only on
the number n of measurements. As standard results in the literature, we consider λ ≥ 2

√
2 log n/n.

In this regime, one may write the sampling rate condition as n/log n ≥ C SNR2 for some universal
constant C > 0. Roughly speaking, Assumption 1 states that the number of measurements n is at
least SNR2.

Another important assumption is the “no-overfitting” condition assuming that the noise level
estimator σ̂ is positive. If it does not hold, then the observations are perfectly fitted with our
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estimator and the residuals vanish. This kind of situation could happen when the noise level is
small. Hence, Assumption 1 requires an upper bound on the signal-to-noise ratio (SNR) that could
seem counterintuitive. However it ensures to have enough noise compared to signal to estimate
it. For obvious reasons, it is essential from both theoretical and practical point of views to as-
sert this property. Observe that, throughout this paper, all our results are based on the event
{‖F∗n(ε)‖∞/(

√
n‖ε‖2) ≤ R} ∩ {‖ε‖2/

√
n ≥ σ} for suitable R and σ, and by Proposition 4 the “no-

overfitting” condition holds with large probability (in particular, note that Assumption 1 implies
Inequality (9) with η = 1/2 whenever n ≥ −8 logα).

In Super-Resolution, one often assumes that the target measure µ0 ∈ E∗ satisfies the classical
separation condition, see [26] for a state-of-the-art result on the subject. This condition governs the
existence of dual certificates, see Section C for further results. In particular, all our constructions
assume a lower bound on the number of observed frequencies fc. Based on [26], we assume that
fc ≥ 103 throughout this paper leading to c0 = 1.26 in Assumption 2 below. Note that one can
lower the bound on the observed frequencies fc considering larger values of c0, the interested reader
may consult [26] on this topic.

Assumption 2 (Separation condition). The true support supp(µ0) = {t01, . . . , t0s0} is said to verify
the separation condition if it satisfies the following property

∀i, j ∈ [s0], s.t. i 6= j, d(t0i , t
0
j ) ≥

c0
fc

,

where c0 = 1.26 and fc ≥ 103.

2.2 Compatibility limits

In order to obtain oracle inequalities for the Lasso [39], the statistical community has proposed
various sufficient conditions such that Restricted Isometry Property (RIP), Restricted Eigenvalue
Condition (REC), or Compatibility Condition for instance. However, in the Super-Resolution
setting, one can show that these classical assumptions do not hold. Indeed, since RIP implies REC
which in turn implies the Compatibility Condition (see [39] for further details), we only show that
the Compatibility Condition fails to hold. To do so, let us recall the definition of the compatibility
constant, denoted by C(L, S) for a constant L > 0 and a given support S

C(L, S) := inf
{
|S|‖Fn(ν)‖22/n; ν ∈ E∗, ‖νS‖TV = 1, ‖νSc‖TV ≤ L

}
. (6)

We say that the compatibility condition of parameter (s, L) holds if inf |S|≤s C(L, S) > 0. This
condition does not hold, i.e., C(L, S) = 0. For instance it fails with the following example: choose
S = Sε = {ε} for any ε > 0 and L ≥ 1. Consider the sequence (νε)ε>0 defined by νε = δε − δ−ε,
in which the location −ε on T can be associated to 1 − ε. Note that for this sequence, we have
ck(νε) = −2ı sin(2πkε) for all k ∈ Z, therefore ‖Fn(νε)‖22 =

∑fc
k=−fc 4 sin2(2πkε). Note that

Sε
c = T \ {ε}, which leads to ‖(νε)Sε‖TV = 1 and ‖(νε)Sεc‖TV = 1 ≤ L. Considering ε → 0 leads

to the inequality inf |S|≤1 C(L, S) ≤ lim infε→0
1
n

∑fc
k=−fc 4 sin2(2πkε) = 0. Since one can show that

for S ⊂ S, C(L, S)/|S| ≤ C(L, S)/|S| [39], we deduce that for s ≥ 1, inf |S|≤s C(L, S) = 0, which
implies that the Compatibility Condition does not hold for Super-Resolution, and neither do the
RIP or REC. It turns out that our setting meets the curse of highly correlated designs since close
Dirac masses (as aforementioned) share almost the same Fourier coefficients.
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2.3 Prediction error

As in [37], we uncover that CBLasso achieves the minimax rate1 in prediction up to a log factor.
Up to several technicalities, our proof in Appendix A follows the same guidelines as in [37] though
we use the Rice method to finely bound our non-Gaussian process, see Lemma 19.

Theorem 1. Let C > 2
√

2. There exists numerical constants γ,C ′ > 0, that may depend on C,
such that the following holds. Under Assumptions 1 and 2, the estimator µ̂ solution to Problem 4
with a choice λ ≥ C

√
log n/n satisfies

1

n
‖Fn(µ̂− µ0)‖22 ≤ C ′ s0 λ2 σ2

0 ,

with probability at least 1− C ′n−γ .

Up to a log factor, this prediction error bound matches the “fast rate” of convergence, namely σ2
0s0/n

(see [17] for instance), established in sparse regression.

2.4 Localization and amplitudes estimation

Following [14, 26], we define the set of “near” points as

∀j ∈ [s0], Nj :=
{
t ∈ T; d(t, t0j ) ≤

c1
fc

}
, (7)

for some 0 < c1 < c0/2 (where c0 = 1.26 is given in Assumption 2) and the set of “far” points as

F := T \
⋃
j∈[s0]

Nj . (8)

Theorem 2. Let C > 2
√

2. There exist numerical constants γ,C ′ > 0, that may depend on C,
such that the following holds. Suppose that Assumptions 1 and 2 hold. The estimator µ̂, solution
to Problem 4 with a choice λ ≥ C

√
log n/n, satisfies

1. ∀j ∈ [s0],
∣∣∣a0j − ∑

{k: t̂k∈Nj}

âk

∣∣∣ ≤ C ′σ0s0λ ,

2. ∀j ∈ [s0],
∑

{k: t̂k∈Nj}

|âk|d2(t0j , t̂k) ≤ C ′σ0s0λ/n2 ,

3.
∑

{k: t̂k∈F}

|âk| ≤ C ′σ0s0λ ,

with probability at least 1− C ′n−γ .

Points 1. and 3. in Theorem 2 ensure that µ̂ will retrieve the mass of µ0 in the near regions of
the support supp

(
µ0
)

and not in regions far away. Point 2. provides a control on the support
identification of the procedure. A proof of this theorem can be found in Section B. In particular,
we deduce the following result.

1In [37], the minimax rate is derived using the minimax rate of [15] established in high-dimension statistics.
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Corollary 3. Under the assumptions of Theorem 2, for any t0j in the support of µ0 such that

a0j > C ′σ0s0λ, there exists an element t̂k in the support of µ̂ such that

d(t0j , t̂k) ≤
√

C ′σ0s0λ

|a0j | − C ′σ0s0λ
1

n
,

with probability at least 1− C ′n−γ .

2.5 Noise level estimation

The following noise level estimation result relies on standard results in sparse regression, see [39].

Proposition 4. Let 0 < η < 1 and 0 < α < 1. Let λ be the tuning parameter of the CBLasso. Set

σ =
√

2σ0

(
1−

√
−2 logα/n

)1/2
and R =

√
2log(n/α)/n. If λ ≥ (1− η)−1R and

λ
‖µ0‖TV

σ
≤ 2
[√

1 + (η/2)2 − 1
]
, (9)

then it holds ∣∣∣∣√nσ̂‖ε‖2 − 1

∣∣∣∣ ≤ η , (10)

with probability larger than 1− α
(

2
√
2

n + 2
√
3+3
3

)
.

Note that Assumption 1 implies Inequality (9) with η = 1/2 whenever n ≥ −8 logα.

Proof. The proof is a direct application of Lemma 19 with R =
√

2
√

log(n/α)/n that gives

P
{‖F∗n(ε)‖∞√

n‖ε‖2
≥ R

}
≤ α

(2
√

2

n
+

2√
3

)
.

Applying Lemma 24 with x = − logα gives P(‖ε‖2/
√
n ≤ σ) ≤ α. A union bound on the event

{‖F∗n(ε)‖∞/(
√
n‖ε‖2) ≤ R}∩{‖ε‖2/

√
n ≥ σ} combined with Proposition 17 finishes the proof.

3 Numerical aspects

3.1 Primal/Dual problems and Fermat conditions

We begin by presenting the Fenchel dual formulation of CBLasso in the next proposition.

Proposition 5. Denoting Dn =
{
c ∈ Cn; ‖F∗n(c)‖∞ ≤ 1, nλ2‖c‖2 ≤ 1

}
, the dual formulation of

the CBLasso reads
ĉ ∈ arg max

c∈Dn
λ 〈y, c〉 . (11)

Then, we have the link-equation between primal and dual solutions

y = nλ̂ĉ+ Fn(µ̂) . (12)
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where we define λ̂ = λσ̂, as well as a link between the coefficient and the polynomial

F∗n(ĉ) = p̂ . (13)

The polynomial p̂ is said to be the dual polynomial of Problem (4).

Proof. This proposition is proved in Appendix E.1.

Using (12) and (13), we retrieve the KKT conditions, namely

1

n
F∗n(y −Fn(µ̂)) = λ̂p̂ , (14)

In particular, the dual polynomial satisfies the property of a TV-norm sub-gradient at the solution
point µ̂, namely

‖p̂‖∞ ≤ 1, (15)

R

(∫
T

p̂(t)µ̂(dt)

)
= ‖µ̂‖TV . (16)

Remark 2 (The constant dual polynomial issue). If the associated dual polynomial p̂ is not con-
stant, the support of µ̂ is finite, and is included in the set of its derivative roots, so the measure
solution can be written as µ̂ =

∑ŝ
j=1 âjδt̂j . This follows from (16).

Equivalently, Equation (14) reads as follows

∀t ∈ T, 1

n

fc∑
k=−fc

(yk − ck(µ̂)) exp(2πıkt) = λ̂p̂(t) . (17)

3.2 No-overfitting and root-finding issues

In the sequel, we tackle the “no-overfitting” (see Section 2.1) and the “constant dual polynomial”
issues. The “constant dual polynomial” issue is due to the use of root-finding algorithm which
requires finding roots of the dual polynomial derivative. A practical limitation occurs when the
dual polynomial is constant, in this case we cannot localize the primal solution support, which we
refer to as the “constant dual polynomial” issue. We summarize our results from Propositions 6 and 7
in Figure 1. We may use the estimator (18) referred to as “Beurling Minimal Extrapolation” (BME
for short) by [18], which extends the basis pursuit [16] in our context. The no-overfitting property
is guaranteed by the following proposition.

Proposition 6. Defining λmin(y) = 1/(‖ĉ(BME)‖2
√
n) and the problem

µ̂(BME) ∈ arg min
Fn(µ)=y

‖µ‖TV , (18)

and its dual formulation

ĉ(BME) ∈ arg max
c∈Cn

〈y, c〉

s.t. ‖F∗n(c)‖∞ ≤ 1 .
(19)

the following statements are equivalent
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Figure 1: CBLasso regimes for different value of the regularization parameter λ. When λ ≤ λmin(y),
there is overfitting. When λmin(y) < λ ≤ λmax(y), the dual polynomial is not of constant modulus,
so that the root finding can be done. We also show that the no-overfitting assumption holds in such
a regime. Finally, when λ > λmax(y), the solution is degenerated and µ̂ = 0.

(i) λ ∈]0, λmin(y)],

(ii) ĉ = ĉ(BME),

(iii) σ̂ = 0 (overfitting).

Remark that λmin(y) = 1/(‖ĉ(BME)‖2
√
n) > 1/

√
n.

Proof. (i) ⇒ (ii): Choose λ ∈]0, λmin(y)]. Note that nλ2‖ĉ(BME)‖2 ≤ n(λmin(y))2‖ĉ(BME)‖2 ≤ 1.
Hence, ĉ(BME) ∈ Dn, and since Dn ⊂ {c ∈ Cn : ‖F∗n(c)‖∞ ≤ 1}, then ĉ = ĉ(BME).

(ii) ⇒ (iii): Assume that ĉ = ĉ(BME), then y = nλ̂ĉ(BME) + Fn(µ̂) thanks to Eq. (12) and
Fn(µ̂(BME)) = y thanks to Eq. (18). Moreover, 〈y, ĉ(BME)〉 = ‖µ̂‖TV and λ〈y, ĉ〉 = 1

2nσ̂‖y −
Fn(µ̂)‖2 + σ̂

2 + λ‖µ̂‖TV by strong duality. The only way the last equation holds is when σ̂ = 0 and
that y = Fn(µ̂).

(iii) ⇒ (i): Assume that σ̂ = 0, this leads to λ̂ = 0 thanks to the definition of λ̂ below (12).
Thanks to Eq. (12), y = Fn(µ̂). This means that (µ̂, σ̂) is solution of the problem

(µ̂, σ̂) ∈ arg min
(µ,σ)∈E∗×R++

y=Fn(µ)

1

2nσ
‖y −Fn(µ)‖22 +

σ

2
+ λ‖µ‖TV .

and so
µ̂ ∈ arg min

µ∈E∗
y=Fn(µ)

λ‖µ‖TV .

i.e., µ̂ = µ̂(BME).
By strong duality in Problem (4), one has λ‖µ̂‖TV = λ〈ĉ, y〉 and by strong duality in Prob-

lem (19), λ‖µ̂(BME)‖TV = λ〈ĉ(BME), y〉. Hence 〈ĉ, y〉 = 〈ĉ(BME), y〉 and one can choose ĉ(BME) as
a dual optimal solution for Problem (11). So ‖ĉ(BME)‖22 ≤ 1/(nλ2), and (i) holds by definition
of λmin.

We now proved the last statement of the proposition. Since ‖p̂‖∞ ≤ 1, Parseval’s inequality
leads to ‖ĉ‖2 ≤ 1. If λ < 1/

√
n then λ2n‖ĉ‖2 ≤ λ2n < 1, this means that the `2 constraint in the

dual formulation (11) is not saturated. With the first part of the proof, we deduce the result by
choosing ĉ = ĉ(BME). Using (ii)⇔ (i), one has λmin(y) ≥ 1/

√
n.
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Remark 3. As for the BLasso defined by solving

µ̂BLasso ∈ arg min
µ∈E∗

1

2n
‖y −Fn(µ)‖22 + λ‖µ‖TV, (20)

note that if λ is chosen large enough, 0 is the unique solution of the CBLasso problem given by (4),
the threshold being λmax(y) = ‖F∗n(y)‖∞/(

√
n‖y‖2) (for the BLasso it is simply ‖F∗n(y)‖∞/n). This

result is easily deduced thanks to the KKT conditions.

The next proposition ensures that the root-finding is always possible, meaning that when the primal
solution is non-zero, then the dual polynomial is non-constant.

Proposition 7. For λ ∈]λmin(y);λmax(y)], the polynomial |p̂|2 is non-constant.

Proof. See Appendix E.4.

3.3 Semi Definite Program formulation of the CBLasso

We write A < 0 when a symmetric matrix A is semi-definite positive. Let us recall a classical
property expressing the CBLasso as a semi-definite program (SDP), see [21, Sec. 4.3] or [14, 37]
for instance.

Proposition 8. For any c ∈ Cn, the following holds

‖F∗nc‖2∞ ≤ 1⇔ ∃Λ ∈ Cn×n satisfying Λ∗ = Λ and


(

Λ c

c∗ 1

)
< 0 ,∑n−j+1

i=1 Λi,i+j−1 = δj,1,∀j ∈ [n] .

(21)

where δk,l is the standard Kronecker symbol.

Remark that A < 0 and B < 0 is equivalent to

(
A 0
0 B

)
< 0. From properties of the Schur

complement (cf. [11, p. 651]) a block matrix

(
A B
B∗ C

)
< 0⇔ A < 0 and C −B∗A−1B < 0.

Applying this, one can represent the dual feasible set Dn, as an SDP condition and the dual
problem can be cast as follows

max
c∈Cn

λ 〈y, c〉 such that



(
Λ c

c∗ 1

)
< 0 ,∑n−j+1

i=1 Λi,i+j−1 = δj,1,∀j ∈ [n] ,

(
Idn λ

√
nc

λ
√
nc∗ 1

)
< 0.

(22)

3.4 From the dual to the primal

By solving Problem (22), one can identify p̂, the dual polynomial (13), and the set of locations
where the latter reaches unit modulus and in which the support of µ̂ is included, see Remark 2.
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We recall that the support of all the solutions of Problem (4) are included in the level set |p̂|2 = 1.
Once this set is identified, remark that solutions to Problem (4) are equivalently solutions to a finite
dimensional one:

(µ̂, σ̂) ∈ arg min
(µ,σ)∈Ê∗×R++

1

2nσ
‖y −Fn(µ)‖22 +

σ

2
+ λ‖µ‖TV , (23)

where Ê∗ := (C(supp(µ̂),C), ‖ · ‖∞) the space of Borelian measure, whose support is included in
supp(µ̂) = {t̂j , j = 1, . . . , ŝ}, a set found thanks to the dual formulation from the previous section.

Indeed, any solution µ̂ to Problem (4) belongs to Ê∗ so that it is equivalently a solution to (23).
We can now introduce the design matrix X ∈ Rn×ŝ, defined by Xk,j = ϕk(t̂j). Considering the

estimators (â, σ̂) defined by

(â, σ̂) ∈ arg min
(a,σ)∈Rŝ×R++

1

2nσ
‖y −Xa‖22 +

σ

2
+ λ‖a‖1 , (24)

one can check that (µ̂, σ̂) satisfies the original optimality condition for Problem (4), where

µ̂ =

ŝ∑
j=1

âjδt̂j .

To solve (24), we proceed following the alternate minimization procedure proposed in [36], that
consists in alternating between a Lasso step and a noise level estimation step (i.e., computing the
norm of the residuals). Note that the Lasso step is simple in this case, since the KKT condition

reads X∗(Xa− y) + λσ̂ζ̂ = 0 where ζ̂ = sign(X∗ĉ). Provided that the matrix X∗X can be stored
and inverted, one can use

â = X+y − λσ̂(X∗X)−1ζ̂ (25)

along the iterative process.

3.5 Experiments

The source code of all the experiments presented in this section can be downloaded from this gitHub
repository2; a notebook can also be found at this address3. First, let us summarize the description
of the proposed algorithm: given the data y ∈ Cn

1. Set λ = αλmax(y), for a constant α ∈ (0, 1) fraction of λmax(y) = ‖F∗(y)‖∞/(
√
n‖y‖2);

2. Solve Problem (22) to find the coefficients ĉ of the dual polynomial p̂. For this step, we use
the cvx Matlab toolbox [27, 28];

3. Identify supp(µ̂) using the roots of 1− |p̂|2 and construct the matrix X described above;

4. Solve Problem (24) as follows: for an initial value of σ̂, until some stopping criterion,

(a) Solve Problem (24) using (25) with σ̂ to compute â,

(b) Update σ̂ = ‖y −Xâ‖2/
√
n using the new value of â,

In our experiments, we have chosen in Step 4 the stopping criterion combining (i) a maximal number
of iterations fixed to 1000 and (ii) a tolerance threshold of 10−4 between two iterates of σ̂.

2https://github.com/claireBoyer/CBLasso
3http://www.lsta.upmc.fr/boyer/codes/html_CBlasso_vs_Blasso/script_example1_CBlasso_vs_Blasso.html

11

https://github.com/claireBoyer/CBLasso
https://github.com/claireBoyer/CBLasso
"http://www.lsta.upmc.fr/boyer/codes/html_CBlasso_vs_Blasso/script_example1_CBlasso_vs_Blasso.html"
https://github.com/claireBoyer/CBLasso
http://www.lsta.upmc.fr/boyer/codes/html_CBlasso_vs_Blasso/script_example1_CBlasso_vs_Blasso.html


0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 

Original
BLasso
CBLasso

Figure 2: Reconstruction of a discrete measure. The original measure µ0 is composed of 3 spikes
(in black). The reconstructed measure µ̂ using our proposed CBLasso (in blue). In comparison, we
plot the reconstructed measure using the BLasso, (in red).

Measure estimation We run this algorithm for estimating a 3-spikes measure. The measure is
generated by drawing uniformly at random support locations in the torus satisfying the separation
condition. The spike amplitudes are set to 1 or −1 at random. The noise level σ0 is fixed to 1
and n = 161. For this experiment we fix λ to be equal to λmax(y)/2 = ‖F∗n(y)‖∞/(2

√
n‖y‖2).

The results are presented in Fig. 2 and compared with a BLasso approach (solved thanks to (25)
for λ = nλBLasso

max (y)/2 with λBLasso
max (y) = ‖F∗n(y)‖∞/n and σ̂ = σ0, the true level of noise) over

the estimated support supp(µ̂). First, note that both the BLasso and the CBLasso methods can
recover the true support supp(µ0). Second, the CBLasso better estimates the spikes magnitude in
the original measure than the BLasso due to a better scaling of the regularizing factor.

Noise estimation In order to illustrate noise estimation performance provided by the CBLasso
method, we run the following experiment. Following the same procedure described above, we
draw at random 100 target measures replica composed of 3 spikes with support satisfying the
separation condition. For each target measure µ0, we observe y = Fn(µ0) + ε with n = 161 and

ε a complex Gaussian vector such that ε
(d)
= ε(1) + iε(2) and ε(1), ε(2) ∼ N (0, (1/2) Idn) (here we

choose σ0 = 1/
√

2) and we perform the algorithm proposed above. In Fig. 3, we present a boxplot
on the value σ̂ for the 100 CBLasso estimations. One can remark that σ̂ presents a bias compared
to the noise level equal to 1, but this bias will decrease as n increases. Indeed, Proposition 4 shows
that σ̂ is close to ‖ε‖2/

√
n whose expectation is

√
2σ0E‖g‖2/

√
2n with g standard Gaussian in

dimension 2n. We deduce that

σ̂ '
√

2σ0 ×
E‖g‖2√

2n
=
√

2σ0 ×
Γ(n+ 1/2)√

nΓ(n)
→
√

2σ0 ,

showing that σ̂/
√

2 is consistent estimator of σ0.

12
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Figure 3: Boxplot on σ̂ for 100 CBLasso consistent estimations of
√

2σ0 = 1. We compare
our method to σ̂BLasso = ‖y − Fn(µ̂BLasso)‖2/

√
n− ŝBLasso proposed in [34] where µ̂BLasso is the

reconstructed measure supported on ŝBLasso spikes via BLasso. Noise estimation using CBLasso is
clearly closer to σ0 than σ̂BLasso.

In Fig. 3, we also compare the CBLasso noise estimation to

σ̂BLasso =
1√

n− ŝBLasso
‖y −Fn(µ̂BLasso)‖2,

proposed in [34], in which µ̂BLasso denotes the reconstructed measure that is supported on ŝBLasso

spikes using the BLasso. The CBLasso approach provides a satisfactory noise level estimation w.r.t.
the heuristics defined above.
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Reading guide

The proofs of this paper are quite long and may be difficult to follow. The main part is devoted for
proving Theorem 1 as we need the control of the prediction error to derive the result on estimation
of the target measure, namely Theorem 2. More precisely, we need (34) that controls the Bregman
divergence of the TV norm at point (µ̂, µ0). If we admit this control, the proof of Theorem 2 is
only two pages and partially follows from [2, 25]. Regarding this proof, the main contribution is
to control the influence of the noise estimation error on σ̂, bounding it from above and/or below
in each step. This is new since this paper is the first to address the noise estimation issue in such
a context. This proof is presented in Section B. Three ingredients are part of Theorem 1 and
Theorem 2 proofs.

1. The first one is the noise level control, namely bounding the probability of {‖F∗n(ε)‖∞ ≤ λ}
and {‖F∗n(ε)‖∞/

√
n‖ε‖2 ≤ R}. This step required new results on the supremum of processes

indexed by the torus. This is done using the Rice formula [3, Proposition 4.1, Page 93]
presented in Section D.2

2. One recent breakthrough in Super-Resolution has been brought by pioneering constructions
[14, 18, 8] of dual polynomials, namely proving the existence of convenient sub-gradients
of the TV norm at the target measure (and, hence, assuming the separation condition of
Assumption 2). These constructions are now well referenced and we omit their proofs in this
paper. They are briefly synthesized though in Section C.

3. The last ingredient is a mixture of optimality conditions derived from convexity (see Section E)
and simple but non trivial ad hoc inequalities.

The proofs presentation is essentially focused on these last points since we believe that they are
specific to and at the heart of the Super Resolution framework. As we have seen, these ad hoc
inequalities steps are presented in Section B for Theorem 2.

As for Theorem 1, this last ingredient is costly, requiring several pages, see Section A. Its proof
is based on the pioneering paper [37]. However, the proof presented here, on the prediction error,
differs from their since we take into account the noise estimation. It changes large parts of the proof
of [37] and Section A is devoted to this task. In a nutshell, the noise estimation is given by λ̂ = λσ̂
where λ is a tuning parameter of our algorithm, while the noise level ‖F∗n(ε)‖∞ can be bounded
(with large probability) by λ̃ in the proof, see for instance Lemma 10. Observe that λ itself has been
tuned so that it bounds the noise level but we need to draw a (technical) distinction here. Doing

so, we are able to assess the probability of some key events such that {λ̃/λ̂ ≤ (CF ∧ CN )/(2C)},
see Page 21. This event has been controlled in [37] with “high probability” while “choosing large
enough constants” which was rightfully enough for the purpose of [37]. In this paper, we carefully
quantify these assertions as done in Lemma 12. The second main difference with the proof of [37]
relies on the fact that we have to track the noise estimation error in all the ad hoc inequalities
steps. This has been achieved tuning λ, λ̃, λ̂, β̃, β̂, etc., in a suitable manner. The proofs have
been organized through the paper according to the aforementioned remarks.
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A Proof of Theorem 1

Let us define ck(µ̂ − µ0) =
∫
T

exp(−2πıkt)(µ̂ − µ0)(dt) for −fc ≤ k ≤ fc, and introduce the
trigonometric polynomial ∆ of degree fc defined by

∆ =
∑
|k|≤fc

ck(µ̂− µ0)ϕk , (26)

with ϕk(·) = exp(2πık·). One can write

1

n
‖Fn(µ̂− µ0)‖22 =

1

n
R
[ ∫

T

∑
|k|≤fc

ck(µ̂− µ0)e−2ıπkt(µ̂− µ0)(dt)
]

=
1

n
R
[ ∫

T

∆̄(t)(µ̂− µ0)(dt)
]
.

Applying Lemma 9 (see Section A.1 below) with q = ∆̄ and ν = µ̂− µ0, one gets

R
[ ∫

T

∆̄(µ̂− µ0)(dt)
]
≤ ‖∆‖∞

[
s0∑
i=1

(∣∣∣∣∫
Ni

ν(dt)

∣∣∣∣︸ ︷︷ ︸
Ii0

+n

∣∣∣∣∫
Ni

(t− ti)ν(dt)

∣∣∣∣︸ ︷︷ ︸
Ii1

+
n2

2

∣∣∣∣∫
Ni

(t− ti)2ν(dt)

∣∣∣∣︸ ︷︷ ︸
Ii2

)

+

∫
F

|ν|(dt)

]
,

≤ ‖∆‖∞
[∫

F

|ν|(dt) + I0 + I1 + I2

]
,

with Ij =
∑s0
i=1 I

i
j for j = 0, 1, 2. Therefore,

1

n
‖Fn(µ̂− µ0)‖22 ≤

1

n
‖∆‖∞

[∫
F

|ν|(dt) + I0 + I1 + I2

]
. (27)

The result in Theorem 1 follows by bounding each term in (27) using Lemmas 10, 11 and 12,
presented in the sequel.

A.1 Preliminary lemma

Lemma 9. For all trigonometric polynomial q of degree less than fc and for all (t0i )1≤i≤s0 ∈ Ts0
satisfying the separation condition given in Assumption 2, we have for any ν ∈ E∗,∣∣∣∣∫
T

qdν

∣∣∣∣ ≤ ‖q‖∞
[∫

F

|ν|(dt) +

s0∑
i=1

(∣∣∣∣∫
Ni

ν(dt)

∣∣∣∣+ n

∣∣∣∣∫
Ni

(t− t0i )ν(dt)

∣∣∣∣+
n2

2

∣∣∣∣∫
Ni

(t− t0i )2ν(dt)

∣∣∣∣)
]
,

where Nj and F are defined in (7) and (8).

Proof. Given the definitions of F and the (Ni)’s, one can write∣∣∣∣∫
T

q(t)ν(dt)

∣∣∣∣ ≤ ∣∣∣∣∫
F

q(t)ν(dt)

∣∣∣∣+

s0∑
i=1

∣∣∣∣∫
Ni

q(t)ν(dt)

∣∣∣∣ ≤ ‖q‖∞ ∫
F

|ν|(dt) +

s0∑
i=1

∣∣∣∣∫
Ni

q(t)ν(dt)

∣∣∣∣ .
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In the sequel, we may identify T with R/Z using [−1/2, 1/2) as fundamental polygon. Using the
Taylor-Lagrange expansion

∣∣q(t)− q(t0i )− q′(t0i )(t− t0i )∣∣ ≤ ‖q′′‖∞ (t− t0i )2

2
,

and the Bernstein inequality [10, Theorem 5.1.4] for trigonometric polynomials (reminding fc ≤ n)

‖q′‖∞ ≤ n‖q‖∞ and ‖q′′‖∞ ≤ n2‖q‖∞ ,

we can derive for a fixed i ∈ {1, . . . , s0}∣∣∣∣∫
Ni

q(t)(ν)(dt)

∣∣∣∣ ≤ ∣∣q(t0i )∣∣ ∣∣∣∣∫
Ni

(µ̂− µ0)(dt)

∣∣∣∣+ |q′(t0i )|
∣∣∣∣∫
Ni

(t− t0i )(µ̂− µ0)(dt)

∣∣∣∣
+
n2‖q‖∞

2

∫
Ni

(t− t0i )2|ν|(dt) ,

≤‖q‖∞
(∣∣∣∣∫

Ni

(ν)(dt)

∣∣∣∣+ n

∣∣∣∣∫
Ni

(t− t0i )(ν)(dt)

∣∣∣∣+
n2

2

∣∣∣∣∫
Ni

(t− t0i )2(ν)(dt)

∣∣∣∣) ,

as claimed.

A.2 Control of ‖∆‖∞
Lemma 10. Let α̃ ∈ (0, 1) and set λ̃ := 2σ0

√
log(n/α̃)/n. Then, reminding λ̂ = λσ̂, it holds

‖∆‖∞ = sup
t∈T

∣∣∣∣∣∣
∑
|k|≤fc

ck(µ̂− µ0)ϕk(t)

∣∣∣∣∣∣ ≤ n
(
λ̃+ λ̂

)
,

with probability greater than 1− α̃.

Proof. Recall that Fn(µ0) = y − ε to get

‖∆‖∞ ≤ sup
t∈T

∣∣∣∣∣∣
∑
|k|≤fc

εkϕk(t)

∣∣∣∣∣∣+ sup
t∈T

∣∣∣∣∣∣
∑
|k|≤fc

(yk − ck(µ̂))ϕk(t)

∣∣∣∣∣∣ ,
≤ ‖F∗n(ε)‖∞ + sup

t∈T

∣∣∣∣∣∣
∑
|k|≤fc

(yk − ck(µ̂))ϕk(t)

∣∣∣∣∣∣ .
Using Lemma 18, it holds that ‖F∗n(ε)‖∞ ≤ nλ̃ with probability greater than 1 − α̃. Using the
KKT conditions (14), we have that

sup
t∈T

∣∣∣∣∣∣
∑
|k|≤fc

(yk − ck(µ̂))ϕk(t)

∣∣∣∣∣∣ ≤ λ̂‖np̂‖∞ ≤ nλ̂ .

We deduce the result from this last point.
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A.3 Control of I0 and I1 by I2 +
∫
F
|ν|(dt)

Lemma 11. There exists a numerical constant C2 > 0 such that

I0 ≤ C2

(
s0λ̂+ I2 +

∫
F

|ν|(dt)
)

and I1 ≤ C2

(
s0λ̂+ I2 +

∫
F

|ν|(dt)
)

.

Proof. Invoke Lemma 2 of [38] to get the result.

A.4 Control of I2 +
∫
F
|ν|(dt)

Setting α̂ = n−β̂ and α̃ = n−β̃ for some well chosen constants β̂ > 0, β̃ > 0 (to be specified later),
the proof reduces to control the quantity∫
F

|µ̂−µ0|(dt)+I2 =

∫
F

|µ̂−µ0|(dt)+

s0∑
i=1

Ii2 =

∫
F

|µ̂−µ0|(dt)+
n2

2

s0∑
i=1

∣∣∣∣∫
Ni

(t− ti)2(µ̂− µ0)(dt)

∣∣∣∣ ,
and λ̂ in Lemma 10.

Lemma 12. Under the assumptions of Theorem 1, with a probability of failure that decays as a
power of n, it holds ∫

F

|ν|(dt) + I2 ≤
3
√

2

2

(
1 +

C1

C
+

2C1

CF ∧ CN

)
s0σ0λ .

where the constants C1, CN , CF > 0 are defined in Section C and C > 0 is an universal constant.

Proof. The proof follows several steps.
Preliminary First, let us fix S := supp(µ0) = {t01, . . . , t0s0} and then let ΠS : E∗ → E∗ be defined
for ν ∈ E∗, such that ΠS(ν) is the atomic part of ν on S. Considering that ν = µ̂− µ0 and using
the triangle inequality, one can write that

‖ΠS(ν)‖TV ≤
∣∣∣∣∫
T

q1(t)ν(dt)

∣∣∣∣+

∣∣∣∣∫
T

q1(t)ν|Sc(dt)

∣∣∣∣ ,
where ν|Sc = ν − ΠS(ν), and q1 is the interpolation polynomial interpolating the phases of ΠS(ν),
defined as in Lemma 13. By Hölder’s inequality and Lemma 10, one has∣∣∣∣∫

T

q1(t)ν(dt)

∣∣∣∣ ≤ ‖q1‖1‖∆‖∞ ≤ ‖q1‖1(λ̃+ λ̂)n .

By noticing the following disjoint union T = F t
(
∪s0i=1Ni \ {t0i }

)
t S, we deduce that

‖ΠS(ν)‖TV ≤ ‖q1‖1(λ̃+ λ̂)n+

∣∣∣∣∫
F

q1(t)ν|Sc(dt)

∣∣∣∣+ s0∑
i=1

∣∣∣∣∣
∫
Ni\{t0i }

q1(t)ν|Sc(dt)

∣∣∣∣∣+
∣∣∣∣∫
S

q1(t)ν|Sc(dt)

∣∣∣∣ ,
in which the last term is equal to 0 since ν|Sc has no mass on S. Note that, for any borelian A ⊆ T,
it holds ν|Sc(F ∩A) = ν(F ∩A). Therefore,

‖ΠS(ν)‖TV ≤ ‖q1‖1(λ̃+ λ̂)n+

∣∣∣∣∫
F

q1(t)ν(dt)

∣∣∣∣+

s0∑
i=1

∣∣∣∣∣
∫
Ni\{ti}

q1(t)ν|Sc(dt)

∣∣∣∣∣ .
19



By Lemma 13, one can write that

‖ΠS(ν)‖TV ≤ ‖q1‖1(λ̃+ λ̂)n+ (1− CF )

∫
F

|ν|(dt) +

s0∑
i=1

∣∣∣∣∣
∫
Ni\{t0i }

q1(t)ν|Sc(dt)

∣∣∣∣∣ .
Moreover, using Lemma 13(ii),∣∣∣∣∣

∫
Ni\{t0i }

q1(t)ν|Sc(dt)

∣∣∣∣∣ ≤
∫
Ni\{t0i }

|q1|(t)|ν||Sc(dt) ≤
∫
Ni\{t0i }

(
1− CN

2
n2(t− t0i )2

)
|ν|(dt) ,

≤
∫
Ni\{t0i }

|ν|(dt)− CNIi2 .

Combining the last two inequalities, one gets

‖ΠS(ν)‖TV ≤ ‖q1‖1(λ̃+ λ̂)n+ ‖ν|Sc‖TV − CF
∫
F

|ν|(dt)− CN
s0∑
i=1

Ii2 ,

≤ ‖q1‖1(λ̃+ λ̂)n+ ‖ν|Sc‖TV − CF
∫
F

|ν|(dt)− CNI2 ,

and finally,

‖ΠS(ν)‖TV − ‖ν|Sc‖TV ≤ −CF
∫
F

|ν|(dt)− CNI2 + ‖q1‖1(λ̃+ λ̂)n . (28)

Trade-off between λ̂ and λ̃. Secondly, by optimality of µ̂, we have

1

2n
‖y −Fn(µ̂)‖22 + λ̂‖µ̂‖TV ≤

1

2n
‖ε‖22 + λ̂‖µ0‖TV ,

then, invoking Lemmas 9 and 11 (at the last step), one has

nλ̂
(
‖µ̂‖TV − ‖µ0‖TV

)
≤ 1

2

(
‖ε‖22 − ‖y −Fn(µ̂)‖22

)
,

=
1

2

(
‖ε‖22 − ‖y −Fn(µ0 − µ̂) + ε‖22

)
,

=
1

2

(
2
〈
ε,Fn(µ̂− µ0)

〉
− ‖Fn(µ0 − µ̂)‖22

)
,

≤
∣∣〈ε,Fn(µ̂− µ0)

〉∣∣ =

∣∣∣∣R(∫
T

F∗n(ε)dν

)∣∣∣∣ ,
≤ nλ̃ · C

(
s0λ̂+ I2 +

∫
F

|ν|(dt)
)

, (29)

for some universal constant C > 0. Considering the triangle inequality coupled with the separability
property of ‖ · ‖TV, one has ‖µ̂‖TV = ‖µ0 + ν‖TV ≥ ‖µ0‖TV − ‖ΠS(ν)‖TV + ‖ν|Sc‖TV. It yields

nλ̂
(
‖ν|Sc‖TV − ‖ΠS(ν)‖TV

)
≤ nλ̂

(
‖µ̂‖TV − ‖µ0‖TV

)
≤ nλ̃C

(
s0λ̂+ I2 +

∫
F

|ν|(dt)
)

. (30)
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Combining (28) and (30), we finally get

CF

∫
F

|ν|(dt) + CNI2 − ‖q1‖1(λ̃+ λ̂)n ≤ λ̃

λ̂
C

(
s0λ̂+ I2 +

∫
F

|ν|(dt)
)

.

Using Lemma 15, one has

(CF ∧ CN )

(∫
F

|ν|(dt) + I2

)
≤ λ̃

λ̂
C

(
s0λ̂+ I2 +

∫
F

|ν|(dt)
)

+ C1s0(λ̃+ λ̂) ,

On the event
{
λ̃/λ̂ ≤ (CF ∧ CN )/(2C)

}
, then∫

F

|ν|(dt) + I2 ≤
(

1 +
C1

C
+

2C1

CF ∧ CN

)
s0λ̂ . (31)

Control of the event
{
λ̃/λ̂ ≤ (CF ∧ CN )/(2C)

}
. Recall that λ̃ := 2σ0

√
log(n/α̃)/n has been cho-

sen so that P
{
‖F∗n(ε)‖∞ ≤ nλ̃

}
≥ 1−α̃ , using Lemma 18. Moreover, on the events

{
‖F∗n(ε)‖∞√

n‖ε‖2
≤ R

}
and

{
‖ε‖2√
n
≥ σ

}
with the choice R =

√
2 log(n/α̂)/n and σ =

√
2σ0

(
1−

√
−2 log α̂/n

)1/2
, one can

invoke Proposition 4 with η = 1/2 to obtain

λ̂ = σ̂λ ≥ R

1− η
(1− η)

‖ε‖2√
n
≥ σ

√
2 log(n/α̂)

n
,

with probability greater than 1− α̂
(
2
√

2/n+ 2/
√

3
)
.

Eventually, setting α̂ = n−β̂ and α̃ = n−β̃ , we can chose the constants β̂ > 0, β̃ > 0, so that,
for n large enough,

λ̃

λ̂
≤
√

2

(
1−

√
−2β̂ log n/n

)−1/2√
log(n/α̃)

log(n/α̂)
≤ 2

√
1 + β̃

1 + β̂
≤ CF ∧ CN

2C
.

In this case, note that the probability of failure of the event {λ̃/λ̂ ≤ (CF ∧CN )/(2C)} decays as a
power of n.

Control of λ̂. Invoke Proposition 4 with η = 1/2 (reminding that λ ≥ 2R = 2
√

2 log(n/α̂)/n and
that Assumption 1 holds, fulfilling (41) and (42)) and Lemma 24 (with x = γ log n) to obtain,

λ̂ = σ̂λ ≤ (1 + η)‖ε‖2λ√
n

≤ 3
√

2

2
σ0λ(1 + γ log n/n+

√
2γ log n/n) . (32)

Invoke (31) to conclude the proof of Lemma 12.

The quantity λ̂ is controlled by (32), we can conclude the proof of the theorem.
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B Proof of Theorem 2

Let us remind that by Equation (3), µ0 =
∑s0
j=1 a

0
jδt0j . Then, let q be a dual certificate of µ0

obtained by applying Lemma 13 (see Section C.1) to the set supp(µ0) = (t01, . . . , t
0
s0). Recall that q

then interpolates the phase vj = a0j/|a0j | at the point t0j . Recall also that q is a trigonometric

polynomial of degree fc with ‖q‖∞ ≤ 1. Consider DTV(µ̂, µ0) the Bregman divergence of the
TV-norm between the solution µ̂ of (4) and the target measure µ0, namely

DTV(µ̂, µ0) := ‖µ̂‖TV − ‖µ0‖TV −R

(∫
T

q(t)(µ̂− µ0)(dt)

)
. (33)

Since q interpolates the phases of µ0, one can show that

R

(∫
T

q(t)(µ̂− µ0)(dt)

)
= R

(∫
T

q(t)µ̂(dt)

)
− ‖µ0‖TV ≤ ‖µ̂‖TV − ‖µ0‖TV,

using Holder’s inequality and ‖q‖∞ ≤ 1. It shows that DTV(µ̂, µ0) is non-negative. From this
point, we consider the framework of the proof of Theorem 1. In particular, we invoke Lemma 16,
Eqs (29), (31) and the control of the event

{
λ̃/λ̂ ≤ (CF ∧ CN )/(2C)

}
to get that there exists a

constant C > 0 such that
DTV(µ̂, µ0) ≤ Cs0λ̂ . (34)

From now on, universal constants C > 0 may change from line to line but they do not depend on
n, α, s0, σ0, λ, λ̃ or λ̂. Proposition 4 (with η = 1/2) and Lemma 24 (with x = − logα) show that

λ̂ = σ̂λ0 ≤
3√
2

(
1 +

log(1/α)

n
+

√
2 log(1/α)

n

)
σ0λ , (35)

with probability greater than 1− α
(

2
√
2

n + 2
√
3+6
3

)
. Invoke (34) and (35) to get that

DTV(µ̂, µ0) ≤ C
(

1 +
2 log(1/α)

n
+

√
2 log(1/α)

n

)
σ0s0λ ≤ Dα(σ0, s0, λ) , (36)

where we define

Dα(σ0, s0, λ) := C
(

1 +
log(1/α)

n
+

√
2 log(1/α)

n

)
σ0s0λ ,

with C > 0 a universal constant that is sufficiently large to ensure the correctness of all the
(forthcoming) bounds involving Dα.
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Denote µ̂ =

ŝ∑
k=1

âkδt̂k a solution4 of (4) and observe that

DTV(µ̂, µ0) = ‖µ̂‖TV − ‖µ0‖TV −R

(∫
T

q(t)(µ̂− µ0)(dt)

)
,

= ‖µ̂‖TV −R

(∫
T

q(t)µ̂(dt)

)
,

=

ŝ∑
k=1

(
|âk| −R(q(t̂k)âk)

)
,

≥
ŝ∑

k=1

|âk|(1− |q(t̂k)|) ,

≥
ŝ∑

k=1

|âk|min
{

(CN/2)n2 min
t∈supp(µ0)

d(t, t̂k)2, CF

}
, (37)

using Cauchy-Schwarz inequality and Lemma 13. Claims (2) and (3) follow from (36) and (37).
Recall that the set of “near” points is defined asNj :=

{
t ∈ T; d(t, t0j ) ≤ c1

fc

}
for some 0 < c1 < c0/2,

as in the papers [14, 26]; and the set of “far” points as F := [0, 1] \
⋃
j∈[s]Nj . Let qj := q01,j be

constructed as in Section C.2 with respect to supp(µ0). In particular, Lemma 15 shows that
‖q01,j‖1 ≤ C1s0

n (where s = s0). We get that, for all j ∈ {1, . . . , s0},∣∣∣ ∑
{k: t̂k /∈Nj}

âkq01,j(t̂k) +
∑

{k: t̂k∈Nj}

|âk|(q01,j(t̂k)− 1)
∣∣∣

≤
∑

{k: t̂k /∈Nj}

|âk||q01,j(t̂k)|+
∑

{k: t̂k∈Nj}

|âk||q01,j(t̂k)− 1| ,

≤
ŝ∑

k=1

|âk|min
{

(C ′N/2)n2 min
t∈supp(µ0)

d(t, t̂k)2, 1− CF
}
,

≤ max
{1− CF

CF
,
C ′N
CN

}
×

ŝ∑
k=1

|âk|min
{

(CN/2)n2 min
t∈supp(µ0)

d(t, t̂k)2, CF

}
,

≤ max
{1− CF

CF
,
C ′N
CN

}
DTV(µ̂, µ0) ,

≤ 1

2
Dα(σ0, s0, λ) . (38)

using Section C.2 and (37). Furthermore, Lemma 16 shows∣∣∣∣∫
T

q01,j(t)(µ̂− µ0)(dt)

∣∣∣∣ ≤ C1s0

(‖F∗n(ε)‖∞
n

+ λ̂
)
.

Using Lemma 18, with probability 1 − α, it holds that ‖F∗n(ε)‖∞ ≤ 2nσ0
√

log(n/α)/n. Invoke

4Recall that almost surely this solution is unique and has finite support, see Section 3.1.
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Eq. (35) and recall λ ≥ 2
√

2
√

log(n/α)/
√
n to get that,∣∣∣∣∫

T

q01,j(t)(µ̂− µ0)(dt)

∣∣∣∣ ≤ 1

2
Dα(σ0, s0, λ) , (39)

with probability greater than 1− α
(
2
√

2/n+ (2
√

3 + 9)/3
)
. Using inequalities (38) and (39), one

can check that, for all j ∈ {1, . . . , s0},∣∣∣∣∣∣a0j −
∑

{k: t̂k∈Nj}

âk

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫
T

q01,j(t)(µ̂− µ0)(dt) +
∑

{k: t̂k /∈Nj}

âkq01,j(t̂k) +
∑

{k: t̂k∈Nj}

âk(q01,j(t̂k)− 1)

∣∣∣∣∣∣ ,
≤ Dα(σ0, s0, λ).

This proves Claim (1).

C Standard constructions of dual/interpolating polynomials

This section is devoted to present the different interpolating polynomials that we shall use in this
paper. These polynomials are offsprings of the construction given in the pioneering paper [14] that
has been recently improved by [26].

C.1 Two constructions

Lemma 13 (Interpolating polynomial). There exists universal positive constants CN , C ′N and CF
such that the following holds. For any set of point {t1, . . . , ts} satisfying Assumption 2, for any
v ∈ Cs such that |v1| ≤ 1, . . . , |vs| ≤ 1, there exists a complex trigonometric polynomial q1 of degree
less than fc such that

(i) for all j ∈ [s], it holds q(tj) = vj,

(ii) for all j ∈ [s] and for all t ∈ Nj, it holds |q(t)| ≤ 1 − CN
n2

2 d2(t, tj) and |q(t) − vj | ≤
C ′N

n2

2 d2(t, tj),

(iii) for all t ∈ F , it holds |q(t)| < 1− CF ,

where we recall that n = 2fc + 1.

The proof of Lemma 13 can be found using the proof of Lemma 2.2 in [25] and Lemma 2.2 in [14].

Remark 4. Note that Claim (ii) leads to |q(t)| ≥ 1− C ′N n2

2 d2(t, tj).

Lemma 14 (Interpolating derivative polynomial). There exists universal positive constants CN,0
CF,0 such that the following holds. For any set of point {t1, . . . , ts} satisfying Assumption 2, for
any v ∈ Cs such that |v1| ≤ 1, . . . , |vs| ≤ 1, there exists a complex trigonometric polynomial q0 of
degree less than fc such that

(i) for all j ∈ [s] and for all t ∈ Nj, it holds |q0(t)− vj(t− tj)| ≤ CN,0 n2 d2(t, tj),
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Figure 4: Interpolating polynomial q1 (|v1| = · · · = |vs| = 1) on the left and q01 (|v1| = · · · = |vs| = 0
except for one vj = 1) on the right.

(ii) for all t ∈ F , it holds |q0(t)| < CF,0
n ,

where we recall that n = 2fc + 1.

The proof of Lemma 14 can be found in the proof of Lemma 2.7 in [13] which can be improved
(lowering c0 = 1.26 in Assumption 2) using the paper [26].

C.2 Dual certificates

Throughout this paper we shall use the following polynomials, see Figure 4. Consider a set of point
{t1, . . . , ts} satisfying Assumption 2.

• Invoke Lemma 13 for well chosen complex numbers |v1| = · · · = |vs| = 1 to get a ”dual
certificate” that we shall denote by q1.

• Fix j ∈ [s] and invoke Lemma 13 with vj = 1 and vi = 0 for i 6= j to define the polynomial
q01,j . In particular, the polynomial q01,j enjoys

– q01,j(tj) = 1,

– for all t ∈ Nj , |1− q01,j(t)| ≤ C ′N n2

2 d2(t, tj),

– for all i 6= j, for all t ∈ Ni, |q01,j(t)| ≤ C ′N n2

2 d2(t, ti),

– for all t ∈ F , it holds |q01,j(t)| < 1− CF .

• Polynomial q0 is given by Lemma 14.

C.3 Control of the Bregman divergence

Lemma 15 ([37], Lemma 4). With the same notation as Lemma 13, there exists a universal positive
constant C1 > 0 such that the polynomials q1, q01,j and q0 defined in Section C.2 satisfy

(i) ‖q1‖1 ≤ C1s
n ,

(ii) ‖q01,j‖1 ≤ C1s
n ,
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(iii) ‖q0‖1 ≤ C1s
n2 ,

where we recall that n = 2fc + 1.

The proof of Lemma 15 can be found in the proof of Lemma 4 in [37].

Lemma 16. With the same notation as Lemma 13, let ν := µ̂ − µ0. Let α̃ ∈ (0, 1) and set

λ̃ := 2σ0
√

log(n/α̃)/n. Then, with probability greater than 1− α̃, it holds∣∣∣∣∫
T

q1(t)ν(dt)

∣∣∣∣ ≤ C1s
(
λ̃+ λ̂

)
,∣∣∣∣∫

T

q01,j(t)ν(dt)

∣∣∣∣ ≤ C1s
(
λ̃+ λ̂

)
,∣∣∣∣∫

T

q0(t)ν(dt)

∣∣∣∣ ≤ C1s

n

(
λ̃+ λ̂

)
,

where C1 > 0 is the universal constant defined in Lemma 15 and the polynomials q1, q01,j and q0
are defined in Section C.2.

Proof. We prove the first inequality, the second follows the same lines. Remind that q1 is a trigono-
metric polynomial of degree less than fc and write

q1 =

fc∑
k=−fc

d
(1)
k φk ,

where we recall that φk(·) = exp(2πık·). Set ∆ to be the following trigonometric polynomial (used
also in (26))

F∗n(µ̂− µ0) =

fc∑
k=−fc

ck(µ̂− µ0)φk =: ∆ , (40)

then, using Parseval’s identity and Holder’s inequality, we have∣∣∣∣∫
T

q1(t)ν(dt)

∣∣∣∣ =

∣∣∣∣∣∣
∫
T

fc∑
k=−fc

d
(1)
k φk(t)ν(dt)

∣∣∣∣∣∣ ,
=

∣∣∣∣∣∣
fc∑

k=−fc

d
(1)
k

∫
T

φk(t)ν(dt)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
fc∑

k=−fc

d
(1)
k ck(µ̂− µ0)

∣∣∣∣∣∣ ,
=

∣∣∣∣∫
T

q1(t)∆(t)dt

∣∣∣∣ ,
≤ ‖q1‖1‖∆‖∞ .

Using Lemma 15(i) and Lemma 10, we have∣∣∣∣∫
T

q1(t)ν(dt)

∣∣∣∣ ≤ C1s
(
λ̃+ λ̂

)
,

as claimed.
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D Statistical analysis

D.1 Noise level estimation

In order to control σ̂, one can use the following result given by [39].

Proposition 17 ([39], Lemma 3.1). Suppose that for some η ∈ (0, 1), some R > 0 and some σ > 0.
Assume also that

λ ≥ R

1− η
, (41)

and

λ
‖µ0‖TV

σ
≤ 2

(√
1 + (η/2)2 − 1

)
. (42)

Then, on the set where
{
‖F∗n(ε)‖∞√

n‖ε‖2
≤ R

}
and

{
‖ε‖2√
n
≥ σ

}
, one has∣∣∣∣√nσ̂‖ε‖2 − 1

∣∣∣∣ ≤ η .

The proof of [39, Lemma 3.1] is elementary but non-trivial, mainly based on triangular in-
equalities, optimality conditions, norm convexity. It is still valid in our setting with the following
notation correspondences: λ → λ0, λ0,ε → R, ‖ · ‖n → ‖ · ‖2/

√
n, Xβ → Fn(µ), XT ε → F∗n(ε),

‖β0|1 → ‖µ0‖TV .

D.2 Control of the processes

Standard approaches in `1-minimization are based on bounding the noise correlation F∗n(ε) or its
normalized version F∗n(ε)/‖ε‖2 in the Concomitant Beurling Lasso case. In particular, one needs
to upper bound the probabilities of the following events

{‖F∗n(ε)‖∞ ≤ λ} and

{
‖F∗n(ε)‖∞√

n‖ε‖2
≤ R

}
,

where we recall that

F∗n(ε)(t) =

fc∑
k=−fc

εk exp(2πıkt) ,

for all t ∈ [0, 1]. The first event can be handled with a Rice formula for stationary Gaussian
processes as in [2]. Due to the denominator, the second event cannot be described by a Gaussian
process and its analysis is a bit more involved.

Remark 5. A natural question could be to compare the Rice method to standard entropy arguments
for computing the aforementioned events. Comparing the Rice method with entropy arguments is a
well referenced discussion in the community working on the supremum of Gaussian processes, see
references below. Entropy methods are indeed more general (it requires less regularity than the Rice
method) but, when it comes to Gaussian processes, the Rice-Euler method may offer a competitive
alternative.

Observe that entropy methods provide concentration inequalities with the good deviation rate but
often with unknown constants in front of the exponential and a variance term to be calculated in
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the exponent. Moreover, even in the simplest case of a Wiener process (where the expectation is
known), the bounds given by standard Gaussian concentration are crude, e.g. [3, Page 61-62].

On the other hand, the Rice method requires regular processes and regular index sets. However,
this method is sharp, see [3, Proposition 4.2] that gives an equivalent of the tail distribution. On
a more general note, the Rice method gives the exact expression of the number of crossings at any
level, leading to a rather sharp estimate of the tail distribution of the supremum with tractable
constants. When it comes to applications, it could be interesting to have an idea of the constants
appearing in the inequalities. Unfortunately, this is an issue for entropy methods (e.g. the constants
in Dudley inequality are unknown).

In a nutshell, entropy, chaining and/or Gaussian concentration methods are very general tools
that often lead to the right exponent in the rate function but their generality comes with a price when
comparing it to the ground truth. A contrario, the Rice/Euler method is very specific to Gaussian
processes with both regular paths and index but it often leads to better/sharp estimates of the tail
distribution of the supremum of Gaussian processes.

We start with some notation. Let

z(1) = (z
(1)
−fc , . . . , z

(1)
0 , . . . , z

(1)
fc

),

z(2) = (z
(2)
−fc , . . . , z

(2)
0 , . . . , z

(2)
fc

) ,

be i.i.d Nn(0, Idn) random vectors. Set, for any t ∈ [0, 1],

X(t) = z
(1)
0 +

fc∑
k=1

(z
(1)
k + z

(1)
−k) cos(2πkt) +

fc∑
k=1

(z
(2)
−k − z

(2)
k ) sin(2πkt) ,

Y (t) = z
(2)
0 +

fc∑
k=1

(z
(2)
k + z

(2)
−k) cos(2πkt) +

fc∑
k=1

(z
(1)
k − z

(1)
−k) sin(2πkt) ,

Z(t) = X(t) + ıY (t) .

Then, note that

‖σ0Z‖∞
d
= ‖F∗n(ε)‖∞ and sup

t∈[0,1]

|Z(t)|
√
n(‖z(1)‖22 + ‖z(2)‖22)

1
2

d
=
‖F∗n(ε)‖∞√

n‖ε‖2
,

where σ0 > 0 is the (unknown) standard deviation of the noise ε.

D.2.1 The Gaussian process

Lemma 18. For a complex valued centered Gaussian random vector ε as defined in (2), it holds

∀u > 0, P {‖F∗n(ε)‖∞ > u} ≤ n exp

(
− u2

4nσ2
0

)
,

where σ0 > 0 denotes the noise level.

Proof. Observe that X(t) and Y (t) are two independent stationary Gaussian processes with the
same auto-covariance function Σ given by

∀t ∈ [0, 1], Σ(t) = 1 + 2

fc∑
k=1

cos(2πkt) =: Dfc(t) ,
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where Dfc denotes the Dirichlet kernel. Set

σn
2 = Var(X(t)) = Dfc(0) = n . (43)

We use the following inequalities, for any u > 0,

P{‖Z‖∞ > u} ≤ P{‖X‖∞ > u/
√

2}+ P{‖Y ‖∞ > u/
√

2} = 2P{‖X‖∞ > u/
√

2} , (44)

and (by symmetry of the process X)

P{‖X‖∞ > u/
√

2} ≤ 2P{ sup
t∈[0,1]

X(t) > u/
√

2} . (45)

To give bounds to the right hand side of (45), we use the Rice method (see [3, page 93])

P{ sup
t∈[0,1]

X(t) > u/
√

2} = P{∀t ∈ [0, 1]; X(t) > u/
√

2}+ P{Uu/√2 > 0} ,

≤ 1√
2π

∫ +∞

u/(
√
2σn)

exp

(
−v

2

2

)
dv + E(Uu/

√
2) ,

where Uv is the number of up-crossings of the level v by the process X(t) on the interval [0, 1]. By
the Rice formula (see [3, Proposition 4.1, Page 93])

E(Uu/
√
2) =

1

2π

√
Var(X ′(t))

1

σn
exp

(
− u2

4σn2

)
,

where

Var(X ′(t)) = −Σ′′(0) = 2(2π)2
fc∑
k=1

k2 =
4π2

3
fc(fc + 1)n . (46)

A Chernoff argument provides for any w > 0,
∫ +∞
w

exp(−v2/2)dv/
√

2π ≤ exp(−w2/2), which yields

P
{

sup
t∈[0,1]

X(t) >
u√
2

}
≤ exp

(
− u2

4n

)
+

√
fc(fc + 1)

3
exp

(
− u2

4n

)
≤ n

2
exp

(
− u2

4n

)
.

The result follows with (45).

D.2.2 The non-Gaussian process

Lemma 19. It holds for all 0 < u ≤ 1,

P
{
‖F∗n(ε)‖∞√

n‖ε‖2
> u

}
≤
(

2
√

2 +
2n√

3

)(
1− u2

2

)n
.

Furthermore, it holds
‖F∗n(ε)‖∞√

n‖ε‖2
≤
√

2

almost surely.
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Proof. Consider the stationary process defined for any t ∈ [0, 1] by

X (t) :=
X(t)

√
n(‖z(1)‖22 + ‖z(2)‖22)

1
2

.

Notice that Lemma 20 proves the last statement of Lemma 19. Note that the process X is not a
Gaussian and the analysis of Section D.2.1 fails. Observe that, as in (44), it holds for any 0 < u ≤ 1

P
{
‖F∗n(ε)‖∞√

n‖ε‖2
> u

}
≤ 2P

{
sup
t∈[0,1]

X (t) >
u√
2

}
,

and it remains to bound the right hand side term. Observe that

P

{
sup
t∈[0,1]

X (t) >
u√
2

}
= P

{
∀t ∈ [0, 1]; X (t) >

u√
2

}
+ P

{
Uu/√2 > 0

}
,

≤ P
{
∀t ∈ [0, 1]; X (t) >

u√
2

}
+ E

{
Uu/√2

}
,

where Uv is the number of up-crossings of the level v by the process X on the interval [0, 1].
Eventually, we combine Lemma 22 and Lemma 23 to get

P
{
‖F∗n(ε)‖∞√

n‖ε‖2
> u

}
≤

(
2
√

2√
2− u2

+
2τn

π(2− u2)

)(
1− u2

2

)n
,

where τn = 2π
√
fc(fc + 1)/

√
3. The result follows.

D.2.3 Joint law of the process and its derivative

Lemma 20. It holds
(X (t),X ′(t)) d

=(V1, τnV2) .

where τn = 2π
√
fc(fc + 1)/

√
3 and V1 and V2 are the first coordinates of a random vector uniformly

distributed on the sphere S2n−1. For any t ∈ [0, 1], the joint density p(X (t),X ′(t)) of (X (t),X ′(t)) is
given by

∀(a, b) ∈ R2, p(X (t),X ′(t))(a, b) =
n− 1

τnπ

[
1− a2 − (b/τn)2

]n−2
1Hn(a, b) ,

where Hn := {(a, b) ∈ R2; a2 + (b/τn)2 < 1}

Proof. We start by noticing that for any t ∈ [0, 1],

(X (t),X ′(t)) d
=

1√
n

(〈V, θ(t)〉, 〈V, θ′(t)〉) , (47)

where V is uniformly distributed on the sphere S2n−1 and
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θ(t) = (cos(2πfct), cos(2π(fc − 1)t), . . . , 1, . . . , cos(2πfct), sin(2πfct), . . . , 0, . . . ,− sin(2πfct)) ,

θ′(t) =
(
− 2πfc sin(2πfct),−2π(fc − 1) sin(2π(fc − 1)t) . . . , 0, . . . ,−2πfc sin(2πfct) ,

2πfc cos(2πfct), 2π(fc − 1) cos(2π(fc − 1)t), . . . , 0, . . . ,−2πfc cos(2πfct)
)
.

The property is proved as follows. First, write

X(t) = 〈z, θ(t)〉 , (48)

X ′(t) = 〈z, θ′(t)〉 , (49)

where

z = (z
(1)
−fc , . . . , z

(1)
0 , . . . , z

(1)
fc
, z

(2)
−fc , . . . , z

(2)
0 , . . . , z

(2)
fc

) ∼ N2n(0, Id2n) .

The last term is simply obtained by derivation. Using the previous displays then V = z/‖z‖2 is
uniform on the sphere S2n−1, and one can check that X (t) = 〈V, θ(t)〉/

√
n and X ′(t) = 〈V, θ′(t)〉/

√
n.

Using the properties of X and X ′ given in (48) and (49), combinined with (43) and (46), for all
t ∈ [0, 1] it holds that Var(X(t)) = ‖θ(t)‖22 = n and Var(X ′(t)) = ‖θ′(t)‖22 = τ2nn. Moreover, one
can check that 〈θ(t), θ′(t)〉) = 0. Since θ(t) and θ′(t) are orthogonal and since the Haar measure on
the sphere is invariant under the action of the orthogonal group, we deduce from (47) that

(X (t),X ′(t)) d
=(V1, τnV2) , (50)

where τn = 2π
√
fc(fc + 1)/

√
3 and V1 and V2 are the first coordinates of a random vector uniformly

distributed on the sphere S2n−1. A standard change of variables allows us to compute the joint law
of V1 and τnV2. Indeed, let f be any continuous bounded function, using spherical coordinates one
has

E(f(V1, τnV2)) =
1

S2n−1

∫
[0,π]2n−2×[0,2π)

f(cosx1, τn sinx1 cosx2) ,

sin2n−2 x1 sin2n−3 x2 · · · sinx2n−2 dx1 · · · dx2n−2dx2n−1 ,

=
S2n−3

S2n−1

∫
[0,π]2

f(cosx1, τn sinx1 cosx2) sin2n−2 x1 sin2n−3 x2 dx1dx2,

=
n− 1

π

∫
]0,π[2

f(hn(x, y)) sin2n−2 x sin2n−3 y dxdy ,

where Sk denotes the k-dimensional surface area of the k-sphere Sk ⊂ Rk+1 and hn is defined from
]0, π[2 onto Hn := {(a, b) ∈ R2; a2 + (b/τn)2 < 1} by hn(x, y) = (cosx, τn sinx cos y). Observe
that hn is a C1-diffeomorphism whose Jacobian determinant at point (x, y) is τn sin2 x sin y and its
inverse function is h−1n (a, b) = (arccos a, arccos(b/(τn

√
1− a2))). By the change of variables given

by hn, it holds

E(f(V1, τnV2)) =
n− 1

π

∫
Hn

f(a, b)
1

τn
sin2n−4(arccos a) sin2n−4(arccos(b/(τn

√
1− a2))) dadb ,

=
n− 1

τnπ

∫
Hn

f(a, b)
[
(1− a2)n−2

(
1− b2

τ2n(1− a2)

)n−2]
dadb ,
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using that sin(arccos(t)) =
√

1− t2. From (50), we deduce that (X (t),X ′(t)) has a density
p(X (t),X ′(t)) with respect to the Lebesgue measure and it holds

p(X (t),X ′(t))(a, b) =
n− 1

τnπ
(1− a2)n−2

[
1− b2

τ2n(1− a2)

]n−2
1Hn(a, b) ,

for all (a, b) ∈ R2.

We derive the following useful description of the law of X (t).

Lemma 21. It holds X (t) has the same law as the first coordinate V1 of a random vector uniformly
distributed on the sphere S2n−1. For any t ∈ [0, 1], the density pX (t) of X (t) is given by

∀a ∈ R, pX (t)(a) =
Γ(n)√

πΓ(n− 1/2)

(
1− a2

)n−3/2
1[−1;1](a) ,

with Γ the Gamma function.

Proof. Let g be any continuous bounded function, using spherical coordinates one has

E(g(V1)) =
1

S2n−1

∫
[0,π]2n−2×[0,2π)

g(cosx1)

sin2n−2 x1 sin2n−3 x2 · · · sinx2n−2 dx1 · · · dx2n−2dx2n−1 ,

=
S2n−2

S2n−1

∫
[0,π]

g(cosx1) sin2n−2 x1 dx1 ,

=
Γ(n)√

πΓ(n− 1/2)

∫
]0,π[

g(cosx1) sin2n−2 x1 dx1 .

Using the change of variable a = cosx1, one gets

E(g(V1)) =
Γ(n)√

πΓ(n− 1/2)

∫ 1

−1
g(a) sin2n−3(arccos a) da ,

=
Γ(n)√

πΓ(n− 1/2)

∫ 1

−1
g(a)

(√
1− a2

)2n−3
da ,

which ends the proof.

D.2.4 Trajectories uniformly above a level

Lemma 22. For all 0 < u <
√

2, it holds

P
{
∀t ∈ [0, 1]; X (t) >

u√
2

}
≤ 2
(

1− u2

2

)n− 1
2

.

Proof. We simply consider the elementary bound

P
{
∀t ∈ [0, 1]; X (t) >

u√
2

}
≤ P

{
X (0) >

u√
2

}
,
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where we recall that

X (0) =

fc∑
k=−fc

z
(1)
k

√
n(‖z(1)‖22 + ‖z(2)‖22)

1
2

d
=

z
(1)
0

(‖z(1)‖22 + ‖z(2)‖22)
1
2

,

where the last equality in distribution holds thanks to (50). Then, we make use of the following
inequalities as in [39]

P
{
X (0) >

u√
2

}
= P

{ (z
(1)
0 )2

‖z(1)‖22 + ‖z(2)‖22
>
u2

2

}
,

= P

{(
1− u2

2

)
(z

(1)
0 )2 >

u2

2

( fc∑
k=1

(z
(1)
k )2 + (z

(1)
−k)2 + ‖z(2)‖22

)}
,

=

∫ +∞

0

P
{

(z
(1)
0 )2 >

tu2

2− u2
}
fχ2

2n−1
(t)dt ,

≤
∫ +∞

0

2 exp
(
− tu2

4− 2u2

)
fχ2

2n−1
(t)dt ,

= 2E
[
exp

(
− u2Z

4− 2u2

)]
,

= 2

(
1

1 + u2

2−u2

) 2n−1
2

,

= 2

(
1− u2

2

)n− 1
2

.

where fχ2
2n−1

denotes the density function of the chi-squared distribution with 2n − 1 degrees of

freedom and Z is distributed with respect to this distribution. Note that we have used Fubini’s
theorem and a Chernoff argument providing for any v > 0, 1−Ψ(v) ≤ exp(−v2/2) where Ψ denotes
the cumulative distribution function of the standard normal distribution.

D.2.5 Number of up-crossings

Lemma 23. It holds

E{Uu/√2} ≤
τn
2π

(
1− u2

2

)n−1
,

where we recall that τn = 2π
√
fc(fc + 1)/

√
3.

Proof. First observe that the joint density p(X (t),X ′(t)) of (X (t),X ′(t)) is a compactly supported
continuous function that does not depend on t by Lemma 20. In order to bound E(Uu/√2), we make

use of the following result described in [3, Page 79]

E
{
Uu/√2

}
≤
∫ 1

0

dt

∫ ∞
0

xp(X (t),X ′(t))(u/
√

2, x)dx . (51)
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Lemma 20 and an elementary change of variables (namely z = (x/τn)2 and y = 1− u2/2− z) give

E
{
Uu/√2

}
≤ n− 1

τnπ

∫ τn
√

1−u2/2

0

x
(

1− u2

2
− x2

τ2n

)n−2
dx ,

=
(n− 1)τn

2π

∫ 1−u2/2

0

xn−2dx ,

=
τn
2π

(
1− u2

2

)n−1
,

as claimed.

D.3 Concentration

D.3.1 The chi-squared distribution

We control the Chi-square deviation using a standard lemma recalled here.

Lemma 24. [31, Lemma 1] If ε is a complex valued centered Gaussian random variable defined by

ε
d
= ε(1) + ıε(2) where the real part ε(1) = R(ε) and the imaginary part ε(2) = I(ε) are i.i.d. random

vectors Nn(0, σ2
0 Idn). It holds

P

{
‖ε‖22 ≤ 2nσ2

0

(
1−

√
2x

n

)}
≤ exp(−x) ,

P

{
‖ε‖22 ≥ 2nσ2

0

(
1 +

x

n
+

√
2x

n

)}
≤ exp(−x) .

Proof. Take D = 2n and ai = σ2
0 in [31, Lemma 1].

E Convexity tools

We first remind some classical results from standard convex analysis, see [4, Example 13.8, Propo-
sition 13.20, and Example 13.6].

E.1 Convexity reminder

The sub-gradient of a convex function f : Cd → R at x is defined as

∂f(x) = {z ∈ Cd;∀y ∈ Rd, f(x)− f(y) ≥ 〈z, (x− y)〉} . (52)

We denote f∗ the Fenchel-conjugate of f , f∗(z) = supw∈Cd〈w, z〉 − f(w). In this section, for
convexity analysis purpose, we will denote by IC the indicator function of a set C defined as

IC : Cd → R, IC(x) =

{
0, if x ∈ C ,

+∞, otherwise .
(53)
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Lemma 25. For a convex function f : Cn → R, its perspective function is the function

persp(f) : Cn ×R→ R, (x, t) 7→

{
tf(xt ), if t > 0 ,

+∞, otherwise .
(54)

Its Fenchel-conjugate persp(f)∗ reads persp(f)∗ = I{(z,u)∈Cn×R :u+f∗(z)≤0}.

Lemma 26. For a function f : Cn → R and for any z ∈ Cn one has the following properties for
the Fenchel-conjugate:

• (τz(f))∗ = f∗ + 〈·, z〉, where τz(f) = f(· − z).

• (f + 〈·, z〉)∗ = τz(f
∗).

• For (‖ · ‖2/2)∗ = ‖ · ‖2/2.

E.2 Proof of Proposition 5

Applying Lemma 25 and Lemma 26 to the function f = ‖ · ‖2/2 and persp(f)(x, t) = ‖x‖22/(2t),
provides persp(f)∗ = I{(z,u)∈Cn×R :u+‖z‖2/2≤0}.

We can now dualize Problem (4). First remark that the objective function in (4) can be written
as Pλ(µ, σ) = persp(‖ · ‖2/2)(Fn(µ) − y, nσ) + σ/2 + λ‖µ‖TV. For h : Cn × R → R defined by
h = persp(‖·‖2/2), one can write the primal in the form Pλ(µ, σ) = τz(h)(Fn(µ), nσ)+σ/2+f(µ, σ),
where z = (y, 0) ∈ Cn × R and f(µ, σ) = λ‖µ‖TV + IR++

. Then, we can apply [4, Proposition,
19.18], with g : Cn × R → R by g(·, σ) = τz(h)(·, nσ) + σ/2 and L = Fn. This leads to the
Lagrangian formulation

L(µ, σ, c, t) := f(µ, σ) + 〈Fn(µ), c〉+ σt− g∗(c, t) .

where g∗(c, t) = 〈c, y〉+ IC(c, t) for C = {(z, u) ∈ Cn ×R : u+ n‖z‖2/2 ≤ 1/2}
Since strong duality holds, the primal problem is equivalent to finding a saddle point of the

Lagrangian. Any such saddle point (µ̂, σ̂, ĉ, t̂) satisfies on the one hand ‖F∗nĉ‖∞ ≤ λ, and on the
other hand ĉ = (Fn(µ̂)− y)/(nσ̂) and t̂ = 1/2−‖Fn(µ̂)− y‖2/(2n(σ̂)2) = 1/2−n‖ĉ‖2/2. The dual
problem can also be obtained from the aforementioned theorem:

min
(c,t)∈Cn×R

f∗(F∗n(c), t) + g∗(−c,−t) , (55)

where

f∗(F∗n(c), t) =

{
0, if ‖F∗nc‖∞ ≤ λ and t ≤ 0 .

+∞, otherwise .
(56)

Hence the dual problem reads

min
(c,t)∈Cn×R

〈y,−c〉 ,

s.t. ‖F∗n(c)‖∞ ≤ λ, t ≤ 0 and − t+ n‖c‖2/2 ≤ 1/2 .
(57)

Re-parameterizing the dual by performing c← c/λ and taking t← −t leads to:

min
(c,t)∈Cn×R

〈−y, λc〉 ,

s.t.‖F∗n(c)‖∞ ≤ 1, t ≥ 0 and t+ nλ2‖c‖2/2 ≤ 1/2 .
(58)
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Finally, the dual problem of (4) reads

ĉ ∈ arg min
c∈D̃n

〈−y, λc〉 , (59)

where D̃n =
{

(c, u) ∈ Cn ×R : ‖F∗nc‖∞ ≤ 1, u ≥ 0, nλ2‖c‖2/2 + u ≤ 1/2
}

. However, one can easily

show that Problem (11) is equivalent to (59). Indeed, one can write that D̃n = ∪u≥0Dn,u where
Dn,u =

{
c ∈ Cn : ‖F∗n(c)‖∞ ≤ 1, nλ2‖c‖2/2 + u ≤ 1/2

}
. Moreover, one can remark that for all

u ≥ 0, Dn,u ⊂ Dn,0 and then for all u ≥ 0,

min
c∈Dn,u

〈−y, λc〉 ≥ min
c∈Dn,0

〈−y, λc〉 .

With the previous remark, one can infer that

min
c∈D̃n

〈−y, λc〉 = min
c∈Dn,0

〈−y, λc〉 ,

the conclusion follows by noting that Dn,0 = Dn. Finally, the dual problem can be written as
follows

ĉ ∈ arg max
c∈Dn

〈y, λc〉 .

Equation (12) is the consequence of considering the Lagrangian formulation of the following
constrained problem:

(z, µ̂, σ̂) ∈ arg min
(z,µ,σ)∈E∗×R++

1

2nσ
‖z‖22 +

σ

2
+ λ‖µ‖TV,

s.t. z = y −Fn(µ).

(60)

E.3 Proof of Proposition 6

We present the proof of Proposition 6 here.
(i) ⇒ (ii): Let us choose λ ∈]0, λmin(y)], then nλ2‖ĉ(BME)‖2 ≤ n(λmin(y))2‖ĉ(BME)‖2 ≤ 1.

Hence, ĉ(BME) ∈ Dn, and since Dn ⊂ {c ∈ Cn : ‖F∗n(c)‖∞ ≤ 1}, then ĉ = ĉ(BME).

(ii) ⇒ (iii): Assume that ĉ = ĉ(BME), then y = nλ̂ĉ(BME) + Fn(µ̂) thanks to Eq. (12) and
Fn(µ̂(BME)) = y thanks to Eq. (18). Moreover, one has 〈y, ĉ(BME)〉 = ‖µ̂‖TV and it holds that
λ〈y, ĉ〉 = ‖y − Fn(µ̂)‖2/2nσ̂ + σ̂/2 + λ‖µ̂‖TV by strong duality. The only way the last equation
holds is when σ̂ = 0 and that y = Fn(µ̂).

(iii) ⇒ (i): Assume that σ̂ = 0, this leads to λ̂ = 0 thanks to the definition of λ̂ below (12).
Thanks to Eq. (12), y = Fn(µ̂). This means that (µ̂, σ̂) is solution of the problem

(µ̂, σ̂) ∈ arg min
(µ,σ)∈E∗×R++

y=Fn(µ)

1

2nσ
‖y −Fn(µ)‖22 +

σ

2
+ λ‖µ‖TV . (61)

and so
µ̂ ∈ arg min

µ∈E∗
y=Fn(µ)

λ‖µ‖TV . (62)

i.e., µ̂ = µ̂(BME).
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By strong duality in Problem (4), one has λ‖µ̂‖TV = λ〈ĉ, y〉 and by strong duality in Prob-
lem (19), λ‖µ̂(BME)‖TV = λ〈ĉ(BME), y〉. Hence 〈ĉ, y〉 = 〈ĉ(BME), y〉 and one can choose ĉ(BME) as
a dual optimal solution for Problem (11). So ‖ĉ(BME)‖22 ≤ 1/(nλ2), and (i) holds by definition
of λmin.

We now prove the last statement of the proposition. Since ‖p̂‖∞ ≤ 1, Parseval’s inequality
leads to ‖ĉ‖2 ≤ 1. If λ < 1/

√
n then λ2n‖ĉ‖2 ≤ λ2n < 1, this means that the `2 constraint in

the dual formulation (11) is not saturated. Then ĉ = ĉ(BME) and using (ii) ⇔ (i), we deduce that
λmin(y) ≥ 1/

√
n.

E.4 Proof of Proposition 7

First note that if λ ≤ λmin(y), by Proposition 6 there is overfitting which contradicts the assumption
made in Section 2.1. Secondly, if λ > λmax(y), then by Remark 3, µ̂ = 0 a scenario we are not

interested in. Now, with Eqs (12) and (13), one can check that ĉ = y/(nλ̂) = y/(
√
nλ‖y‖). Since y

is a Gaussian vector, p̂ = F∗n(ĉ) almost surely has a non-constant modulus.
Set that λ ∈ [λmin(y);λmax(y)]. Let us suppose that the polynomial |p̂|2 is of constant modulus,

then it can be written as p = vϕk with v ∈ C and ϕk(·) = exp(2πık·) for some k ∈ J−fc, fcK. Note
that if |v| < 1, using Holder’s inequality on (16) leads to µ̂ = 0. Now if |v| = 1, we also have
ĉ ∈ Dn, in particular ‖ĉ‖2 ≤ 1/(

√
nλ), leading to |v| ≤ 1/(

√
nλ). However, since λmin(y) > 1/

√
n,

it turns out that |v| < 1, which contradicts |v| = 1. One can then conclude that a dual polynomial
of constant modulus never occurs in the CBLasso setup, provided that λ ∈ [λmin(y);λmax(y)].
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