On the mod p Langlands programme for GL_2

Christophe Breuil
CNRS & Université Paris-Saclay

Heilbronn Annual Conference 2024 September 5, 2024

• Automorphic representations: infinite dimensional representations of GL_n $(n \ge 2)$

- Automorphic representations: infinite dimensional representations of GL_n $(n \ge 2)$
- Galois representations: *n*-dimensional representations of Galois groups

- Automorphic representations: infinite dimensional representations of GL_n $(n \ge 2)$
- Galois representations: n-dimensional representations of Galois groups
- Cohomology: try to realize the correspondence in the cohomology of certain remarkable algebraic varieties called Shimura varieties

- Automorphic representations: infinite dimensional representations of GL_n $(n \ge 2)$
- Galois representations: n-dimensional representations of Galois groups
- Cohomology: try to realize the correspondence in the cohomology of certain remarkable algebraic varieties called Shimura varieties

Best way to define (some of) these varieties: use rings of finite adèles

 \bullet ℓ prime number

 \bullet ℓ prime number

$$\bullet \ \, \mathbb{Z}_{\ell} \stackrel{\mathrm{def}}{=} \left\{ \sum_{i=0}^{+\infty} a_i \ell^i, \ \, a_i \in \mathbb{Z} \right\} = \mathsf{ring} \mathsf{\ of } \ \, \ell\text{-adic integers}$$

• ℓ prime number

• $\mathbb{Z}_{\ell} \stackrel{\text{def}}{=} \left\{ \sum_{i=0}^{+\infty} a_i \ell^i, \ a_i \in \mathbb{Z} \right\} = \text{ring of } \ell\text{-adic integers (with } \ell\text{-adic topology}$ $\sim \text{compact ring)}$

ullet prime number

- $\mathbb{Z}_{\ell} \stackrel{\text{def}}{=} \left\{ \sum_{i=0}^{+\infty} a_i \ell^i, \ a_i \in \mathbb{Z} \right\} = \text{ring of } \ell\text{-adic integers (with } \ell\text{-adic topology}$ $\sim \text{compact ring)}$
- $\widehat{\mathbb{Z}} \stackrel{\text{def}}{=} \prod_{\ell} \mathbb{Z}_{\ell} = \text{profinite completion of } \mathbb{Z} \text{ (compact ring)}$

- \bullet ℓ prime number
- $\mathbb{Z}_{\ell} \stackrel{\text{def}}{=} \left\{ \sum_{i=0}^{+\infty} a_i \ell^i, \ a_i \in \mathbb{Z} \right\} = \text{ring of } \ell\text{-adic integers (with } \ell\text{-adic topology}$ \sim compact ring)
- $\widehat{\mathbb{Z}} \stackrel{\text{def}}{=} \prod_{\ell} \mathbb{Z}_{\ell} = \text{profinite completion of } \mathbb{Z} \text{ (compact ring)}$
- $\mathbb{A}^f_{\mathbb{Q}} \stackrel{\text{def}}{=} \widehat{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{Q} = \text{ring of finite adèles of } \mathbb{Q}$ (locally compact ring)

- \bullet ℓ prime number
- $\mathbb{Z}_{\ell} \stackrel{\text{def}}{=} \left\{ \sum_{i=0}^{+\infty} a_i \ell^i, \ a_i \in \mathbb{Z} \right\} = \text{ring of } \ell\text{-adic integers (with } \ell\text{-adic topology}$ $\sim \text{compact ring)}$
- $\widehat{\mathbb{Z}} \stackrel{\text{def}}{=} \prod_{\ell} \mathbb{Z}_{\ell} = \text{profinite completion of } \mathbb{Z} \text{ (compact ring)}$
- $\mathbb{A}^f_{\mathbb{Q}} \stackrel{\mathrm{def}}{=} \widehat{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{Q} = \text{ring of finite adèles of } \mathbb{Q}$ (locally compact ring)
- F finite extension of Q

- ullet prime number
- $\mathbb{Z}_{\ell} \stackrel{\text{def}}{=} \left\{ \sum_{i=0}^{+\infty} a_i \ell^i, \ a_i \in \mathbb{Z} \right\} = \text{ring of } \ell\text{-adic integers (with } \ell\text{-adic topology}$ \rightarrow compact ring)
- $\widehat{\mathbb{Z}} \stackrel{\text{def}}{=} \prod_{\ell} \mathbb{Z}_{\ell} = \text{profinite completion of } \mathbb{Z} \text{ (compact ring)}$
- $\mathbb{A}^f_{\mathbb{Q}} \stackrel{\mathrm{def}}{=} \widehat{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{Q} = \mathrm{ring}$ of finite adèles of \mathbb{Q} (locally compact ring)
- F finite extension of $\mathbb{Q}=$ field containing $\mathbb{Q}+$ finite dimensional as a $\mathbb{Q}-$ vector space

- ullet prime number
- $\mathbb{Z}_{\ell} \stackrel{\text{def}}{=} \left\{ \sum_{i=0}^{+\infty} a_i \ell^i, \ a_i \in \mathbb{Z} \right\} = \text{ring of } \ell\text{-adic integers (with } \ell\text{-adic topology}$ $\sim \text{compact ring)}$
- $\widehat{\mathbb{Z}} \stackrel{\text{def}}{=} \prod_{\ell} \mathbb{Z}_{\ell} = \text{profinite completion of } \mathbb{Z} \text{ (compact ring)}$
- $\mathbb{A}^f_{\mathbb{Q}} \stackrel{\mathrm{def}}{=} \widehat{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{Q} = \text{ring of finite adèles of } \mathbb{Q}$ (locally compact ring)
- \bullet F finite extension of $\mathbb{Q}=$ field containing $\mathbb{Q}+$ finite dimensional as a $\mathbb{Q}\text{-vector space}$

Example:
$$\mathbb{Q}$$
, $\mathbb{Q}(\sqrt{-1}) \simeq \frac{\mathbb{Q}[X]}{(X^2+1)}$, $\mathbb{Q}(\sqrt[3]{5})$, etc.

- ullet prime number
- $\mathbb{Z}_{\ell} \stackrel{\text{def}}{=} \left\{ \sum_{i=0}^{+\infty} a_i \ell^i, \ a_i \in \mathbb{Z} \right\} = \text{ring of } \ell\text{-adic integers (with } \ell\text{-adic topology}$ $\sim \text{compact ring)}$
- $\widehat{\mathbb{Z}} \stackrel{\text{def}}{=} \prod_{\ell} \mathbb{Z}_{\ell} = \text{profinite completion of } \mathbb{Z} \text{ (compact ring)}$
- $\mathbb{A}^f_{\mathbb{Q}} \stackrel{\mathrm{def}}{=} \widehat{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{Q} = \mathrm{ring}$ of finite adèles of \mathbb{Q} (locally compact ring)
- \bullet F finite extension of $\mathbb{Q}=$ field containing $\mathbb{Q}+$ finite dimensional as a $\mathbb{Q}\text{-vector space}$
 - Example: \mathbb{Q} , $\mathbb{Q}(\sqrt{-1}) \simeq \frac{\mathbb{Q}[X]}{(X^2+1)}$, $\mathbb{Q}(\sqrt[3]{5})$, etc.
- $\mathbb{A}_F^f \stackrel{\text{def}}{=} \widehat{\mathbb{Z}} \otimes_{\mathbb{Z}} F = \text{ring of finite adèles of } F \text{ (locally compact ring)}$

$$Y_U(\mathbb{C}) = \operatorname{GL}_2(\mathbb{Q}) \ \Big\backslash \ \Big(\ \mathbb{C} \backslash \mathbb{R} \ \times \ \Big(\operatorname{GL}_2(\mathbb{A}_\mathbb{Q}^f)/U \Big) \ \Big)$$

$$Y_U(\mathbb{C}) = \mathrm{GL}_2(\mathbb{Q}) \setminus \left(\mathbb{C} \backslash \mathbb{R} \times \left(\mathrm{GL}_2(\mathbb{A}_{\mathbb{Q}}^f) / U \right) \right)$$

• $U = \text{compact open subgroup of } GL_2(\mathbb{A}^f_{\mathbb{Q}})$ (the "level")

$$Y_U(\mathbb{C}) = \mathrm{GL}_2(\mathbb{Q}) \setminus \left(\mathbb{C} \backslash \mathbb{R} \times \left(\mathrm{GL}_2(\mathbb{A}_{\mathbb{Q}}^f) / U \right) \right)$$

- U= compact open subgroup of $\mathrm{GL}_2(\mathbb{A}^f_\mathbb{Q})$ (the "level")
- $\mathrm{GL}_2(\mathbb{Q})$ acts on $\mathbb{C}\backslash\mathbb{R}$ by homography

$$Y_U(\mathbb{C}) = \mathrm{GL}_2(\mathbb{Q}) \setminus \left(\mathbb{C} \backslash \mathbb{R} \times \left(\mathrm{GL}_2(\mathbb{A}_{\mathbb{Q}}^f) / U \right) \right)$$

- ullet U= compact open subgroup of $\mathrm{GL}_2(\mathbb{A}^f_\mathbb{Q})$ (the "level")
- $\mathrm{GL}_2(\mathbb{Q})$ acts on $\mathbb{C}\backslash\mathbb{R}$ by homography
- ullet GL $_2(\mathbb{Q})$ acts on $\mathrm{GL}_2(\mathbb{A}^f_\mathbb{Q})/U$ by left multiplication in $\mathrm{GL}_2(\mathbb{A}^f_\mathbb{Q})$

$$Y_U(\mathbb{C}) = \mathrm{GL}_2(\mathbb{Q}) \setminus \left(\mathbb{C} \backslash \mathbb{R} \times \left(\mathrm{GL}_2(\mathbb{A}_{\mathbb{Q}}^f) / U \right) \right)$$

- ullet U= compact open subgroup of $\mathrm{GL}_2(\mathbb{A}^f_\mathbb{Q})$ (the "level")
- $\mathrm{GL}_2(\mathbb{Q})$ acts on $\mathbb{C}\backslash\mathbb{R}$ by homography
- ullet GL $_2(\mathbb{Q})$ acts on $\mathrm{GL}_2(\mathbb{A}^f_\mathbb{Q})/U$ by left multiplication in $\mathrm{GL}_2(\mathbb{A}^f_\mathbb{Q})$

 $Y_U(\mathbb{C}) = \text{complex points of a smooth algebraic curve } Y_U \text{ over } \mathbb{Q}$

$$Y_U(\mathbb{C}) = \mathrm{GL}_2(\mathbb{Q}) \setminus \left(\mathbb{C} \backslash \mathbb{R} \times \left(\mathrm{GL}_2(\mathbb{A}_{\mathbb{Q}}^f) / U \right) \right)$$

- ullet U= compact open subgroup of $\mathrm{GL}_2(\mathbb{A}^f_\mathbb{Q})$ (the "level")
- \bullet $\mathrm{GL}_2(\mathbb{Q})$ acts on $\mathbb{C}\backslash\mathbb{R}$ by homography
- ullet GL $_2(\mathbb{Q})$ acts on $\mathrm{GL}_2(\mathbb{A}^f_\mathbb{Q})/U$ by left multiplication in $\mathrm{GL}_2(\mathbb{A}^f_\mathbb{Q})$
- $Y_U(\mathbb{C}) = \text{complex points of a smooth algebraic curve } Y_U \text{ over } \mathbb{Q}$
 - = finite disjoint union of quotients of Poincaré's upper half plane

$$Y_U(\mathbb{C}) = D^{\times} \setminus \left(\mathbb{C} \backslash \mathbb{R} \times \left((D \otimes_F \mathbb{A}_F^f)^{\times} / U \right) \right)$$

$$Y_U(\mathbb{C}) = D^{\times} \setminus \left(\mathbb{C} \backslash \mathbb{R} \times \left((D \otimes_F \mathbb{A}_F^f)^{\times} / U \right) \right)$$

• $F = \text{totally real finite extension of } \mathbb{Q} \text{ (e.g. } \mathbb{Q}(\sqrt[2]{5}) \text{ but } \text{not } \mathbb{Q}(\sqrt{-1}))$

$$Y_U(\mathbb{C}) = D^{\times} \setminus \left(\mathbb{C} \backslash \mathbb{R} \times \left((D \otimes_F \mathbb{A}_F^f)^{\times} / U \right) \right)$$

- $F = \text{totally real finite extension of } \mathbb{Q} \text{ (e.g. } \mathbb{Q}(\sqrt[2]{5}) \text{ but } not \mathbb{Q}(\sqrt{-1}))$
- D/F = quaternion algebra such that there is only one real embedding $\tau : F \hookrightarrow \mathbb{R}$ where it splits, i.e. such that $D \otimes_{F,\tau} \mathbb{R} \cong \mathrm{M}_2(\mathbb{R})$

$$Y_U(\mathbb{C}) = D^{\times} \setminus \left(\mathbb{C} \setminus \mathbb{R} \times \left((D \otimes_F \mathbb{A}_F^f)^{\times} / U \right) \right)$$

- $F = \text{totally real finite extension of } \mathbb{Q} \text{ (e.g. } \mathbb{Q}(\sqrt[2]{5}) \text{ but } \textit{not } \mathbb{Q}(\sqrt{-1}))$
- D/F = quaternion algebra such that there is only one real embedding $\tau : F \hookrightarrow \mathbb{R}$ where it splits, i.e. such that $D \otimes_{F,\tau} \mathbb{R} \cong \mathrm{M}_2(\mathbb{R})$
- $U = \text{compact open subgroup of } (D \otimes_F \mathbb{A}_F^f)^{\times}$

$$Y_U(\mathbb{C}) = D^{\times} \setminus \left(\mathbb{C} \backslash \mathbb{R} \times \left((D \otimes_F \mathbb{A}_F^f)^{\times} / U \right) \right)$$

- $F = \text{totally real finite extension of } \mathbb{Q} \text{ (e.g. } \mathbb{Q}(\sqrt[2]{5}) \text{ but } \text{not } \mathbb{Q}(\sqrt{-1}))$
- D/F = quaternion algebra such that there is only one real embedding $\tau : F \hookrightarrow \mathbb{R}$ where it splits, i.e. such that $D \otimes_{F,\tau} \mathbb{R} \cong \mathrm{M}_2(\mathbb{R})$
- $U = \text{compact open subgroup of } (D \otimes_F \mathbb{A}_F^f)^{\times}$
- D^{\times} acts on $\mathbb{C}\backslash\mathbb{R}$ by homography via $D^{\times}\hookrightarrow (D\otimes_{F,\tau}\mathbb{R})^{\times}\cong \mathrm{GL}_2(\mathbb{R})$

$$Y_U(\mathbb{C}) = D^{\times} \setminus \left(\mathbb{C} \backslash \mathbb{R} \times \left((D \otimes_F \mathbb{A}_F^f)^{\times} / U \right) \right)$$

- $F = \text{totally real finite extension of } \mathbb{Q} \text{ (e.g. } \mathbb{Q}(\sqrt[2]{5}) \text{ but } \textit{not } \mathbb{Q}(\sqrt{-1}))$
- D/F = quaternion algebra such that there is only one real embedding $\tau : F \hookrightarrow \mathbb{R}$ where it splits, i.e. such that $D \otimes_{F,\tau} \mathbb{R} \cong \mathrm{M}_2(\mathbb{R})$
- $U = \text{compact open subgroup of } (D \otimes_F \mathbb{A}_F^f)^{\times}$
- D^{\times} acts on $\mathbb{C}\backslash\mathbb{R}$ by homography via $D^{\times}\hookrightarrow (D\otimes_{F,\tau}\mathbb{R})^{\times}\cong \mathrm{GL}_2(\mathbb{R})$

 $Y_U(\mathbb{C}) = \text{complex points of a smooth algebraic curve } Y_U \text{ over } F$

$$Y_U(\mathbb{C}) = D^{\times} \setminus \left(\mathbb{C} \backslash \mathbb{R} \times \left((D \otimes_F \mathbb{A}_F^f)^{\times} / U \right) \right)$$

- $F = \text{totally real finite extension of } \mathbb{Q} \text{ (e.g. } \mathbb{Q}(\sqrt[2]{5}) \text{ but } not \mathbb{Q}(\sqrt{-1}))$
- D/F = quaternion algebra such that there is only one real embedding $\tau : F \hookrightarrow \mathbb{R}$ where it splits, i.e. such that $D \otimes_{F,\tau} \mathbb{R} \cong \mathrm{M}_2(\mathbb{R})$
- $U = \text{compact open subgroup of } (D \otimes_F \mathbb{A}_F^f)^{\times}$
- D^{\times} acts on $\mathbb{C}\backslash\mathbb{R}$ by homography via $D^{\times}\hookrightarrow (D\otimes_{F,\tau}\mathbb{R})^{\times}\cong \mathrm{GL}_2(\mathbb{R})$

 $Y_U(\mathbb{C}) = \text{complex points of a smooth algebraic curve } Y_U \text{ over } F$

When $F = \mathbb{Q}$, modular curves = special case $D = M_2$

From now on we fix two prime numbers ρ , ℓ

From now on we fix two prime numbers ρ , ℓ

$$\sim \mathbb{Z}_p \otimes_{\mathbb{Z}} F \cong \prod_{v \mid p} F_v$$
 where $F_v =$ finite extension of $\mathbb{Q}_p = \mathbb{Z}_p \otimes_{\mathbb{Z}} \mathbb{Q} = \mathbb{Z}_p[1/p]$

From now on we fix two prime numbers ρ , ℓ

$$\sim \mathbb{Z}_p \otimes_{\mathbb{Z}} F \cong \prod_{v|p} F_v$$
 where $F_v =$ finite extension of $\mathbb{Q}_p = \mathbb{Z}_p \otimes_{\mathbb{Z}} \mathbb{Q} = \mathbb{Z}_p[1/p]$

We fix v|p, one has $\mathbb{A}_F^f \cong \mathbb{A}_F^{f,v} \times F_v$ where $\mathbb{A}_F^{f,v} = \text{prime-to-}v$ finite adèles

Towers of Shimura curves

From now on we fix two prime numbers ρ , ℓ

$$\sim \mathbb{Z}_p \otimes_{\mathbb{Z}} F \cong \prod_{v|p} F_v$$
 where $F_v =$ finite extension of $\mathbb{Q}_p = \mathbb{Z}_p \otimes_{\mathbb{Z}} \mathbb{Q} = \mathbb{Z}_p[1/p]$

We fix v|p, one has $\mathbb{A}_F^f \cong \mathbb{A}_F^{f,v} \times F_v$ where $\mathbb{A}_F^{f,v} = \text{prime-to-}v$ finite adèles

We assume
$$D \otimes_F F_v \cong \mathrm{M}_2(F_v) \leadsto (D \otimes_F \mathbb{A}_F^f)^{\times} \cong (D \otimes_F \mathbb{A}_F^{f,v})^{\times} \times \mathrm{GL}_2(F_v)$$

Towers of Shimura curves

From now on we fix two prime numbers p, ℓ

We fix v|p, one has $\mathbb{A}_F^f \cong \mathbb{A}_F^{f,v} \times F_v$ where $\mathbb{A}_F^{f,v} = \text{prime-to-}v$ finite adèles

We assume
$$D \otimes_F F_v \cong \mathrm{M}_2(F_v) \rightsquigarrow (D \otimes_F \mathbb{A}_F^f)^{\times} \cong (D \otimes_F \mathbb{A}_F^{f,v})^{\times} \times \mathrm{GL}_2(F_v)$$

For any $U^{\nu}=$ compact open subgroup of $(D\otimes_F \mathbb{A}_F^{f,\nu})^{\times}$, get a tower of Shimura curves

$$\cdots \longrightarrow Y_{U^{\vee}U_{i'}'} \longrightarrow Y_{U^{\vee}U_{i'}} \longrightarrow Y_{U^{\vee}U_{\nu}} \longrightarrow \cdots$$

Towers of Shimura curves

From now on we fix two prime numbers ρ , ℓ

We fix v|p, one has $\mathbb{A}_F^f \cong \mathbb{A}_F^{f,v} \times F_v$ where $\mathbb{A}_F^{f,v} = \text{prime-to-}v$ finite adèles

We assume
$$D \otimes_F F_v \cong \mathrm{M}_2(F_v) \leadsto (D \otimes_F \mathbb{A}_F^f)^{\times} \cong (D \otimes_F \mathbb{A}_F^{f,v})^{\times} \times \mathrm{GL}_2(F_v)$$

For any $U^{\nu}=$ compact open subgroup of $(D\otimes_F \mathbb{A}_F^{f,\nu})^{\times}$, get a tower of Shimura curves

$$\cdots \longrightarrow Y_{U^vU_v''} \longrightarrow Y_{U^vU_v'} \longrightarrow Y_{U^vU_v} \longrightarrow \cdots$$

where $\cdots \subseteq U''_v \subseteq U'_v \subseteq U_v \subseteq \cdots = \text{compact open subgroups of } \mathrm{GL}_2(F_v)$

Fix v|p and U^v as previously, then one can define

Fix v|p and U^v as previously, then one can define

$$H^{1}(U^{v}) \stackrel{\mathrm{def}}{=} \varinjlim_{U_{v}} \mathrm{H}^{1}(Y_{U^{v}U_{v}}(\mathbb{C}), \mathbb{Z}_{\ell}) \cong \varinjlim_{U_{v}} \mathrm{H}^{1}_{\mathrm{\acute{e}t}}(Y_{U^{v}U_{v}} \times_{F} \overline{F}, \mathbb{Z}_{\ell})$$

$$\bigoplus_{\mathrm{GL}_{2}(F_{v})} \qquad \bigoplus_{\mathrm{Gal}(\overline{F}/F)}$$

Fix v|p and U^v as previously, then one can define

$$H^{1}(U^{v}) \stackrel{\text{def}}{=} \varinjlim_{U_{v}} H^{1}(Y_{U^{v}U_{v}}(\mathbb{C}), \mathbb{Z}_{\ell}) \cong \varinjlim_{U_{v}} H^{1}_{\text{\'et}}(Y_{U^{v}U_{v}} \times_{F} \overline{F}, \mathbb{Z}_{\ell})$$

$$\bigoplus_{\text{GL}_{2}(F_{v})} \bigoplus_{\text{Gal}(\overline{F}/F)}$$

Motivation for $H^1(U^v)$: can try to decompose $H^1(U^v) \otimes_{\mathbb{Z}_\ell} \overline{\mathbb{Q}_\ell}$ under **both** actions of $\mathrm{GL}_2(F_v)$ and $\mathrm{Gal}(\overline{F}/F)$

Fix v|p and U^v as previously, then one can define

$$H^{1}(U^{v}) \stackrel{\text{def}}{=} \varinjlim_{U_{v}} H^{1}(Y_{U^{v}U_{v}}(\mathbb{C}), \mathbb{Z}_{\ell}) \cong \varinjlim_{U_{v}} H^{1}_{\text{\'et}}(Y_{U^{v}U_{v}} \times_{F} \overline{F}, \mathbb{Z}_{\ell})$$

$$\bigoplus_{\text{GL}_{2}(F_{v})} \bigoplus_{\text{Gal}(\overline{F}/F)}$$

Motivation for $H^1(U^v)$: can try to decompose $H^1(U^v) \otimes_{\mathbb{Z}_\ell} \overline{\mathbb{Q}_\ell}$ under **both** actions of $\mathrm{GL}_2(F_v)$ and $\mathrm{Gal}(\overline{F}/F)$

Remarks:

• Can define similarly $H^0(U^v)$ and $H^2(U^v)$ but not very interesting

Fix v|p and U^v as previously, then one can define

$$H^{1}(U^{v}) \stackrel{\mathrm{def}}{=} \varinjlim_{U_{v}} \mathrm{H}^{1}(Y_{U^{v}U_{v}}(\mathbb{C}), \mathbb{Z}_{\ell}) \cong \varinjlim_{U_{v}} \mathrm{H}^{1}_{\mathrm{\acute{e}t}}(Y_{U^{v}U_{v}} \times_{F} \overline{F}, \mathbb{Z}_{\ell})$$

$$\bigoplus_{\mathrm{GL}_{2}(F_{v})} \bigoplus_{\mathrm{Gal}(\overline{F}/F)}$$

Motivation for $H^1(U^v)$: can try to decompose $H^1(U^v) \otimes_{\mathbb{Z}_\ell} \overline{\mathbb{Q}_\ell}$ under **both** actions of $\mathrm{GL}_2(F_v)$ and $\mathrm{Gal}(\overline{F}/F)$

Remarks:

- Can define similarly $H^0(U^v)$ and $H^2(U^v)$ but not very interesting
- $\operatorname{GL}_2(F_v)$ acts on $\varinjlim_{U_v} \operatorname{H}^i(Y_{U^vU_v}(\mathbb{C}),\mathbb{Z})$ but not $\operatorname{Gal}(\overline{F}/F)!$

$$H^1(U^{\vee}) \otimes_{\mathbb{Z}_{\ell}} \overline{\mathbb{Q}_{\ell}} \cong \bigoplus_{f} \left(\rho(f) \otimes_{\overline{\mathbb{Q}}_{\ell}} \pi_{\nu}(f)^{\oplus d_{U^{\nu}}(f)} \right) \bigoplus (*)$$

Theorem (Langlands, Deligne, Piatetski-Shapiro, Carayol, T. Saito

$$H^{1}(U^{v}) \otimes_{\mathbb{Z}_{\ell}} \overline{\mathbb{Q}_{\ell}} \cong \bigoplus_{f} \left(\rho(f) \otimes_{\overline{\mathbb{Q}}_{\ell}} \pi_{v}(f)^{\oplus d_{U^{v}}(f)} \right) \bigoplus (*)$$

• f = new cuspidal Hilbert eigenforms of parallel weight (2, ..., 2) and prime to v level U^v

$$H^{1}(U^{v}) \otimes_{\mathbb{Z}_{\ell}} \overline{\mathbb{Q}_{\ell}} \cong \bigoplus_{f} \left(\rho(f) \otimes_{\overline{\mathbb{Q}}_{\ell}} \pi_{v}(f)^{\oplus d_{U^{v}}(f)} \right) \bigoplus (*)$$

- f = new cuspidal Hilbert eigenforms of parallel weight (2, ..., 2) and prime to v level U^v
- $\rho(f): \operatorname{Gal}(\overline{F}/F) \to \operatorname{GL}_2(\overline{\mathbb{Q}_\ell})$ irreducible representation of $\operatorname{Gal}(\overline{F}/F)$

$$H^{1}(U^{v}) \otimes_{\mathbb{Z}_{\ell}} \overline{\mathbb{Q}_{\ell}} \cong \bigoplus_{f} \left(\rho(f) \otimes_{\overline{\mathbb{Q}}_{\ell}} \pi_{v}(f)^{\oplus d_{U^{v}}(f)} \right) \bigoplus (*)$$

- f = new cuspidal Hilbert eigenforms of parallel weight (2, ..., 2) and prime to v level U^v
- $\rho(f): \operatorname{Gal}(\overline{F}/F) \to \operatorname{GL}_2(\overline{\mathbb{Q}_\ell})$ irreducible representation of $\operatorname{Gal}(\overline{F}/F)$
- $\pi_{\nu}(f) = \text{smooth irreducible (infinite dimensional) representation of } \operatorname{GL}_2(F_{\nu}) \text{ (smooth: } \pi_{\nu}(f) = \bigcup_n \pi_{\nu}(f)^{1+p^n \operatorname{M}_2(\mathcal{O}_{F_{\nu}})} \text{)}$

$$H^{1}(U^{v}) \otimes_{\mathbb{Z}_{\ell}} \overline{\mathbb{Q}_{\ell}} \cong \bigoplus_{f} \left(\rho(f) \otimes_{\overline{\mathbb{Q}}_{\ell}} \pi_{v}(f)^{\oplus d_{U^{v}}(f)} \right) \bigoplus (*)$$

- f = new cuspidal Hilbert eigenforms of parallel weight (2, ..., 2) and prime to v level U^v
- $\rho(f): \operatorname{Gal}(\overline{F}/F) \to \operatorname{GL}_2(\overline{\mathbb{Q}_\ell})$ irreducible representation of $\operatorname{Gal}(\overline{F}/F)$
- $\pi_{v}(f)$ = smooth irreducible (infinite dimensional) representation of $\operatorname{GL}_{2}(F_{v})$ (smooth: $\pi_{v}(f) = \bigcup_{n} \pi_{v}(f)^{1+p^{n}\operatorname{M}_{2}(\mathcal{O}_{F_{v}})}$)
- $d_{U^{\nu}}(f)$ = finite multiplicity (depends on U^{ν} and f)

$$H^{1}(U^{v}) \otimes_{\mathbb{Z}_{\ell}} \overline{\mathbb{Q}_{\ell}} \cong \bigoplus_{f} \left(\rho(f) \otimes_{\overline{\mathbb{Q}}_{\ell}} \pi_{v}(f)^{\oplus d_{U^{v}}(f)} \right) \bigoplus (*)$$

- f = new cuspidal Hilbert eigenforms of parallel weight (2, ..., 2) and prime to v level U^v
- $\rho(f): \operatorname{Gal}(\overline{F}/F) \to \operatorname{GL}_2(\overline{\mathbb{Q}_\ell})$ irreducible representation of $\operatorname{Gal}(\overline{F}/F)$
- $\pi_{\nu}(f)$ = smooth irreducible (infinite dimensional) representation of $\operatorname{GL}_2(F_{\nu})$ (smooth: $\pi_{\nu}(f) = \bigcup_{p} \pi_{\nu}(f)^{1+p^n \operatorname{M}_2(\mathcal{O}_{F_{\nu}})}$)
- $d_{U^{\vee}}(f)$ = finite multiplicity (depends on U^{\vee} and f)
- (*) = non-cuspidal part = not interesting here

Theorem (same people)

For $\ell \neq p$ the isomorphism class of the representation $\pi_v(f)$ determines and only depends on the isomorphism class of the representation $\rho(f)|_{\operatorname{Gal}(\overline{F}_v/F_v)}$

(Recall
$$\operatorname{Gal}(\overline{F}_v/F_v) \subset \operatorname{Gal}(\overline{F}/F) = \operatorname{decomposition} \operatorname{subgroup} \operatorname{at} v$$
)

Theorem (same people)

For $\ell \neq p$ the isomorphism class of the representation $\pi_v(f)$ determines and only depends on the isomorphism class of the representation $\rho(f)|_{\operatorname{Gal}(\overline{F}_v/F_v)}$

(Recall $\operatorname{Gal}(\overline{F}_v/F_v) \subset \operatorname{Gal}(\overline{F}/F) = \operatorname{decomposition} \operatorname{subgroup} \operatorname{at} v$)

Theorem (reformulation)

$$\rho: \operatorname{Gal}(\overline{F}/F) \to \operatorname{GL}_2(\overline{\mathbb{Q}_\ell}) \text{ irreducible} + \operatorname{Hom}_{\operatorname{Gal}(\overline{F}/F)}(\rho, H^1(U^{\mathsf{v}}) \otimes \overline{\mathbb{Q}_\ell}) \neq 0$$

Theorem (same people)

For $\ell \neq p$ the isomorphism class of the representation $\pi_v(f)$ determines and only depends on the isomorphism class of the representation $\rho(f)|_{\operatorname{Gal}(\overline{F}_v/F_v)}$

(Recall $\operatorname{Gal}(\overline{F}_v/F_v) \subset \operatorname{Gal}(\overline{F}/F) = \operatorname{decomposition} \operatorname{subgroup} \operatorname{at} v$)

Theorem (reformulation)

$$\rho: \operatorname{Gal}(\overline{F}/F) \to \operatorname{GL}_2(\overline{\mathbb{Q}_\ell}) \text{ irreducible} + \operatorname{Hom}_{\operatorname{Gal}(\overline{F}/F)}(\rho, H^1(U^v) \otimes \overline{\mathbb{Q}_\ell}) \neq 0$$

$$\Longrightarrow \operatorname{Hom}_{\operatorname{Gal}(\overline{F}/F)}(\rho, H^1(U^v) \otimes_{\mathbb{Z}_\ell} \overline{\mathbb{Q}_\ell}) \cong \pi_v^{\oplus d_{U^v}}$$

where $\pi_v \leftrightarrow \rho|_{\operatorname{Gal}(\overline{F}_v/F_v)}$ by the local Langlands correspondence for $\operatorname{GL}_2(F_v)$

Theorem (same people)

For $\ell \neq p$ the isomorphism class of the representation $\pi_v(f)$ determines and only depends on the isomorphism class of the representation $\rho(f)|_{\operatorname{Gal}(\overline{F}_v/F_v)}$

(Recall $\operatorname{Gal}(\overline{F}_v/F_v) \subset \operatorname{Gal}(\overline{F}/F) = \operatorname{decomposition} \operatorname{subgroup} \operatorname{at} v$)

Theorem (reformulation)

$$\rho: \operatorname{Gal}(\overline{F}/F) \to \operatorname{GL}_2(\overline{\mathbb{Q}_\ell}) \text{ irreducible} + \operatorname{Hom}_{\operatorname{Gal}(\overline{F}/F)}(\rho, H^1(U^{\mathsf{v}}) \otimes \overline{\mathbb{Q}_\ell}) \neq 0$$

$$\implies \operatorname{Hom}_{\operatorname{Gal}(\overline{F}/F)} \left(\rho, H^1(U^{\mathsf{v}}) \otimes_{\mathbb{Z}_{\ell}} \overline{\mathbb{Q}_{\ell}} \right) \cong \pi_{\mathsf{v}}^{\oplus d_{U^{\mathsf{v}}}}$$

where $\pi_v \leftrightarrow \rho|_{\operatorname{Gal}(\overline{F}_v/F_v)}$ by the local Langlands correspondence for $\operatorname{GL}_2(F_v)$

Remark: There is a version also when $\ell = p$

Theorem (Vignéras, Emerton-Helm)

 $\rho: \operatorname{Gal}(\overline{F}/F) \to \operatorname{GL}_2(\overline{\mathbb{F}_\ell}) \text{ irreducible} + \operatorname{Hom}_{\operatorname{Gal}(\overline{F}/F)}(\rho, H^1(U^v) \otimes_{\mathbb{Z}_\ell} \overline{\mathbb{F}_\ell}) \neq 0$

Theorem (Vignéras, Emerton-Helm)

$$\rho: \operatorname{Gal}(\overline{F}/F) \to \operatorname{GL}_2(\overline{\mathbb{F}_\ell}) \text{ irreducible} + \operatorname{Hom}_{\operatorname{Gal}(\overline{F}/F)}(\rho, H^1(U^v) \otimes_{\mathbb{Z}_\ell} \overline{\mathbb{F}_\ell}) \neq 0$$

$$\, \Longrightarrow \, \operatorname{Hom}_{\operatorname{Gal}(\overline{F}/F)} \left({\color{red} \rho}, H^1(U^{\mathsf{v}}) \otimes_{\mathbb{Z}_\ell} \overline{\mathbb{F}_\ell} \right) \cong \pi_{\mathsf{v}}^{\oplus \mathsf{d}_{U^{\mathsf{v}}}}$$

where π_{ν} determines and only depends on $\rho|_{\operatorname{Gal}(\overline{F}_{\nu}/F_{\nu})}$

Theorem (Vignéras, Emerton-Helm)

$$\rho: \operatorname{Gal}(\overline{F}/F) \to \operatorname{GL}_2(\overline{\mathbb{F}_\ell}) \text{ irreducible} + \operatorname{Hom}_{\operatorname{Gal}(\overline{F}/F)}(\rho, H^1(U^{\mathsf{v}}) \otimes_{\mathbb{Z}_\ell} \overline{\mathbb{F}_\ell}) \neq 0$$

$$\, \Longrightarrow \, \operatorname{Hom}_{\operatorname{Gal}(\overline{F}/F)} \left(\underline{\rho}, H^1(U^{\mathsf{v}}) \otimes_{\mathbb{Z}_\ell} \overline{\mathbb{F}_\ell} \right) \cong \pi_{\mathsf{v}}^{\oplus d_{U^{\mathsf{v}}}}$$

where π_{ν} determines and only depends on $\rho|_{\operatorname{Gal}(\overline{F}_{\nu}/F_{\nu})}$

Proof (very roughly): choose lattices and reduce mod ℓ the previous theorem

Theorem (Vignéras, Emerton-Helm)

$$\rho: \operatorname{Gal}(\overline{F}/F) \to \operatorname{GL}_2(\overline{\mathbb{F}_\ell}) \text{ irreducible} + \operatorname{Hom}_{\operatorname{Gal}(\overline{F}/F)}(\rho, H^1(U^v) \otimes_{\mathbb{Z}_\ell} \overline{\mathbb{F}_\ell}) \neq 0$$

$$\, \Longrightarrow \, \operatorname{Hom}_{\operatorname{Gal}(\overline{F}/F)} \left(\underline{\rho}, H^1(U^{\mathsf{v}}) \otimes_{\mathbb{Z}_\ell} \overline{\mathbb{F}_\ell} \right) \cong \pi_{\mathsf{v}}^{\oplus d_{U^{\mathsf{v}}}}$$

where π_{ν} determines and only depends on $\rho|_{\operatorname{Gal}(\overline{F}_{\nu}/F_{\nu})}$

Proof (very roughly): choose lattices and reduce mod ℓ the previous theorem

Remarks:

• Can happen that π_{ν} is reducible (rare)

Theorem (Vignéras, Emerton-Helm)

$$\rho: \operatorname{Gal}(\overline{F}/F) \to \operatorname{GL}_2(\overline{\mathbb{F}_\ell}) \text{ irreducible} + \operatorname{Hom}_{\operatorname{Gal}(\overline{F}/F)}(\rho, H^1(U^v) \otimes_{\mathbb{Z}_\ell} \overline{\mathbb{F}_\ell}) \neq 0$$

$$\implies \operatorname{Hom}_{\operatorname{Gal}(\overline{F}/F)}\left(\rho, H^1(U^{\mathsf{v}}) \otimes_{\mathbb{Z}_\ell} \overline{\mathbb{F}_\ell}\right) \cong \pi_{\mathsf{v}}^{\oplus d_{U^{\mathsf{v}}}}$$

where π_{ν} determines and only depends on $\rho|_{\operatorname{Gal}(\overline{F}_{\nu}/F_{\nu})}$

Proof (very roughly): choose lattices and reduce mod ℓ the previous theorem

Remarks:

- Can happen that $\pi_{\mathbf{v}}$ is reducible (rare)
- $H^1(U^{\mathsf{v}}) \otimes_{\mathbb{Z}_\ell} \overline{\mathbb{F}_\ell}$ more involved (no more semi-simple)

• $\rho|_{\operatorname{Gal}(\overline{F}_v/F_v)} \cong \chi_1 \oplus \chi_2$

•
$$\rho|_{\operatorname{Gal}(\overline{F}_{v}/F_{v})} \cong \chi_{1} \oplus \chi_{2} \implies \pi_{v} \cong \operatorname{Ind}_{B(F_{v})}^{\operatorname{GL}_{2}(F_{v})} (\chi_{1} \otimes \chi_{2}|\cdot|^{-1})$$

$$\cong \operatorname{Ind}_{B(F_{v})}^{\operatorname{GL}_{2}(F_{v})} (\chi_{2} \otimes \chi_{1}|\cdot|^{-1})$$

•
$$\rho|_{\operatorname{Gal}(\overline{F}_{v}/F_{v})} \cong \chi_{1} \oplus \chi_{2} \implies \pi_{v} \cong \operatorname{Ind}_{B(F_{v})}^{\operatorname{GL}_{2}(F_{v})} (\chi_{1} \otimes \chi_{2}|\cdot|^{-1})$$

$$\cong \operatorname{Ind}_{B(F_{v})}^{\operatorname{GL}_{2}(F_{v})} (\chi_{2} \otimes \chi_{1}|\cdot|^{-1})$$

right hand side = loc. const. $f: \operatorname{GL}_2(F_{\nu}) \longrightarrow \overline{\mathbb{Q}_{\ell}}$ or $\overline{\mathbb{F}_{\ell}}$ such that

$$f\left(\left(\begin{smallmatrix}b_1 & * \\ 0 & b_2\end{smallmatrix}\right)g\right) = \chi_1(b_1)\chi_2(b_2)|b_2|^{-1}f(g)$$

where
$$|\cdot| = \frac{1}{p^{\mathrm{val}_p(\mathrm{Norm}_{F_v/\mathbb{Q}_p}(\cdot))}} \in p^{\mathbb{Z}}$$

•
$$\rho|_{\operatorname{Gal}(\overline{F}_{v}/F_{v})} \cong \chi_{1} \oplus \chi_{2} \implies \pi_{v} \cong \operatorname{Ind}_{B(F_{v})}^{\operatorname{GL}_{2}(F_{v})} (\chi_{1} \otimes \chi_{2}|\cdot|^{-1})$$

$$\cong \operatorname{Ind}_{B(F_{v})}^{\operatorname{GL}_{2}(F_{v})} (\chi_{2} \otimes \chi_{1}|\cdot|^{-1})$$

right hand side = loc. const. $f: \operatorname{GL}_2(F_{\nu}) \longrightarrow \overline{\mathbb{Q}_{\ell}}$ or $\overline{\mathbb{F}_{\ell}}$ such that

$$f\left(\left(\begin{smallmatrix}b_1&*\\0&b_2\end{smallmatrix}\right)g\right)=\chi_1(b_1)\chi_2(b_2)|b_2|^{-1}f(g)$$

where
$$|\cdot| = \frac{1}{\rho^{\mathrm{val}_p(\mathrm{Norm}_{F_v/\mathbb{Q}_p}(\cdot))}} \in \rho^{\mathbb{Z}}$$
 and $(gf)(g') = f(g'g)$

•
$$\rho|_{\operatorname{Gal}(\overline{F}_{v}/F_{v})} \cong \chi_{1} \oplus \chi_{2} \implies \pi_{v} \cong \operatorname{Ind}_{B(F_{v})}^{\operatorname{GL}_{2}(F_{v})} (\chi_{1} \otimes \chi_{2}|\cdot|^{-1})$$

$$\cong \operatorname{Ind}_{B(F_{v})}^{\operatorname{GL}_{2}(F_{v})} (\chi_{2} \otimes \chi_{1}|\cdot|^{-1})$$

right hand side = loc. const. $f: \operatorname{GL}_2(F_{\nu}) \longrightarrow \overline{\mathbb{Q}_{\ell}}$ or $\overline{\mathbb{F}_{\ell}}$ such that

$$f\left(\left(\begin{smallmatrix}b_1 & * \\ 0 & b_2\end{smallmatrix}\right)g\right) = \chi_1(b_1)\chi_2(b_2)|b_2|^{-1}f(g)$$

where
$$|\cdot| = \frac{1}{\rho^{\operatorname{val}_p(\operatorname{Norm}_{F_v/\mathbb{Q}_p}(\cdot))}} \in \rho^{\mathbb{Z}}$$
 and $(gf)(g') = f(g'g)$

 π_{ν} called a **principal series** representation

•
$$\rho|_{\operatorname{Gal}(\overline{F}_{v}/F_{v})} \cong \chi_{1} \oplus \chi_{2} \implies \pi_{v} \cong \operatorname{Ind}_{B(F_{v})}^{\operatorname{GL}_{2}(F_{v})} (\chi_{1} \otimes \chi_{2}|\cdot|^{-1})$$

$$\cong \operatorname{Ind}_{B(F_{v})}^{\operatorname{GL}_{2}(F_{v})} (\chi_{2} \otimes \chi_{1}|\cdot|^{-1})$$

right hand side = loc. const. $f: \operatorname{GL}_2(F_{\nu}) \longrightarrow \overline{\mathbb{Q}_{\ell}}$ or $\overline{\mathbb{F}_{\ell}}$ such that

$$f\left(\left(\begin{smallmatrix}b_1&*\\0&b_2\end{smallmatrix}\right)g\right)=\chi_1(b_1)\chi_2(b_2)|b_2|^{-1}f(g)$$

where
$$|\cdot| = \frac{1}{\rho^{\operatorname{val}_p(\operatorname{Norm}_{F_v/\mathbb{Q}_p}(\cdot))}} \in \rho^{\mathbb{Z}}$$
 and $(gf)(g') = f(g'g)$

 π_{ν} called a **principal series** representation

 \bullet $\rho|_{\operatorname{Gal}(\overline{F}_{V}/F_{V})}$ irreducible $\Longrightarrow \pi_{V}$ not a subquotient of principal series

•
$$\rho|_{\operatorname{Gal}(\overline{F}_{v}/F_{v})} \cong \chi_{1} \oplus \chi_{2} \implies \pi_{v} \cong \operatorname{Ind}_{B(F_{v})}^{\operatorname{GL}_{2}(F_{v})} (\chi_{1} \otimes \chi_{2}|\cdot|^{-1})$$

$$\cong \operatorname{Ind}_{B(F_{v})}^{\operatorname{GL}_{2}(F_{v})} (\chi_{2} \otimes \chi_{1}|\cdot|^{-1})$$

right hand side = loc. const. $f: \mathrm{GL}_2(F_{\nu}) \longrightarrow \overline{\mathbb{Q}_{\ell}}$ or $\overline{\mathbb{F}_{\ell}}$ such that

$$f((b_1 \circ b_2) g) = \chi_1(b_1)\chi_2(b_2)|b_2|^{-1}f(g)$$

where
$$|\cdot| = \frac{1}{p^{\operatorname{val}_p(\operatorname{Norm}_{F_v/\mathbb{Q}_p}(\cdot))}} \in p^{\mathbb{Z}}$$
 and $(gf)(g') = f(g'g)$

 π_{ν} called a **principal series** representation

• $\rho|_{\mathrm{Gal}(\overline{F}_v/F_v)}$ irreducible $\Longrightarrow \pi_v$ not a subquotient of principal series π_v called a **supercuspidal** representation

Reducing mod p

Theorem (Emerton, 2010)

ASSUME $F=\mathbb{Q}$ AND $D=\mathrm{M}_2$

Theorem (Emerton, 2010)

ASSUME
$$F = \mathbb{Q}$$
 AND $D = M_2$

$$\frac{\rho}{\text{ irreducible}} + \operatorname{Hom}_{\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})}(\frac{\rho}{\rho}, H^1(U^p) \otimes_{\mathbb{Z}_p} \overline{\mathbb{F}_p}) \neq 0$$

Theorem (Emerton, 2010)

ASSUME
$$F = \mathbb{Q}$$
 AND $D = M_2$

$$\rho$$
 irreducible $+ \operatorname{Hom}_{\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})}(\rho, H^1(U^p) \otimes_{\mathbb{Z}_p} \overline{\mathbb{F}_p}) \neq 0$

$$\, \Longrightarrow \, \operatorname{Hom}_{\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})} \left({\stackrel{\rho}{\rho}}, H^1(U^p) \otimes_{\mathbb{Z}_p} \overline{\mathbb{F}_p} \right) \cong \pi_p^{\oplus d_{U^p}}$$

where π_p determines and only depends on $ho|_{\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)}$

Theorem (Emerton, 2010)

ASSUME
$$F = \mathbb{Q}$$
 AND $D = M_2$

$$\rho$$
 irreducible $+ \operatorname{Hom}_{\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})}(\rho, H^1(U^p) \otimes_{\mathbb{Z}_p} \overline{\mathbb{F}_p}) \neq 0$

$$\, \Longrightarrow \, \operatorname{Hom}_{\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})} \left(\rho, H^1(U^p) \otimes_{\mathbb{Z}_p} \overline{\mathbb{F}_p} \right) \cong \pi_p^{\oplus d_{U^p}}$$

where π_p determines and only depends on $\rho|_{\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)}$

Uses the work of many people: C. B., Colmez, Paškūnas, Kisin, Berger, etc.

Theorem (Emerton, 2010)

ASSUME
$$F = \mathbb{Q}$$
 AND $D = M_2$

$$\rho$$
 irreducible $+ \operatorname{Hom}_{\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})}(\rho, H^1(U^p) \otimes_{\mathbb{Z}_p} \overline{\mathbb{F}_p}) \neq 0$

$$\, \Longrightarrow \, \operatorname{Hom}_{\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})}\left(\rho, H^1(U^p) \otimes_{\mathbb{Z}_p} \overline{\mathbb{F}_p}\right) \cong \pi_p^{\oplus d_{U^p}}$$

where π_p determines and only depends on $\rho|_{\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)}$

Uses the work of many people: C. B., Colmez, Paškūnas, Kisin, Berger, etc. in particular the mod p Langlands correspondence for $GL_2(\mathbb{Q}_p)$ (Colmez):

$$\pi_p \longleftrightarrow \rho|_{\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)}$$

Theorem (Emerton, 2010)

ASSUME
$$F = \mathbb{Q}$$
 AND $D = M_2$

$$\rho$$
 irreducible $+ \operatorname{Hom}_{\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})}(\rho, H^1(U^p) \otimes_{\mathbb{Z}_p} \overline{\mathbb{F}_p}) \neq 0$

$$\, \Longrightarrow \, \operatorname{Hom}_{\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})}\left(\rho, H^1(U^p) \otimes_{\mathbb{Z}_p} \overline{\mathbb{F}_p}\right) \cong \pi_p^{\oplus d_{U^p}}$$

where π_p determines and only depends on $\rho|_{\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)}$

Uses the work of many people: C. B., Colmez, Paškūnas, Kisin, Berger, etc. in particular the mod p Langlands correspondence for $GL_2(\mathbb{Q}_p)$ (Colmez):

$$\pi_p \longleftrightarrow \rho|_{\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)}$$

Remark: Theorem should hold as soon as $F_{\nu} = \mathbb{Q}_{p}$ (not written so far)

 $\bullet \ \rho|_{\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)} \cong \chi_1 \oplus \chi_2$

$$\pi_{p} \cong \operatorname{Ind}_{B(\mathbb{Q}_{p})}^{\operatorname{GL}_{2}(\mathbb{Q}_{p})} \big(\chi_{2} \otimes \chi_{1} \omega^{-1}\big) \oplus \operatorname{Ind}_{B(\mathbb{Q}_{p})}^{\operatorname{GL}_{2}(\mathbb{Q}_{p})} \big(\chi_{1} \otimes \chi_{2} \omega^{-1}\big)$$

$$\pi_{\rho} \cong \operatorname{Ind}_{\mathcal{B}(\mathbb{Q}_{\rho})}^{\operatorname{GL}_{2}(\mathbb{Q}_{\rho})}(\chi_{2} \otimes \chi_{1}\omega^{-1}) \oplus \operatorname{Ind}_{\mathcal{B}(\mathbb{Q}_{\rho})}^{\operatorname{GL}_{2}(\mathbb{Q}_{\rho})}(\chi_{1} \otimes \chi_{2}\omega^{-1})$$

 $\omega = \operatorname{mod} p$ cyclotomic character = analogue of previous $|\cdot|$

$$\pi_p \cong \operatorname{Ind}_{\mathcal{B}(\mathbb{Q}_p)}^{\operatorname{GL}_2(\mathbb{Q}_p)}(\chi_2 \otimes \chi_1 \omega^{-1}) \oplus \operatorname{Ind}_{\mathcal{B}(\mathbb{Q}_p)}^{\operatorname{GL}_2(\mathbb{Q}_p)}(\chi_1 \otimes \chi_2 \omega^{-1})$$

 $\omega = \operatorname{mod} p$ cyclotomic character = analogue of previous $|\cdot|$

$$\bullet \ \rho|_{\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)} \cong \left(\begin{smallmatrix} \chi_1 & * \\ 0 & \chi_2 \end{smallmatrix}\right)$$

$$\pi_{p} \cong \operatorname{Ind}_{B(\mathbb{Q}_{p})}^{\operatorname{GL}_{2}(\mathbb{Q}_{p})} \big(\chi_{2} \otimes \chi_{1}\omega^{-1}\big) \oplus \operatorname{Ind}_{B(\mathbb{Q}_{p})}^{\operatorname{GL}_{2}(\mathbb{Q}_{p})} \big(\chi_{1} \otimes \chi_{2}\omega^{-1}\big)$$

 $\omega = \text{mod } p \text{ cyclotomic character} = \text{analogue of previous } |\cdot|$

$$\bullet \ \rho|_{\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)} \cong \left(\begin{smallmatrix} \chi_1 & * \\ 0 & \chi_2 \end{smallmatrix}\right) \Longrightarrow$$

 $\bullet \ \rho|_{\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)} \cong \chi_1 \oplus \chi_2 \implies$

$$\pi_{p} \cong \operatorname{Ind}_{B(\mathbb{Q}_{p})}^{\operatorname{GL}_{2}(\mathbb{Q}_{p})} \big(\chi_{2} \otimes \chi_{1}\omega^{-1}\big) \oplus \operatorname{Ind}_{B(\mathbb{Q}_{p})}^{\operatorname{GL}_{2}(\mathbb{Q}_{p})} \big(\chi_{1} \otimes \chi_{2}\omega^{-1}\big)$$

 $\omega = \operatorname{mod} p$ cyclotomic character = analogue of previous $|\cdot|$

$$\bullet \ \rho|_{\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)} \cong \begin{pmatrix} \chi_1 & * \\ 0 & \chi_2 \end{pmatrix} \Longrightarrow$$

$$\pi_{p} \cong \operatorname{Ind}_{B(\mathbb{Q}_{p})}^{\operatorname{GL}_{2}(\mathbb{Q}_{p})}(\chi_{2} \otimes \chi_{1} \omega^{-1}) - -\operatorname{Ind}_{B(\mathbb{Q}_{p})}^{\operatorname{GL}_{2}(\mathbb{Q}_{p})}(\chi_{1} \otimes \chi_{2} \omega^{-1})$$

 \bullet $ho|_{\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)}$ irreducible $\Longrightarrow \pi_p$ irreducible supercuspidal

$$\bullet \ \rho|_{\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)} \cong \chi_1 \oplus \chi_2 \implies$$

$$\pi_{p} \cong \operatorname{Ind}_{B(\mathbb{Q}_{p})}^{\operatorname{GL}_{2}(\mathbb{Q}_{p})} \big(\chi_{2} \otimes \chi_{1} \omega^{-1}\big) \oplus \operatorname{Ind}_{B(\mathbb{Q}_{p})}^{\operatorname{GL}_{2}(\mathbb{Q}_{p})} \big(\chi_{1} \otimes \chi_{2} \omega^{-1}\big)$$

 $\omega = \operatorname{mod} p$ cyclotomic character = analogue of previous $|\cdot|$

$$\bullet \ \rho|_{\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)} \cong \left(\begin{smallmatrix} \chi_1 & * \\ 0 & \chi_2 \end{smallmatrix}\right) \Longrightarrow$$

$$\pi_{p} \cong \operatorname{Ind}_{B(\mathbb{Q}_{p})}^{\operatorname{GL}_{2}(\mathbb{Q}_{p})}(\chi_{2} \otimes \chi_{1} \omega^{-1}) - -\operatorname{Ind}_{B(\mathbb{Q}_{p})}^{\operatorname{GL}_{2}(\mathbb{Q}_{p})}(\chi_{1} \otimes \chi_{2} \omega^{-1})$$

• $ho|_{\mathrm{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)}$ irreducible $\implies \pi_p$ irreducible supercuspidal also called *supersingular*

When $F_{\nu} \neq \mathbb{Q}_p \operatorname{Hom}_{\operatorname{Gal}(\overline{F}/F)}(\underline{\rho}, H^1(U^{\nu}) \otimes_{\mathbb{Z}_p} \overline{\mathbb{F}_p})$ is not understood \odot

When $F_v \neq \mathbb{Q}_p \operatorname{Hom}_{\operatorname{Gal}(\overline{F}/F)}(\underline{\rho}, H^1(U^v) \otimes_{\mathbb{Z}_p} \overline{\mathbb{F}_p})$ is not understood \odot

Main reason: no classification of supersingular representations

When $F_v \neq \mathbb{Q}_p \operatorname{Hom}_{\operatorname{Gal}(\overline{F}/F)}(\underline{\rho}, H^1(U^v) \otimes_{\mathbb{Z}_p} \overline{\mathbb{F}_p})$ is not understood \odot

Main reason: no classification of supersingular representations

When $F_v \neq \mathbb{Q}_p \operatorname{Hom}_{\operatorname{Gal}(\overline{F}/F)}(\underline{\rho}, H^1(U^v) \otimes_{\mathbb{Z}_p} \overline{\mathbb{F}_p})$ is not understood \odot

Main reason: no classification of supersingular representations

Multiple issues:

• Supersingular representations for $F_{\nu} \neq \mathbb{Q}_p$ are not finitely presented (Schraen, Wu) (i.e. need infinitely many equations)

When $F_v \neq \mathbb{Q}_p \operatorname{Hom}_{\operatorname{Gal}(\overline{F}/F)}(\underline{\rho}, H^1(U^v) \otimes_{\mathbb{Z}_p} \overline{\mathbb{F}_p})$ is not understood \odot

Main reason: no classification of supersingular representations

Multiple issues:

• Supersingular representations for $F_{\nu} \neq \mathbb{Q}_p$ are not finitely presented (Schraen, Wu) (i.e. need infinitely many equations) \rightsquigarrow no explicit description of supersingular representations

When $F_v \neq \mathbb{Q}_p \operatorname{Hom}_{\operatorname{Gal}(\overline{F}/F)}(\underline{\rho}, H^1(U^v) \otimes_{\mathbb{Z}_p} \overline{\mathbb{F}_p})$ is not understood \odot

Main reason: no classification of supersingular representations

- Supersingular representations for $F_v \neq \mathbb{Q}_p$ are not finitely presented (Schraen, Wu) (i.e. need infinitely many equations) \leadsto no explicit description of supersingular representations
- Many more supersingular representations of $GL_2(F_v)$ than 2-dimensional irreducible representations of $Gal(\overline{F_v}/F_v)$ (B.-Paškūnas)

When $F_v \neq \mathbb{Q}_p \operatorname{Hom}_{\operatorname{Gal}(\overline{F}/F)}(\underline{\rho}, H^1(U^v) \otimes_{\mathbb{Z}_p} \overline{\mathbb{F}_p})$ is not understood \odot

Main reason: no classification of supersingular representations

- Supersingular representations for $F_v \neq \mathbb{Q}_p$ are not finitely presented (Schraen, Wu) (i.e. need infinitely many equations) \rightsquigarrow no explicit description of supersingular representations
- Many more supersingular representations of $\mathrm{GL}_2(F_{\nu})$ than 2-dimensional irreducible representations of $\mathrm{Gal}(\overline{F_{\nu}}/F_{\nu})$ (B.-Paškūnas)
- Case $\rho|_{\operatorname{Gal}(\overline{F}_v/F_v)} \cong \chi_1 \oplus \chi_2$: the previous two principal series still occur in $\operatorname{Hom}_{\operatorname{Gal}(\overline{F}/F)}(\rho, H^1(U^v) \otimes_{\mathbb{Z}_p} \overline{\mathbb{F}_p})$ (assumed $\neq 0$)

When $F_v \neq \mathbb{Q}_p \operatorname{Hom}_{\operatorname{Gal}(\overline{F}/F)}(\underline{\rho}, H^1(U^v) \otimes_{\mathbb{Z}_p} \overline{\mathbb{F}_p})$ is not understood \odot

Main reason: no classification of supersingular representations

- Supersingular representations for $F_{\nu} \neq \mathbb{Q}_p$ are not finitely presented (Schraen, Wu) (i.e. need infinitely many equations) \rightsquigarrow no explicit description of supersingular representations
- Many more supersingular representations of $GL_2(F_{\nu})$ than 2-dimensional irreducible representations of $Gal(\overline{F_{\nu}}/F_{\nu})$ (B.-Paškūnas)
- Case $\rho|_{\operatorname{Gal}(\overline{F}_v/F_v)} \cong \chi_1 \oplus \chi_2$: the previous two principal series still occur in $\operatorname{Hom}_{\operatorname{Gal}(\overline{F}/F)}(\rho, H^1(U^v) \otimes_{\mathbb{Z}_p} \overline{\mathbb{F}_p})$ (assumed $\neq 0$) but there are also supersingular representations there as soon as $F_v \neq \mathbb{Q}_p$!

We do not know that $\operatorname{Hom}_{\operatorname{Gal}(\overline{F}/F)}(\rho,H^1(U^v)\otimes_{\mathbb{Z}_p}\overline{\mathbb{F}_p})\cong\pi_v^{\oplus d_{U^v}}$ for a single π_v (whatever it is)

We do not know that $\mathrm{Hom}_{\mathrm{Gal}(\overline{F}/F)}(\rho,H^1(U^v)\otimes_{\mathbb{Z}_p}\overline{\mathbb{F}_p})\cong\pi_v^{\oplus d_{U^v}}$ for a single π_v (whatever it is) \leadsto we assume from now on $d_{U^v}=1$ to get rid of that

We do not know that $\mathrm{Hom}_{\mathrm{Gal}(\overline{F}/F)}(\rho,H^1(U^v)\otimes_{\mathbb{Z}_p}\overline{\mathbb{F}_p})\cong\pi_v^{\oplus d_{U^v}}$ for a single π_v (whatever it is) \leadsto we assume from now on $d_{U^v}=1$ to get rid of that

Under this assumption, we define in the sequel for ρ irreducible:

$$\pi_{\boldsymbol{v}} \stackrel{\mathrm{def}}{=} \mathrm{Hom}_{\mathrm{Gal}(\overline{F}/F)}(\rho, H^{1}(U^{\boldsymbol{v}}) \otimes_{\mathbb{Z}_{p}} \overline{\mathbb{F}_{p}}) \neq 0$$

We do not know that $\mathrm{Hom}_{\mathrm{Gal}(\overline{F}/F)}(\rho,H^1(U^v)\otimes_{\mathbb{Z}_p}\overline{\mathbb{F}_p})\cong\pi_v^{\oplus d_{U^v}}$ for a single π_v (whatever it is) \leadsto we assume from now on $d_{U^v}=1$ to get rid of that

Under this assumption, we define in the sequel for ρ irreducible:

$$\pi_{{\color{blue} v}} \stackrel{\mathrm{def}}{=} \mathrm{Hom}_{\mathrm{Gal}(\overline{F}/F)}({\color{blue} \rho}, H^1({\color{blue} U^{\color{blue} v}}) \otimes_{\mathbb{Z}_p} \overline{\mathbb{F}_p}) \neq 0$$

Theorem (B.-Diamond F_{ν} unramified, 2014, Scholze general case, 2018)

The isomorphism class of the representation π_v determines the isomorphism class of the representation $\rho|_{\mathrm{Gal}(\overline{F}_v/F_v)}$

We do not know that $\mathrm{Hom}_{\mathrm{Gal}(\overline{F}/F)}(\rho,H^1(U^v)\otimes_{\mathbb{Z}_p}\overline{\mathbb{F}_p})\cong\pi_v^{\oplus d_{U^v}}$ for a single π_v (whatever it is) \leadsto we assume from now on $d_{U^v}=1$ to get rid of that

Under this assumption, we define in the sequel for ρ irreducible:

$$\pi_{{\color{blue} v}} \stackrel{\mathrm{def}}{=} \mathrm{Hom}_{\mathrm{Gal}(\overline{F}/F)}({\color{blue} \rho}, H^1({\color{blue} U^{\color{blue} v}}) \otimes_{\mathbb{Z}_p} \overline{\mathbb{F}_p}) \neq 0$$

Theorem (B.-Diamond F_{ν} unramified, 2014, Scholze general case, 2018)

The isomorphism class of the representation π_v determines the isomorphism class of the representation $\rho|_{\mathrm{Gal}(\overline{F}_v/F_v)}$

Converse not known:

We do not know that $\mathrm{Hom}_{\mathrm{Gal}(\overline{F}/F)}(\rho,H^1(U^v)\otimes_{\mathbb{Z}_p}\overline{\mathbb{F}_p})\cong\pi_v^{\oplus d_{U^v}}$ for a single π_v (whatever it is) \leadsto we assume from now on $d_{U^v}=1$ to get rid of that

Under this assumption, we define in the sequel for ρ irreducible:

$$\pi_{{\color{blue} v}} \stackrel{\mathrm{def}}{=} \mathrm{Hom}_{\mathrm{Gal}(\overline{F}/F)}({\color{blue} \rho}, H^1({\color{blue} U^{\color{blue} v}}) \otimes_{\mathbb{Z}_p} \overline{\mathbb{F}_p}) \neq 0$$

Theorem (B.-Diamond F_{ν} unramified, 2014, Scholze general case, 2018)

The isomorphism class of the representation π_v determines the isomorphism class of the representation $\rho|_{\mathrm{Gal}(\overline{F}_v/F_v)}$

Converse not known: no example so far of a π_v as above which only depends on $\rho|_{\mathrm{Gal}(\overline{F}_v/F_v)}$

We assume moreover from now on $\begin{cases} p \text{ unramified in } F \\ p \gg \dim_{\mathbb{Q}_p} F_v \\ \rho \text{ sufficiently generic} \end{cases}$

We assume moreover from now on $\left\{ \begin{array}{l} p \; \mathrm{unramified \; in} \; F \\ p \gg \mathrm{dim}_{\mathbb{Q}_p} F_v \\ \rho \; \mathrm{sufficiently \; generic} \end{array} \right.$

Theorem (B.-Herzig-Hu-Morra-Schraen, 2021 to 2024)

ullet $ho|_{\operatorname{Gal}(\overline{\digamma}_{V}/\digamma_{V})}$ irreducible $\Longrightarrow \pi_{V}$ irreducible supersingular

We assume moreover from now on $\left\{ \begin{array}{l} p \text{ unramified in } F \\ p \gg \dim_{\mathbb{Q}_p} F_\nu \\ \rho \text{ sufficiently generic} \end{array} \right.$

Theorem (B.-Herzig-Hu-Morra-Schraen, 2021 to 2024)

- $\bullet \rho|_{\operatorname{Gal}(\overline{F}_{V}/F_{V})}$ irreducible $\Longrightarrow \pi_{V}$ irreducible supersingular
- $\rho|_{\operatorname{Gal}(\overline{F}_v/F_v)} \cong \chi_1 \oplus \chi_2 \Longrightarrow$

$$\pi_v \cong \operatorname{Ind}_{B(F_v)}^{\operatorname{GL}_2(F_v)} (\chi_2 \otimes \chi_1 \omega^{-1}) \oplus \pi \oplus \operatorname{Ind}_{B(F_v)}^{\operatorname{GL}_2(F_v)} (\chi_1 \otimes \chi_2 \omega^{-1})$$

We assume moreover from now on $\left\{ \begin{array}{l} p \text{ unramified in } F \\ p \gg \dim_{\mathbb{Q}_p} F_v \\ \rho \text{ sufficiently generic} \end{array} \right.$

Theorem (B.-Herzig-Hu-Morra-Schraen, 2021 to 2024)

- $\bullet \ \rho|_{\operatorname{Gal}(\overline{F}_{V}/F_{V})}$ irreducible $\implies \pi_{V}$ irreducible supersingular
- $\bullet \ \rho|_{\operatorname{Gal}(\overline{F}_v/F_v)} \cong \chi_1 \oplus \chi_2 \implies$

$$\pi_v \cong \operatorname{Ind}_{B(F_v)}^{\operatorname{GL}_2(F_v)} (\chi_2 \otimes \chi_1 \omega^{-1}) \oplus \pi \oplus \operatorname{Ind}_{B(F_v)}^{\operatorname{GL}_2(F_v)} (\chi_1 \otimes \chi_2 \omega^{-1})$$

with π multiplicity free of length $\in \{1, \ldots, \dim_{\mathbb{Q}_p} F_v - 1\}$ with all its constituents supersingular

We assume moreover from now on $\left\{ \begin{array}{l} p \text{ unramified in } F \\ p \gg \dim_{\mathbb{Q}_p} F_\nu \\ \rho \text{ sufficiently generic} \end{array} \right.$

Theorem (B.-Herzig-Hu-Morra-Schraen, 2021 to 2024)

- $\bullet \rho|_{\operatorname{Gal}(\overline{F}_V/F_V)}$ irreducible $\Longrightarrow \pi_V$ irreducible supersingular
- $\bullet \ \rho|_{\operatorname{Gal}(\overline{F}_v/F_v)} \cong \chi_1 \oplus \chi_2 \implies$

$$\pi_v \cong \operatorname{Ind}_{B(F_v)}^{\operatorname{GL}_2(F_v)} \bigl(\chi_2 \otimes \chi_1 \omega^{-1}\bigr) \ \oplus \ \pi \ \oplus \ \operatorname{Ind}_{B(F_v)}^{\operatorname{GL}_2(F_v)} \bigl(\chi_1 \otimes \chi_2 \omega^{-1}\bigr)$$

with π multiplicity free of length $\in \{1, \ldots, \dim_{\mathbb{Q}_p} F_v - 1\}$ with all its constituents supersingular

Remark: p unramified in $F \implies F_v/\mathbb{Q}_p$ = unramified extension

Theorem (B.-Herzig-Hu-Morra-Schraen, 2021 to 2024 (continued))

$$\pi_v \cong \operatorname{Ind}_{B(F_v)}^{\operatorname{GL}_2(F_v)} \big(\chi_2 \otimes \chi_1 \omega^{-1}\big) -\!\!\!\!- \pi -\!\!\!\!\!- \operatorname{Ind}_{B(F_v)}^{\operatorname{GL}_2(F_v)} \big(\chi_1 \otimes \chi_2 \omega^{-1}\big)$$

Theorem (B.-Herzig-Hu-Morra-Schraen, 2021 to 2024 (continued))

$$\bullet \ \rho|_{\operatorname{Gal}(\overline{F}_v/F_v)} \cong \begin{pmatrix} \chi_1 & * \\ 0 & \chi_2 \end{pmatrix} \Longrightarrow$$

$$\pi_v \cong \operatorname{Ind}_{B(F_v)}^{\operatorname{GL}_2(F_v)} (\chi_2 \otimes \chi_1 \omega^{-1}) - \pi - \operatorname{Ind}_{B(F_v)}^{\operatorname{GL}_2(F_v)} (\chi_1 \otimes \chi_2 \omega^{-1})$$

with π uniserial multiplicity free of length $\in \{1, \ldots, \dim_{\mathbb{Q}_p} F_v - 1\}$ with all its constituents supersingular

Theorem (B.-Herzig-Hu-Morra-Schraen, 2021 to 2024 (continued))

$$\pi_v \cong \operatorname{Ind}_{B(F_v)}^{\operatorname{GL}_2(F_v)} (\chi_2 \otimes \chi_1 \omega^{-1}) - \pi - \operatorname{Ind}_{B(F_v)}^{\operatorname{GL}_2(F_v)} (\chi_1 \otimes \chi_2 \omega^{-1})$$

with π uniserial multiplicity free of length $\in \{1, \ldots, \dim_{\mathbb{Q}_p} F_v - 1\}$ with all its constituents supersingular

Conjecture (B.-Paškūnas)

 π is of length $\dim_{\mathbb{O}_n} F_{\nu} - 1$

Theorem (B.-Herzig-Hu-Morra-Schraen, 2021 to 2024 (continued))

$$\pi_v \cong \operatorname{Ind}_{B(F_v)}^{\operatorname{GL}_2(F_v)} (\chi_2 \otimes \chi_1 \omega^{-1}) -\!\!\!\!- \pi -\!\!\!\!\!- \operatorname{Ind}_{B(F_v)}^{\operatorname{GL}_2(F_v)} (\chi_1 \otimes \chi_2 \omega^{-1})$$

with π uniserial multiplicity free of length $\in \{1, \dots, \dim_{\mathbb{Q}_p} F_v - 1\}$ with all its constituents supersingular

Conjecture (B.-Paškūnas)

 π is of length $\dim_{\mathbb{Q}_p} F_v - 1$ and π is semi-simple if $\rho|_{\mathrm{Gal}(\overline{F}_v/F_v)} \cong \chi_1 \oplus \chi_2$

Theorem (B.-Herzig-Hu-Morra-Schraen, 2021 to 2024 (continued))

with π uniserial multiplicity free of length $\in \{1, \dots, \dim_{\mathbb{Q}_p} F_v - 1\}$ with all its constituents supersingular

Conjecture (B.-Paškūnas)

 π is of length $\dim_{\mathbb{Q}_p} F_{\nu} - 1$ and π is semi-simple if $\rho|_{\mathrm{Gal}(\overline{F}_{\nu}/F_{\nu})} \cong \chi_1 \oplus \chi_2$

Remark: Conjecture holds if $\dim_{\mathbb{Q}_n} F_{\nu} = 2$,

Theorem (B.-Herzig-Hu-Morra-Schraen, 2021 to 2024 (continued))

$$\pi_{v} \cong \operatorname{Ind}_{\mathcal{B}(F_{v})}^{\operatorname{GL}_{2}(F_{v})}(\chi_{2} \otimes \chi_{1} \omega^{-1}) - \pi - \operatorname{Ind}_{\mathcal{B}(F_{v})}^{\operatorname{GL}_{2}(F_{v})}(\chi_{1} \otimes \chi_{2} \omega^{-1})$$

with π uniserial multiplicity free of length $\in \{1, \ldots, \dim_{\mathbb{Q}_p} F_v - 1\}$ with all its constituents supersingular

Conjecture (B.-Paškūnas)

 π is of length $\dim_{\mathbb{Q}_p} F_{\nu} - 1$ and π is semi-simple if $\rho|_{\mathrm{Gal}(\overline{F}_{\nu}/F_{\nu})} \cong \chi_1 \oplus \chi_2$

Remark: Conjecture holds if $\dim_{\mathbb{Q}_p} F_{\nu} = 2$, but do not know if π is the same!

The techniques are much more *global* than for $F_v = \mathbb{Q}_p$ since the local theory of supersingular representations essentially doesn't exist

The techniques are much more *global* than for $F_v = \mathbb{Q}_p$ since the local theory of supersingular representations essentially doesn't exist

Two main *global* ingredients used:

The techniques are much more *global* than for $F_v = \mathbb{Q}_p$ since the local theory of supersingular representations essentially doesn't exist

Two main global ingredients used:

Taylor-Wiles-Kisin patching functors (Emerton-Gee-Savitt)

The techniques are much more *global* than for $F_v = \mathbb{Q}_p$ since the local theory of supersingular representations essentially doesn't exist

Two main global ingredients used:

- Taylor-Wiles-Kisin patching functors (Emerton-Gee-Savitt)
- "self-duality" of π_{ν} (works because it is GL_2), see next slide

The techniques are much more *global* than for $F_v = \mathbb{Q}_p$ since the local theory of supersingular representations essentially doesn't exist

Two main global ingredients used:

- Taylor-Wiles-Kisin patching functors (Emerton-Gee-Savitt)
- ullet "self-duality" of $\pi_{oldsymbol{v}}$ (works because it is GL_2), see next slide

+ lots of long and clever *local* computations both on the $\operatorname{Gal}(\overline{F_{\nu}}/F_{\nu})$ -side (e.g. potentially crystalline deformation rings) and on the $\operatorname{GL}_2(F_{\nu})$ -side

$$\textit{I}_1\stackrel{\mathrm{def}}{=} \left\{g \in \mathrm{GL}_2(\mathcal{O}_{\textit{F}_{\textit{v}}}), \ g \equiv \left(\begin{smallmatrix} 1 & \star \\ 0 & 1 \end{smallmatrix}\right) \ (\mathsf{mod} \ p)\right\} = \mathsf{pro-}\textit{p-}\mathsf{lwahori}$$

$$I_1 \stackrel{\mathrm{def}}{=} \left\{ g \in \mathrm{GL}_2(\mathcal{O}_{F_v}), \ g \equiv \left(\begin{smallmatrix} 1 & * \\ 0 & 1 \end{smallmatrix} \right) \pmod{p} \right\} = \text{pro-p-lwahori}$$
 $\mathfrak{m} \stackrel{\mathrm{def}}{=} \operatorname{maximal} \operatorname{ideal} \operatorname{of} \operatorname{local} \operatorname{ring} \Lambda \stackrel{\mathrm{def}}{=} \overline{\mathbb{F}_p}[[I_1]] \left(\operatorname{lwasawa} \operatorname{algebra} \operatorname{of} I_1 \right)$

$$\begin{split} &\mathit{I}_1 \stackrel{\mathrm{def}}{=} \left\{ g \in \mathrm{GL}_2(\mathcal{O}_{F_v}), \ g \equiv \left(\begin{smallmatrix} 1 & * \\ 0 & 1 \end{smallmatrix} \right) \ (\mathsf{mod} \ p) \right\} = \mathsf{pro-}p\text{-lwahori} \\ &\mathfrak{m} \stackrel{\mathrm{def}}{=} \mathsf{maximal} \ \mathsf{ideal} \ \mathsf{of} \ \mathsf{local} \ \mathsf{ring} \ \Lambda \stackrel{\mathrm{def}}{=} \overline{\mathbb{F}_p}[[\mathit{I}_1]] \ (\mathsf{lwasawa} \ \mathsf{algebra} \ \mathsf{of} \ \mathit{I}_1) \\ &\pi_v^{\vee} \stackrel{\mathrm{def}}{=} \mathrm{Hom}_{\overline{\mathbb{F}_p}}(\pi_v, \overline{\mathbb{F}_p}) \end{split}$$

$$\begin{split} &I_1 \stackrel{\mathrm{def}}{=} \left\{ g \in \mathrm{GL}_2(\mathcal{O}_{F_v}), \ g \equiv \left(\begin{smallmatrix} 1 & * \\ 0 & 1 \end{smallmatrix} \right) \ (\mathsf{mod} \ p) \right\} = \mathsf{pro-}p\text{-lwahori} \\ &\mathfrak{m} \stackrel{\mathrm{def}}{=} \mathsf{maximal} \ \mathsf{ideal} \ \mathsf{of} \ \mathsf{local} \ \mathsf{ring} \ \Lambda \stackrel{\mathrm{def}}{=} \overline{\mathbb{F}_p}[[I_1]] \ (\mathsf{lwasawa} \ \mathsf{algebra} \ \mathsf{of} \ I_1) \\ &\pi_v^{\vee} \stackrel{\mathrm{def}}{=} \mathrm{Hom}_{\overline{\mathbb{F}_p}}(\pi_v, \overline{\mathbb{F}_p}) = \mathsf{finitely} \ \mathsf{generated} \ \Lambda\text{-module} \end{split}$$

$$\begin{split} &I_1 \stackrel{\mathrm{def}}{=} \left\{ g \in \mathrm{GL}_2(\mathcal{O}_{F_v}), \ g \equiv \left(\begin{smallmatrix} 1 & * \\ 0 & 1 \end{smallmatrix} \right) \ (\mathsf{mod} \ p) \right\} = \mathsf{pro-}p\text{-lwahori} \\ &\mathfrak{m} \stackrel{\mathrm{def}}{=} \mathsf{maximal} \ \mathsf{ideal} \ \mathsf{of} \ \mathsf{local} \ \mathsf{ring} \ \Lambda \stackrel{\mathrm{def}}{=} \overline{\mathbb{F}_p}[[I_1]] \ (\mathsf{lwasawa} \ \mathsf{algebra} \ \mathsf{of} \ I_1) \\ &\pi_V^{\vee} \stackrel{\mathrm{def}}{=} \mathrm{Hom}_{\overline{\mathbb{F}_p}}(\pi_V, \overline{\mathbb{F}_p}) = \mathsf{finitely} \ \mathsf{generated} \ \Lambda\text{-module} \end{split}$$

Proposition ("self-duality" of π_{ν})

$$\operatorname{Ext}_{\Lambda}^{3\dim_{\mathbb{Q}_p}(F_{\boldsymbol{v}})}(\pi_{\boldsymbol{v}}^{\vee},\Lambda)\cong\pi_{\boldsymbol{v}}^{\vee}\otimes(\operatorname{twist})$$

$$\begin{split} &I_1 \stackrel{\mathrm{def}}{=} \left\{ g \in \mathrm{GL}_2(\mathcal{O}_{F_v}), \ g \equiv \left(\begin{smallmatrix} 1 & * \\ 0 & 1 \end{smallmatrix} \right) \ (\mathsf{mod} \ p) \right\} = \mathsf{pro-}p\text{-lwahori} \\ &\mathfrak{m} \stackrel{\mathrm{def}}{=} \mathsf{maximal} \ \mathsf{ideal} \ \mathsf{of} \ \mathsf{local} \ \mathsf{ring} \ \Lambda \stackrel{\mathrm{def}}{=} \overline{\mathbb{F}_p}[[I_1]] \ (\mathsf{lwasawa} \ \mathsf{algebra} \ \mathsf{of} \ I_1) \\ &\pi_V^{\vee} \stackrel{\mathrm{def}}{=} \mathrm{Hom}_{\overline{\mathbb{F}_p}}(\pi_V, \overline{\mathbb{F}_p}) = \mathsf{finitely} \ \mathsf{generated} \ \Lambda\text{-module} \end{split}$$

Proposition ("self-duality" of $\pi_{\mathbf{v}}$)

$$\operatorname{Ext}_{\Lambda}^{3\dim_{\mathbb{Q}_p}(F_{\boldsymbol{v}})}(\pi_{\boldsymbol{v}}^{\vee},\Lambda)\cong\pi_{\boldsymbol{v}}^{\vee}\otimes(\operatorname{twist})$$

Theorem (key intermediate result)

The action of $\operatorname{gr}_{\mathfrak{m}}(\Lambda)$ on $\operatorname{gr}_{\mathfrak{m}}(\pi_{\boldsymbol{v}}^{\vee})$ factors through a commutative quotient of $\operatorname{gr}_{\mathfrak{m}}(\Lambda)$

$$\begin{split} &I_1 \stackrel{\mathrm{def}}{=} \left\{ g \in \mathrm{GL}_2(\mathcal{O}_{F_v}), \ g \equiv \left(\begin{smallmatrix} 1 & * \\ 0 & 1 \end{smallmatrix} \right) \ (\mathsf{mod} \ p) \right\} = \mathsf{pro-}p\text{-lwahori} \\ &\mathfrak{m} \stackrel{\mathrm{def}}{=} \mathsf{maximal} \ \mathsf{ideal} \ \mathsf{of} \ \mathsf{local} \ \mathsf{ring} \ \Lambda \stackrel{\mathrm{def}}{=} \overline{\mathbb{F}_p}[[I_1]] \ (\mathsf{lwasawa} \ \mathsf{algebra} \ \mathsf{of} \ I_1) \\ &\pi_V^{\vee} \stackrel{\mathrm{def}}{=} \mathrm{Hom}_{\overline{\mathbb{F}_p}}(\pi_V, \overline{\mathbb{F}_p}) = \mathsf{finitely} \ \mathsf{generated} \ \Lambda\text{-module} \end{split}$$

Proposition ("self-duality" of π_{ν})

$$\operatorname{Ext}_{\Lambda}^{3\dim_{\mathbb{Q}_p}(F_{\boldsymbol{\nu}})}(\pi_{\boldsymbol{\nu}}^{\vee},\Lambda) \cong \pi_{\boldsymbol{\nu}}^{\vee} \otimes (\operatorname{twist})$$

Theorem (key intermediate result)

The action of $\operatorname{gr}_{\mathfrak{m}}(\Lambda)$ on $\operatorname{gr}_{\mathfrak{m}}(\pi_{\nu}^{\vee})$ factors through a commutative quotient of $\operatorname{gr}_{\mathfrak{m}}(\Lambda)$ isomorphic to

$$\overline{\mathbb{F}_p}[y_0, z_0, \dots, y_{f-1}, z_{f-1}]/(y_0 z_0, \dots, y_{f-1} z_{f-1})$$

where
$$\overline{\mathbb{F}_p}[y_i] = \operatorname{gr}(\overline{\mathbb{F}_p}[[\begin{pmatrix} 1 & \mathcal{O}_{F_v} \\ 0 & 1 \end{pmatrix}]])$$
 and $\overline{\mathbb{F}_p}[z_i] = \operatorname{gr}(\overline{\mathbb{F}_p}[[\begin{pmatrix} 1 & 0 \\ p\mathcal{O}_{F_v} & 1 \end{pmatrix}]])$

THANK YOU ©