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1. Some examples

1.1. The shortest path and dynamic programming. Let G = (V, E) be a graph, and w : E → R+

a non negative weight function on G. A path is a sequence of vertices p = (v1, . . . , vn) ∈ Vn such that
two successive vertices vi and vi+1 in p are connected by an edge in the graph, which is denoted [vivi+1].
The length of such a path is then

L(p) =
n−1∑
i=1

w([vivi+1]) .

A shortest path from v ∈ V to w ∈ V is a path from v to w that minimizes the length L.

Applications:

• Road networks: vertices represent road intersections, edges are road segments between those
nodes and the weight can be the length of the road, the time necessary to traverse it or the cost
(think of highways).
• Social networks: people are vertices and edges are for instance friendship relations. Find the

shortest path (i.e. degree of separation) between two persons.
• Geodesic distance when the metric is given as an image: fast marching algorithm (see the webpage

of Gabriel Peyré on Dijkstra and Fast Marching Algorithms in his Numerical Tours).

The (single-source) shortest path problem consists in finding the shortest paths connecting a given vertex
to all other vertices. Loosely speaking, dynamic programming consists in enumerating and testing cleverly
the possibilities. In such a problem, the key lies in the following observation: if p is a shortest path,
then any subpath of p is also a shortest path, so that it is enough to consider path that are extensions of
shortest paths. In other words:

(1) Start from the source vertex and give to all neighbouring vertices the weight of the edge connecting
them to the source.

(2) Visit each of these neighbouring vertices and at each of them do the following: compute its
neighbouring points and attribute to each of them the weight of the connecting edge plus the
value at the vertex.

(3) Iterate the process.

This is a rough description of Dijkstra algorithm.

1.2. Dido’s problem and the calculus of variations.

Dido’s problem. How to enclose a surface of maximal area inside a straight line (the North African
coastline) and a rope (made by slicing the hide of a bull into very small strips and tying them together)?
Mathematically, the straight line is a segment of extremities a and b to determine, the rope of fixed
length L > 0 can be described as the graph of a function u : [a, b] → R+ (this actually excludes some
configurations, which ones...?). If moreover u is C1 in (a, b), then the length constraint rewrite

(1) L =

∫ b

a

√
1 + u′(x)2dx .

And the area to maximize is then
∫ b
a u(x)dx. The answer is that Dido should enclose a half circle (a and

b being adapted to the length L), but try to prove it...
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The catenary’s problem. A cable of fixed length and uniform mass density is suspended between two
electric pylons, what is the shape of the chain, what must be the minimal height of pylons so as that the
chain does not touch the ground? If we model the problem as previously, it amounts to minimize the
potential energy of the chain

E(u) =

∫ b

a
u(x)

√
1 + u′(x)2dx

under the length constraint (1). The answer is not a parabola as Galileo claimed, but a catenary

u(x) = α cosh (x/α) , α > 0.

An image processing problem. Rudin-Osher-Fatemi denoising model: Given a noisy image u0 : Ω → R
(Ω ⊂ R2 being a bounded open set), find u minimizing∫

Ω
|∇u(x)|dx+ λ‖u− u0‖2L2 .

The first term is a regularization term: it penalizes the discontinuity of u, and the second term is the
data attachment term: it ensures that u is close enough to the initial image u0.

1.3. The optimal assignment problem and linear programming. Three people x1, x2, x3 are re-
spectively in Paris, Toulouse and Marseille and they need to collect products in Lyon (y1), Toulouse (y2)
and Grenoble (y3), they want to minimize to total cost of the trips knowing that

From \ To Lyon Strasbourg Grenoble
Paris 50 80 70

Toulouse 80 120 70
Marseille 40 80 50

Who should go where?
Let’s rewrite the problem, if cij denotes the cost if xi goes to the town yj , then the tabular above is the
matrix (cij)ij . Let A = (cij)ij be defined as aij = 1 if xi goes to yj and 0 otherwise. We thus want to

find A minimizing
3∑

i,j=1

aijcij

under the constraints

aij ∈ {0, 1}∑
j aij = 1 person i goes to exactly one town∑
i aij = 1 town j is reached by exactly one person

It is not obvious but constraint aij ∈ {0, 1} can be replaced by

aij ∈ [0, 1] that is aij ≤ 1 and aij ≥ 0 .

without changing the minimizers and it amounts to minimize a linear cost under linear constraints.
Of course, in this simple case, it is possible to test all possibilities (3!), but in general, the number of
configurations to test would be n! (for n people going to n cities), which is not numerically possible while
the Hungarian algorithm allows to solve it in O(n3).

1.4. Study of an optimization problem.

• Existence of minimizers?
• Characterization of minimizers?
• Numerical computation of a minimizer?

2. Existence

Throughout this course, we shall set

• a Banach space (V, ‖ · ‖),
• a non-empty subset A ⊂ V ,
• a cost function J : A→ R.
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The optimization problem we consider is: find x∗ ∈ A such that

J(x∗) = min
x∈A

J(x) .

The results of existence depend strongly on the fact that V is finite or infinite dimensional. The ex-
planation being quite simple, existence is provided thanks to compactness and characterizing compact
sets is quite different in finite or infinite dimension. Uniqueness results hold essentially under convexity
assumptions.
We begin with recalling a few basic definitions.

2.1. Some definitions and notations.

Definition 1 (Global, local minimizer). An element x∗ ∈ A is a global minimizer of J on A iff

∀x ∈ A, J(x∗) ≤ J(x) .

An element x∗ ∈ A is a local minimizer of J on A iff

∃δ > 0, ∀x ∈ A, ‖x− x∗‖ ≤ δ ⇒ J(x∗) ≤ J(x) .

Definition 2 (Minimizing sequences). A minimizing sequence of J in A is a sequence (xn)n ⊂ A such
that J(xn) −−−→

n→∞
infA J .

2.2. Lower semi continuity. We give definitions in the framework of topological spaces because it will
be important to consider the weak topology on V , rather than the one induced by the norm, in order to
increase the amount of compact sets.

Definition 3 (Lower semi continuity l.s.c., see Figure 1(a)). Let X be a topological space and f : X →
R∪±∞, then f is lower semi continuous (l.s.c.) at a ∈ X iff for every ε > 0 there exists a neighbourhood
U of a such that f(x) ≥ f(a)− ε for all x ∈ U when f(a) < +∞, and f(x) tends to +∞ as x tends to a
when f(a) = +∞.

f(a)
f(a) - ϵ

a
U

(a)

λ

(b)

λ

(c)

Figure 1

In orther words, comparing with the definition of continuity at a, the difference is that lower semi
continuity only requires one inequality f(x) ≥ f(a) − ε while continuity requires both f(x) ≥ f(a) − ε
and f(x) ≤ f(a) + ε. Lower semi continuity can be seen as continuity but only when coming to a from
below. Lower semi continuity can be characterized in terms of the epigraph.

Definition 4 (Epigraph). Let X be a topological space and f : X → R ∪ {±∞}, then the epigraph of f
is the set of points lying above its graph:

epi(f) = {(x, λ) ∈ V × R ∪ {±∞} |λ ≥ f(x)} .

Proposition 1. Let f : X → R ∪ {±∞}, then f is lower semi continuous iff epi(f) is closed (in
X × R ∪ {±∞} endowed with the product topology).

In Figure 1(b), epi(f) is closed and f is lower semi continuous while in Figure 1(c), epi(f) is not closed
and f is not lower semi continuous.

Definition 5 (Sequential lower semi continuity). Let X be a topological space and f : X → R ∪ {±∞},
then f is lower semi continuous (l.s.c.) at a ∈ X iff for all sequence (xn)n tending to a in X,

lim inf
n→∞

f(xn) ≥ f(a) .
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Remark 1 (Continuity and sequential continuity). Recall that, while (semi) continuity always implies
sequential (semi) continuity, the converse implication is not true in general. However, the equivalence is
true in metric spaces or more generally in first-countable topological spaces (each point has a countable
neighbourhood basis). Moreover, in all the results of existence of minimizers stated in these notes, only
the sequential lower semi continuity is needed.

2.3. Direct method in the calculus of variations to prove existence. Let τ be a topology on X.

(1) Take a minimizing sequence (xn)n ⊂ A and show that it admits a subsequence (xnk)k converging
for τ to some x∗ ∈ A. This is a compactness issue.

(2) Show that J is sequentially lower semi continuous with respect to the topology τ on X.
(3) In this case,

inf{J(x) |x ∈ A} = lim
n→∞

J(xn) = lim
k→∞

J(xnk) ≥ J(x∗) .

Theorem 2 (Existence). Assume that J : A → R ∪ {+∞} is lower semi continuous and that A is a
non empty compact set, assume moreover that J is not constantly equal to +∞ on A, then there exists
at least one minimizer of J in A.

Proof. Let (xn)n ⊂ A be a minimizing sequence for J i.e. limn J(xn) = infA J . By compactness of A,
there exists a subsequence (xnk)k converging to some x∗ ∈ A. By l.s.c. of J , we have

J(x∗) ≤ lim inf
k

J(xnk) = lim
n
J(xn) = inf

A
J.

�

Remark 2. Proof of Theorem 2 is valid for any topology (for which J is l.s.c. and A is compact).

In finite dimension, compact sets are easy to characterize, they are closed bounded sets, which is not true
in infinite dimension.

2.4. Existence in finite dimension.

Theorem 3 (Existence in finite dimension). Let V be a normed vector space of finite dimension. Assume
that J : A → R is l.s.c. and coercive, and assume that A is non empty and closed, then there exists at
least one minimizer of J in A.

Definition 6 (Coercivity). Let V be a normed vector space. A function f : A ⊂ A→ R is coercive (or
infinite at infinity) iff

lim
‖x‖→+∞
x∈A

f(x) = +∞ .

2.5. The case of a quadratic functional. This is a very important particular case. Let V,< ·, · > be
a Hilbert space and J : V → R be defined as

(2) J(v) =
1

2
a(x, x)− b(x) ,

where a : V × V → R is a symmetric continuous bilinear form and b : V → R is a continuous linear
form. When J has this particular form, the existence of a minimizer is easier to prove, it follows from
the projection theorem and Riesz representation theorem.

Theorem 4. Let J : V → R be a quadratic functional defined on the Hilbert space V as in (2). Assume
that the bilinear form a is elliptic i.e. there exists α > 0 such that for all x ∈ V ,

a(x, x) ≥ α‖x‖2 .
Assume that A is a convex closed subset of V , then there exists a unique solution x∗ to the minimization
problem

J(x∗) = minx∈AJ(x) .

Moreover, x∗ is the solution to the minimization problem above iff

(3) a(x∗, x− x∗) ≥ b(x− x∗) for all x ∈ A .

Proof. • As a is elliptic, it defines another scalar product on V and by Riesz theorem, there exists
a unique v ∈ V such that for all x ∈ V ,

b(x) = a(v, x) .
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• Therefore

J(x) =
1

2
a(x− v, x− v)− 1

2
a(v, v) ,

v ∈ V is fixed thus it is equivalent to minimize a(x−v, x−v) = ‖x−v‖2a for x ∈ A, if ‖·‖a denotes
the norm associated with the scalar product a. This exactly amounts to look for the projection
of v onto A.
• As A is a closed convex set, the projection theorem ensures that there exists a unique solution
x∗ ∈ A characterized by

a(v − x∗, x− x∗) ≤ 0 .

�

Remark 3. In the case A = V , characterization (3) simply rewrites: for all x ∈ V ,

a(x∗, x) = b(x) .

Example 1 (Least square approximation). Let A ∈ Mn,p and B ∈ Mn,1 with n > p. The linear system
Ax = B is then generally overdetermined and we consider the solution in the sense of least square
approximation, that is x∗ ∈ Rp minimizing

J(x) = ‖Ax−B‖2 =
1

2

〈
ATAx, x

〉
−
〈
ATB, x

〉
+

1

2
‖B‖2 .

Characterization (3) then give the normal equation:

ATAx∗ = ATB ,

and the matrix ATA is positive definite if A has rank p.
In the case of a polynomial fitting (of order 3 for instance) of n points {(xi, yi)}i=1...n ⊂ R2, for all
i = 1 . . . n, yi = α+ βxi + γx2

i + δx3
i and

A =

 1 x1 (x1)2 (x1)3

...
...

1 xn (xn)2 (xn)3

 and B =

 y1
...
yn

 and x =


α
β
γ
δ


Example 2 (Variational formulation of elliptic problem). Let Ω ⊂ Rn be a smooth bounded1 open set
and f ∈ L2(Ω), let J : H1

0(Ω)→ R be defined as

J(u) =
1

2

∫
Ω
|∇u|2 −

∫
Ω
fu .

Then there exists a unique u minimizing J in H1
0 (Ω) and moreover u is solution of the variational

formulation in H1
0(Ω) of the Laplacian equation

−∆u = f in Ω .

Indeed, let a and b be the applications defined as

a : H1
0(Ω)×H1

0(Ω) → R and b : H1
0(Ω) → R.

(u, v) 7→
∫

Ω 〈∇u,∇v〉 u 7→
∫

Ω fu

• The linear form b is continuous: for every u ∈ H1
0(Ω), |b(u)| ≤ ‖f‖L2‖u‖L2 ≤ ‖f‖L2‖u‖H1

0
.

• The symmetric bilinear form a is continuous: for every u, v ∈ H1
0(Ω),

|a(u, v)| ≤ ‖∇u‖L2‖∇v‖L2 ≤ ‖u‖H1
0
‖v‖H1

0
.

• a is elliptic: thanks to Poincaré’s inequality, there exists a constant C, only depending on Ω and
such that ‖u‖H1

0
≤ C‖∇u‖L2 . Therefore, for u ∈ H1

0(Ω),

a(u, u) ≥ 1

2C2
‖u‖2H1

0
.

It remains to apply Theorem 4 to obtain a unique minimizer u ∈ H1
0(Ω) satisfying for all v ∈ H1

0(Ω),∫
Ω
〈∇u,∇v〉 =

∫
Ω
fv.

1Regular enough in order to apply Poincaré’s inequality, Lipschitz for instance.
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As we already mentioned, the flaw in infinite dimension, is that in general, being compact is stronger
than being closed and bounded. When the topology comes from a norm, Riesz Theorem (the unit ball of
a Banach space is compact iff it has finite dimension) even says that it is always false. Yet, there exists
a well-known topology which makes the closed unit ball compact: the weak–∗ topology.

2.6. Weak topology and compact sets. Loosely speaking, the idea is the following, let (X, τ) be a
topological space:

• the less open sets in the topology τ , the more there are compact sets w.r.t. τ ,
• the more open sets in the topology τ , the more there are continuous functions f : (X, τ)→ R.

Hence, while changing the topology to try to make closed bounded sets compact, we may lose the
continuity or lower semi continuity of J .

Definition 7 (Weak topology). The weak topology on V is the smallest (=least fine= weakest) topology
(i.e. containing the least possible open sets) such that all L ∈ V ′ are continuous.

In other words, the weak topology is the topology generated by {L−1(U) |L ∈ V ′ and U ⊂ R open}2. In
finite dimension, the weak topology and the strong topology (induced by the norm ‖ · ‖) coincide. In
infinite dimension, the weak topology is strictly smaller than the strong topology.

Proposition 5 (Weak convergent sequences). Let V be a Banach space and (xn)n∈N ⊂ V . Then,

• the sequence (xn)n weakly converges to x iff for every ζ ∈ V ′, ζ(xn) −−−→
n→∞

ζ(x),

• if (xn)n converges in norm then it weakly converges to the same limit.

Pay attention that when V has infinite dimension, the weak topology behaves very differently from the
norm topology. While the following implication are correct, the converse are completly false in general.
If a set is weakly open (resp. weakly closed) then it is open (resp. closed) for the norm topology.
If f : V → R is weakly lower semicontinuous i.e. with respect to the weak topology on V , then it is lower
semi continuous with respect to the norm topology on V .
For instance, it is possible to show that any weak neighbourhood of 0 contains a vector sub-space of
infinite dimension.

Exercise 1. The unit open ball is not weakly open while the unit sphere is not weakly closed.

Our purpose is not to study weak topology, therefore we only state the results which will use. As closed
sets are complementary sets of open sets, there are also sets which are (strongly) closed but not weakly
closed, however, there is a case where both coincide: convex sets. This is a consequence of Hahn-Banach
Theorem.

Proposition 6. Let C ⊂ V be a convex set, then C is strongly closed iff C is weakly closed.

And let us finally state the result we were interested in, that is weak compactness of convex closed
bounded sets.

Definition 8 (Reflexive Banach space). A reflexive Banach space is a Banach space V isomorphic3 to
its bi-dual V ′′ via the canonical injection,

J : V → V ′′

x 7→
(

Φx : V ′ → R
L 7→ L(x)

)
Remark 4. It is easy to check that the linear injection is continuous and that ‖J(x)‖V ′′ ≤ ‖x‖. Indeed,

‖J(x)‖V ′′ = sup
‖ζ‖V ′=1

|Φx(ζ)| = sup
‖ζ‖V ′=1

|ζ(x)| ≤ ‖ζ‖V ′‖x‖ ≤ ‖x‖ .

Proposition 7. Let V be a reflexive Banach space, then the canonical injection J is an isometry: for
all x ∈ V ,

‖J(x)‖V ′′ = ‖x‖ .

2Any intersection of topologies is a topology, thus the topology generated by a set S is simply the intersection of all
topologies containing S.

3The vector space isomorphism automatically implies that J is bi–continuous and even that J is an isometry.
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Proof. It is a consequence of Hahn–Banach theorem. Fix x ∈ V and consider the linear form L defined
on Rx ⊂ V by L(y) = t where y = t x

‖x‖ ∈ Rx. The linear form L is continuous and ‖L‖(Rx)′ = 1. Indeed,

|L(y)| = |t| = ‖y‖. By Hahn–Banach theorem, there exists a continuous linear form on V , ζ0 ∈ V ′, such
that ‖ζ0‖V ′ = ‖L‖(Rx)′ = 1 and ζ0 = L in Rx. In particular, ζ0(x) = L(x) = ‖x‖. We can thus conclude
that

‖J(x)‖V ′′ = sup
‖ζ‖V ′=1

|Φx(ζ)| ≥ |Φx(ζ0)| = |ζ0(x)| = ‖x‖ .

�

Proposition 8. Let V be a reflexive Banach space and (xn)n ⊂ V a sequence weakly converging to x.
Then,

• the norm is weakly l.s.c.: ‖x‖ ≤ lim infn∞ ‖xn‖,

• the sequence is bounded: supn ‖xn‖ < +∞.

Proof. • It is a general property of weak topology in a reflexive Banach space (V, ‖ · ‖), the Banach
norm is l.s.c. with respect to the associated weak topology. It is a consequence of the (strong)
continuity and convexity of the norm.
• It is a consequence of Banach–Steihauss theorem and the fact that J is an isometry. Indeed,

let us consider the evaluation maps Φxn = J(xn) and Φx = J(x). As xn weakly converges
to x, for any ζ ∈ V ′, ζ(xn) −−−→

n→∞
ζ(x) that is, Φxn(ζ) −−−→

n→∞
Φx(ζ). Hence, the sequence of

continuous linear forms (Φxn) pointwise converges to Φx. Banach–Steihauss theorem implies
that supn ‖Φxn‖V ′′ < +∞ and ‖Φx‖V ′′ ≤ lim infn∞ ‖Φxn‖V ′′ . We conclude with the fact that
‖Φxn‖V ′′ = ‖xn‖ and ‖Φx‖V ′′ = ‖x‖ since J is an isometry.

�

Theorem 9. Let V be a reflexive Banach space. Then convex bounded closed sets are weakly compact.

Remark 5 (Weak–∗ topology). It is also possible to define the weak topology on V ′, and moreover, it
is possible to weaken even more the weak topology, reducing the set of continuous applications: instead
of considering the topology making all elements of (V ′)′ continuous, we define the topology making
continuous all the elements of {

V ′ → R
L 7→ L(x)

: x ∈ V
}
⊂ (V ′)′ .

This is the weak–∗ topology on V ′, and the weak–∗ topology is smaller than the weak topology in V ′.
And for this topology, the well-known Banach-Alaoglu Theorem states that the closed unit ball of V ′ is
compact.

2.7. An example in infinite dimension. Let Ω ⊂ Rn be a regular bounded open set, f ∈ L2(Ω) and
define E on H1(Ω) by

E(u) =

∫
Ω
|∇u|2 +

∫
Ω

(u2 − 1)2 +

∫
Ω
|u− f |2.

We consider the problem of minimizing E in H1(Ω).

• Coercivity. As we have

E(u) ≥ ‖∇u‖2L2 +

∫
Ω

(u2 − 1)2 ,

it is enough to bound from below (u2 − 1)2 by some term of order u2. For instance, (u2 − 1)2 =
(u2 − 2)2 + 2u2 − 3 ≥ 2u2 − 3. Therefore,∫

Ω
(u2 − 1)2 ≥ 2‖u‖2L2 − 3|Ω| ,

which leads to E(u) ≥ 2‖u‖2H1 − 3|Ω| → +∞ when ‖u‖H1 → +∞.
• Compactness. Notice that E is proper (i.e. E is not constantly equal to +∞, actually, in our case,

E(u) < +∞ for all u ∈ H1) and let un be a minimizing sequence, that is E(un)
n→∞−−−→ infu∈H1 E(u).

From the coercivity of E , we know that (un)n is bounded in H1 and thus weakly compact in H1.
7



• Lower semi continuity. Let (un)n be a sequence weakly converging to u in H1. We want to
prove that E(u) ≤ lim infn∞ E(un). Let us rewrite E as

E(u) = ‖u‖2H1 − 2

∫
Ω
fu+ ‖f‖L2 +

∫
Ω

(u2 − 1)2.

As the norm is l.s.c with respect to the weak convergence 8 and the application u 7→
∫

Ω fu is linear

continuous in H1 and thus H1–weakly continuous (by definition of weak topology), it remains to
prove that ∫

Ω
(u2 − 1)2 ≤ lim inf

n∞

∫
Ω

((un)2 − 1)2

Up to extraction, we can assume that

lim inf
n∞

∫
Ω

((un)2 − 1)2 = lim
n∞

∫
Ω

((un)2 − 1)2.

As (un)n is H1–weakly converging, it is bounded in H1 (see Proposition 8, and since the canonical
injection of H1(Ω) into L2(Ω) is compact4, there is a subsequence (unk)k which converges strongly
in L2 to u.5 We can thus extract again a subsequence (unkl )l almost anywhere converging to u

and by Fatou’s Lemma∫
Ω

(u2 − 1)2 ≤ lim inf
l∞

∫
Ω

(u2
nkl
− 1)2 = lim

n∞

∫
Ω

((un)2 − 1)2.

And a sum of two l.s.c. functions is l.s.c. hence E is H1–weakly l.s.c.
• Conclusion. We conclude with the direct method of calculus of variations. Let (un)n be a

minimizing sequence of E in H1(Ω), as we showed its compactness, let (unk)k be a subsequence
converging to u∗ ∈ H1(Ω). As J is H1(Ω)–weakly lower semi continuous, we have

inf
H1(Ω)

J = lim
n→∞

J(un) = lim inf
k→∞

J(unk) ≥ J(u∗) .

And u∗ is a minimizer of J in H1(Ω).

Exercise 2. Let f : R→ R be continuous and consider

L : L2(]0, 1[) → R
u 7→

∫ 1
0 f(u(x)) dx .

Show that L is weakly l.s.c. implies f convex.

However, in the previous example we, showed that u 7→
∫

Ω(u2 − 1)2 was weakly lower semi continuous

while f(t) = (t2 − 1)2 is not convex in R. Isn’t there a contradiction ? Fortunately no, the subtlety lies
in the fact that there are as many weak topologies as there are norms. And E is not L2–weakly lower
semi continuous but H1–weakly lower semi continuous, which is weaker (and actually, we used strong
L2–convergence through compact injection of H1 into L2.

2.8. Existence in infinite dimension.

Exercise 3. Check that J : A→ R is convex ⇔ epi(J) is convex.

Theorem 10. Let V be a reflexive Banach space and let A ⊂ V be a closed convex (non empty) set, and
assume that J : A→ R is convex, lower semicontinuous and coercive, then there exists a minimizer of J
in A.

Proof. • J convex⇒ epi(J) convex therefore: J is lower semicontinuous iff epi(J) is strongly closed
iff epi(J) is weakly closed iff J is lower semicontinuous for the weak topology.
• J is coercive ⇒ J(x) ≥M for all x such that ‖x‖ ≥ R.
• Let B be the closed ball of radius R then, A∩B is a closed convex set ⇒ A∩B is a weak closed

convex set ⇒ A ∩B is weakly compact.

4Pay attention to the assumptions on Ω, the injection of H1(Rn) into L2(Rn) is not compact.
5Assume that unk −→

L2
v, as both strong convergence in L2 and weak convergence in H1 imply distributional convergence,

u = v by uniqueness of the distributional limit.
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• J is weakly lower semicontinuous on a weakly compact set⇒ there exists x∗ ∈ A∩B a minimizer
of J on A ∩B and for all x ∈ A \B, J(x) ≥M ≥ J(x∗).

�

Finally, let us give an example without the convexity assumption and where the existence of a minimizer
fails.

Exercise 4. We consider the Hilbert (thus reflexive) space

l2(R) =

{
(xn)n∈N :

∞∑
n=0

x2
n <∞

}
,

provided with the scalar product (xn)n · (yn)n =
∑∞

n=0 xnyn, and we define

f : l2(R) → R
(xn)n 7→

(
‖x‖2 − 1

)2
+
∑∞

n=0
x2n
n+1 .

Check that f is coercive and lower semicontinuous and check that however, f does not admit minimizer
on l2(R).

3. Optimality conditions

3.1. A bit of calculus... The aim of this section is only to freshen up fundamental definitions and
properties in calculus, which we will use in the sequel.

3.1.1. Differentiability.

Definition 9. Let (V, ‖ · ‖V ), (W, ‖ · ‖W ) be two normed vector spaces and f : Ω ⊂ V → W be defined
in an open set Ω. Let x0 ∈ Ω, f is differentiable at x0 if and only if there exists a continuous linear
application L ∈ L(V,W ) such that

f(x0 + h) =
h→0

f(x0) + L(h) + o(‖h‖V ) .

The linear application L is denoted by Df(x0) ∈ L(V,W ) and is called the differential of f at x0.

Remark 6. In infinite dimension, the differentiability depends on the norms on E and F . In finite
dimension, as all the norms are equivalent, the differentiability does not depend on the choice of norms.

The application f is said to be C1 if f is differentiable at every point of Ω and the application

Df : V → (L(V,W ), ‖ · ‖op)
x0 7→ Df(x0)

is continuous.

Definition 10 (Directional derivative). Let f : Ω ⊂ V →W be defined in an open set Ω and let x0 ∈ Ω,
h ∈ V . When it exists, the limit

lim
t→0

f(x0 + th)− f(x0)

t

is called the directional derivative of f along h and sometimes denoted ∂hf(x0).

Remark 7. If f is differentiable at x0 then f admits directional derivative in any direction h ∈ V at x0

and

Df(x0)(h) = lim
t→0

f(x0 + th)− f(x0)

t
;

it is the usual way to compute the differential. However, the converse is not true, f can have directional
derivative in all directions at x0 and not being differentiable at x0.

When f is real-valued, W = R, which is the case of the cost function J , and V is a Hilbert, the differential
is a continuous linear form and thus can be represented by an element of V itself i.e. there exists an
element of V , usually denoted by ∇f(x0) such that for all h ∈ V ,

Df(x0)(h) = 〈∇f(x0), h〉 .
9



It is called the gradient of f . If V = Rn is endowed with the usual Euclidean scalar product and
(e1, . . . , en) is the canonical basis,

∇f(x0) =


∂1f(x0)
∂2f(x0)

...
∂nf(x0)


where ∂if(x0) = Df(x0)(ei) is the directional derivative in the direction ei, that is the ith partial derivative
of f at x0.

Exercise 5. Show that f : (R∗+)3 → R defined by f(x1, x2, x3) = x1 lnx1 + x2 lnx2 + x3 lnx3 is twice
differentiable and compute its differential and its hessian.

Correction 1. f is C∞ by composition and for x = (x1, x2, x3) ∈ (R∗+)3 and h = (h1, h2, h3) ∈ R3,

Df(x)(h) =< ∇f(x), h >= ∂1f(x)h1 + ∂2f(x)h2 + ∂3f(x)h3(4)

= (1 + lnx1)h1 + (1 + lnx2)h2 + (1 + lnx3)h3(5)

and

∇2f(x) =

 1/x1 0 0
0 1/x2 0
0 0 1/x3

 .

Exercise 6 (An example in infinite dimension). Let E0 = {u ∈ C1([a, b],R)u(a) = u(b) = 0} be the vector
space normed with ‖u‖C1 := sup[a,b] |u|+ |u′|. Let L : R3 → R be C1 and define for u ∈ E0,

J(u) =

∫ b

a
L(x, u(x), u′(x)) dx .

Show that J is differentiable in E0 and compute its differential.

Correction 2. Let u, h ∈ E0,

J(u+ h)− J(u) =

∫ b

a

[
L(x, u(x) + h(x), u′(x) + h′(x))− L(x, u(x) + h(x), u′(x) + h′(x))

]
=

∫ b

a
< ∇L(x, u(x), u′(x)), (0, h(x), h′(x)) > +o((0, h(x), h′(x))) dx

= lu(h) + ru(h) ,

where for a fixed u ∈ E0,

lu : E0 → R

h 7→
∫ b

a
< ∇L(x, u(x), u′(x)), (0, h(x), h′(x)) > dx

=

∫ b

a
∂2L(x, u(x), u′(x))h(x) + ∂3L(x, u(x), u′(x))h′(x) dx .

and ru(h) = J(u+ h)− J(u)− lu(h). The application lu is

• linear,
• continuous since, applying triangular inequality and Cauchy Schwartz, we have for all h ∈ E0,

|lu(h)| ≤ (‖h‖C0 + ‖h′‖C0) sup
x∈[a,b]

∣∣∇L(x, u(x), u′(x))
∣∣ ≤ cte ‖h‖C1 .

It remains to prove that ru(h) = o(‖h‖C1). First step, let us prove that for all K ⊂ R3 compact set, for
all ε > 0,

∃η > 0, ∀X ∈ K, ∀H ∈ R3, ‖H‖ < η ⇒ |L(X +H)− L(X)− < ∇L(X), H > | ≤ ε‖H‖ .
Let K ′ = {X + H ∈ R3 : X ∈ K, ‖H‖ ≤ 1} compact. If L was C2, we could directly apply Taylor-
Lagrange expansion at order 2 in [X,X +H] and use the boundedness of ∇2L in K ′. Here, as L is only
assumed to be C1, we use the uniform continuity of ∇L in K ′. Let η > 0 be such that ∀X,Y ∈ K ′,

‖X − Y ‖ < η ⇒ ‖∇L(X)−∇L(Y )‖ < ε .
10



For X ∈ K and H ∈ R3, ‖H‖ < η, apply mean value theorem: ∃θ ∈]0, 1[,

L(X +H)− L(X) = 〈∇L(X + θH), H〉 .

As X, X + θH ∈ K ′ and ‖X + θH −X‖ = θ‖H‖ < η, we have

|L(X +H)− L(X)− < ∇L(X), H > | = | < ∇L(X + θH), H > − < ∇L(X), H > |
≤ ‖∇L(X + θH)−∇L(X)‖‖H‖ ≤ ε‖H‖

Second step, apply first step for all x ∈ [a, b] with X(x) = (x, u(x), u′(x)) and H(x) = (0, h(x), h′(x)).
As u and u′ are continuous in [a, b], there exists R > 0 such that for all x ∈ [a, b], X(x) is in the closed
ball K = BR of center 0 and radius R. Moreover, for all x ∈ [a, b],

‖H(x)‖ =
√
|h(x)|2 + |h′(x)|2 ≤ |h(x)|+ |h′(x)| ≤ ‖h‖C1 .

Let ε > 0 and η > 0 given by first step. For h ∈ E0 such that ‖h‖C1 , ‖H‖ < η and consequently

|ru(h)| =
∣∣∣∣∫ b

a
L(x, (u+ h)(x), (u′h′)(x))− L(x, u(x), u′(x))− < ∇L(x, u(x), u′(x), (0, h(x), h′(x)) > dx

∣∣∣∣
≤
∫ b

a
|L(X(x) +H(x))− L(X(x))− < ∇L(X(x)), H(x) > | dx

≤
∫ b

a
ε‖H(x)‖

≤ (b− a)ε‖h‖C1 .

In other words, ru(h) = o(‖h‖C1) and DJ(u) = lu.

3.1.2. Taylor formulas. We will restrict ourselves to order 2 since it is all we will use thereafter. An
application f : Ω ⊂ V →W is twice differentiable at x0 means that f is differentiable in a neighbourhood
U(x0) of x0 and the application

U(x0) → (L(V,W ), ‖ · ‖op)
x 7→ Df(x)

is differentiable at x0. The resulting differential

D(Df)(x0) : V → L(V,W )
h 7→ (D(Df)(x0))(h) : V → W

k 7→ ((D(Df)(x0))(h))(k)

is identified with the continuous bilinear application

D2f(x0) : V × V → W
(h, k) 7→ (D(Df)(x0)(h))(k)

We now recall Taylor’s formulas (order 1 and 2).

Theorem 11 (Taylor’s formulas). Let f : Ω ⊂ V → W be defined in an open space Ω of a vector space
V and x0 ∈ Ω. If f is differentiable at x0, then

f(x0 + h) = f(x0) +Df(x0)(h) + o(‖h‖) .

If f is twice differentiable at x0, then

f(x0 + h) = f(x0) +Df(x0)(h) +
1

2
D2f(x0)(h, h) + o(‖h‖2) .

If f is real valued i.e. W = R and twice differentiable in a neighbourhood U(x0) of x0, let h ∈ V such
that [x0, x0 + h] ⊂ U(x0), then there exists θ ∈]0, 1[ such that

f(x0 + h) = f(x0) +Df(x0)(h) +
1

2
D2f(x0 + θh)(h, h) .

Remark 8. Taylor’s formula of order 1 is just the differentiability at x0, while Taylor’s formula of order
2 is not equivalent to the twice differentiability.
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If V = Rn and W = R, these formulas rewrite in terms of gradient and hessian as

f(x0 + h) = f(x0) + 〈∇f(x0), h〉+ o(‖h‖) ,
and

f(x0 + h) = f(x0) + 〈∇f(x0), h〉+
1

2

〈
∇2f(x0)h, h

〉
+ o(‖h‖2) .

where ∇2f(x0) is the hessian of f at x0, that is the symmetric matrix defined as

∇2f(x0) = (∂ijf(x0))ij with ∂ijf(x0) = ∂i(∂jf)(x0) = D2f(x0)(ei, ej) .

3.2. Necessary conditions. In this section and the following one, the minimization problem is set in
an open set A.

Proposition 12. Let J : A ⊂ V → R and x∗ ∈ A. Assume that A is open and that J is differentiable
at x∗. If x∗ is a local minimizer of J in A then,

• First order condition: Euler’s equation

DJ(x∗) = 0 .

• Second order conditions: If J is twice differentiable at x∗ then, for all h ∈ V ,

(6) D2J(x∗)(h, h) ≥ 0 .

Remark 9. If V is finite dimensional, (6) exactly means that the Hessian ∇2J(x∗) is semi positive definite.

Proof. This result relies on the classical 1–dimensional results applied in any admissible direction around
x∗. As we assume that A is open, every direction is admissible. Indeed, let h ∈ V and define

φ : [−ε, ε] → R
t 7→ J(x∗ + th) .

The application φ is differentiable at 0 and

φ′(0) = DJ(x∗)(h) .

Moreover, 0 is a local minimizer of φ, thus φ′(0) = 0 = DJ(x∗)(h). And consequently, as every direction
h is admissible, DJ(x∗) = 0. If now J is twice differentiable at x∗, then φ is twice differentiable at 0 and

φ′′(0) = D2J(x∗)(h, h) .

As x∗ is a relative minimum of J , then 0 is a relative minimum of φ and φ′′(0) ≥ 0. �

When the set A is not open, we still have the following result, giving a necessary condition in directions
in which it is possible to make small variations from x∗.

Proposition 13. Let U be an open neighbourhood of A in V , J : U → R and x∗ ∈ A. Assume that J is
differentiable at x∗. If x∗ is a local minimizer of J in A then,

DJ(x∗)(h) ≥ 0

for any h ∈ V such that [x∗, x∗ + h] ⊂ A.

Exercise 7. Prove the previous proposition.

Correction 3. As J is differentiable at x∗, for h ∈ V such that [x∗, x∗ + h] ⊂ A and for t > 0 small
enough, J(x∗ + th) ≥ J(x∗) and thus

DJ(x∗)(h) = lim
t→0

J(x∗ + th)− J(x∗)

t
≥ 0 .

When the set A is convex, Proposition 13 is known as Euler inequality and rewrites:

Proposition 14 (Euler inequality). Let U be an open neighbourhood of A in V , J : U → R and x∗ ∈ A.
Assume that A is convex and that J is differentiable at x∗. If x∗ is a local minimizer of J in A then,
for all x ∈ A,

DJ(x∗)(x− x∗) ≥ 0 .

Proof. As A is convex, for all x ∈ A, [x∗, x] ⊂ A and it is possible to apply Proposition 13 to the direction
x− x∗ ∈ V . �
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3.3. Sufficient conditions. We now look for conditions insuring that some candidate x∗ is a relative
minimum of J . We thus assume that x∗ satisfies the necessary first order condition DJ(x∗) = 0 (Euler
equation). Such a point is called a critical point. It is well-known that this is not a sufficient condition
to be a relative minimum (0 is a critical point of t 7→ t3). It is also well-known that the second order
necessary condition (6) is not sufficient as well (0 satisfies this condition for x 7→ x5).

Theorem 15. Let J : A ⊂ V → R and x∗ ∈ A. Assume that A is open and that x∗ is a critical point
of J , that is J is differentiable at x∗ and DJ(x∗) = 0.

• If J is twice differentiable at x∗ and if there exists α > 0 such that for all h ∈ V ,

(7) D2J(x∗)(h, h) ≥ α‖h‖2 ,
then x∗ is a strict relative minimum for J .
• If J is twice differentiable in a neighbouring ball B centred at x∗ and satisfies,

D2J(x)(h, h) ≥ 0, ∀x ∈ B and ∀h ∈ V ,

then x∗ is a relative minimum for J .

Remark 10. Notice that if V is finite dimensional, condition (7) is equivalent to say that the Hessian
∇2J(x∗) is positive definite.

Proof. Follows from Taylor-Young and Taylor-Maclaurin formulas. �

Exercise 8. Let f : R2 → R2 be defined by f(x, y) = x4 + y4 − 4xy. Study critical points of f .

Correction 4. • Existence: f is continuous. As 2xy ≤ x2 + y2,

f(x, y) ≥ x4 + y4 − 2x2 − 2y2 = (x2 − 1)2 − 1 + (y2 − 1)2 − 1 −−−−−−→
‖(x,y)‖→0

+∞

therefore f is coercive and there exists a minimizer.
• Critical points: f is C1 and ∇f(x, y) = (4x3 − 4y, 4y3 − 4x) so that

∇f(x, y) = 0 ⇔
{
y = x3

x = x9 ⇔
{
y = x3

x ∈ {0, 1,−1}
and critical points are (0, 0), (−1,−1) and (1, 1).
• Hessian:

∇2f(x, y) =

(
12x2 −4
−4 12y2

)
At (0, 0), det∇2f(0, 0) < 0 so that (0, 0) is a saddle point. At (1, 1) and (−1,−1), det∇2f(1, 1) >
0 and tr∇2f(1, 1) > 0 so that ∇2f(1, 1) is positive definite and (1, 1) and (−1,−1) are local
minima. Moreover

f(x, y)− f(1, 1) = f(x, y) + 2 ≥ (x2 − 1)2 + (y2 − 1)2 ≥ 0 ,

and thus (1, 1) and (−1,−1) are global minimizer. It was also possible to conclude given the
existence of the minimizer and the fact that f(−1,−1) = f(1, 1).

Unfortunately, as well as the necessary conditions stated in the previous sections were not sufficient, these
sufficient conditions are not necessary. Nevertheless, there is a particular but very important case where
being a critical point is both necessary and sufficient to be a relative extremum: when the function J is
convex.

3.4. The case of convex functions. Characterization of convexity of 1st and 2nd order and CNS of
global minimum for convex functions (Cf. Ciarlet 7.4).

Proposition 16 (Characterization of convex functions). Let A ⊂ V be an open set and J : A → R be
differentiable. Then

• J is convex in A iff ∀x, y ∈ A, J(y) ≥ J(x) +DJ(x)(y − x),
• J is strictly convex in A iff ∀x, y ∈ A, x 6= y, J(y) > J(x) +DJ(x)(y − x).

If moreover J is twice differentiable, then

• J is convex iff ∀x ∈ A, h ∈ V , D2J(x)(h, h) ≥ 0,
• If ∀x ∈ A, h ∈ V \ {0}, D2J(x)(h, h) > 0, then J is strictly convex.

Order 1 characterization means that the graph of J is (strictly) above its tangent hyperplane everywhere.
13



Theorem 17. Let V be a vector space and A ⊂ V be a convex set. Let J : A→ R be a convex function.
Then,

• if J is differentiable (in a neighbourhood of A) the minimizers of J are exactly the critical points
of J that is, J has a minimum in x∗ if and only if, for every x ∈ A,

DJ(x∗)(x− x∗) ≥ 0 ;

• if J has a relative minimum then it is a global minimum of J ;
• if moreover J is strictly convex, then it has at most one minimizer and it is strict.

4. Minimization with constraints

We now focus on the case where A is not open, we will consider constraints of the form

• equality constraints
• inequality constraints

4.1. Equality constraints. In this section, we assume that

A = {x ∈ V : g1(x) = . . . = gp(x) = 0} .

The solution to the minimization problem with equality constraints relies on the implicit functions the-
orem and simple linear algebra. We state the theorem in the general case where V is a Banach space
and we will prove it in the particular case where V is finite dimensional: the geometric intuition is very
helpful in this case.

Theorem 18 (Extrema liés). Let V be a Banach space and J, g1, . . . , gp : V → R. Let x∗ ∈ A, assume
that J, gi are C1 in a neighbourhood of x∗ and that x∗ is a relative minimum of J in A. Assume moreover
that

(8) the vectors Dg1(x∗), . . . , Dgp(x∗) are linearly independent.

Then, there exist Lagrange multipliers λ1, . . . , λp ∈ R such that

(9) DJ(x∗) +

p∑
i=1

λiDgi(x∗) = 0 .

Remark 11. If in addition we assume that J and gi are convex, then the necessary condition of optimality
given by Theorem 18 is also sufficient.

We begin with a glance at the linear case, where J is a continuous linear form in V and where the
constraints are actually an intersection of hyperplanes. In this case, gi are continuous linear form so that
they are C1 in V and for all x ∈ V , Dgi(x) = gi and DJ(x) = J . Therefore, in this case (9) simply
rephrases as

(10) J +

p∑
i=1

λigi = 0 .

Moreover, in this particular case A is still a vector space, so that we can apply the first order condition
(of local minimality) to any direction h ∈ A, that is,

(11) ∀h ∈
p⋂
i=1

ker gi, DJ(x)(h) = J(h) = 0 ⇔
p⋂
i=1

ker gi ⊂ ker J .

Hence, the linear case only amounts to prove that (11) implies (10). This is a simple algebraic result
which is an ingredient of the proof of Theorem 18.

Proposition 19 (the linear case: an algebraic result). Let J, g1, . . . , gp : V → R be linear forms. Assume
that

p⋂
i=1

ker gi ⊂ ker J

then J is a linear combination of g1, . . . , gp.
14



Proof. Let us define the linear application F = (J, g1, . . . , gp) : V → Rp+1. By assumption a =
(1, 0, . . . , 0) /∈ Im F so that F is not surjective and Im f is a subspace of Rp+1 of codimension at least 1.
There exists H hyperplane of Rp+1 containing Im F and not a. Then, there exists Λ = (λ0, λ1, . . . , λp) ∈
Rp+1 such that for all h ∈ V , 〈Λ, F (h)〉 = 0. Hence, for all h ∈ V ,

λ0J(h) +

p∑
i=1

λigi(h) = 0 ⇒ λ0J +

p∑
i=1

λigi = 0 .

As a /∈ H, λ0 = 〈Λ, a〉 6= 0. �

We are now going to give two ways of ending the proof. One when V has finite dimension, which allows
to see A as a sub-manifold. On one hand, it is then esay to prove that DJ(x∗) restricted to the tangent
plane to A at x∗ must be zero, and on the other hand, the tangent plane expresses directly from the
differential of the constraints. Those two facts are enough to lead to a relation of the form (10) and
conclude with Proposition 19. We then give a less geometric proof in the general case of V being a
Banach space and relying on the inverse function theorem.

Proposition 20 (Minimization over a submanifold). Let M ⊂ V be a submanifold of V of dimension d.
Let U be a neighbourhood of M , J : U → R be differentiable and let x∗ be a relative extremum of J on
M , then DJ(x∗)|Tx∗M = 0 (i.e. ∇J(x∗) ⊥ Tx∗M).

Proof. Let h ∈ Tx∗M , then there exists a differentiable arc γ :] − ε, ε → M such that γ(0) = x∗ and
γ′(0) = h. Thus the one variable function J ◦ γ has a relative minimum at x∗, hence (J ◦ γ)′(0) = 0 i.e.
DJ(γ(0))(γ′(0)) = 〈∇J(x∗), h〉 = 0. �

Proof. Proof of Theorem 18 in finite dimension The assumptions of Theorem 18 exactly mean that
the application g(x) = (g1(x), . . . , gp(x)) is a submersion from a neighbourhood B of x∗ onto Rp and thus

M = B ∩A = B ∩ g−1(0)

is a submanifold whose tangent plane at x∗ is

Tx∗M = kerDg(x∗) =

p⋂
i=1

kerDgi(x∗) .

Applying Proposition 20 leads to
⋂p
i=1 kerDgi(x∗) ⊂ kerDJ(x∗) and we conclude with Proposition 19

that DJ(x∗) ∈ span(Dg1(x∗), . . . ,Dgp(x∗)). �

Proof. Proof of Theorem 18 in a Banach space
We start with recalling the inverse function theorem in Banach spaces: if V , W are Banach spaces,
Ω ⊂ V is an open set and l : Ω→W is a function of class C1. Assume that for some x ∈ Ω, Df(x) is an
isomorphism, then there exists an open set V ⊂ Ω containing x and an open set W ⊂W containing f(x)
such that f is C1–diffeomorphism when restricted from V to W.

First of all, it is possible to assume that x∗ = 0 without loss of generality6. Let U ⊂ V be an open ball
centered at 0 and such that

∀x ∈ U ∩A, J(x) ≥ J(0) .

Define F : U → Rp+1 s.t. for x ∈ U , F (x) = (J(x), g1(x), . . . , gp(x)). Note that for all c < J(0),
(c, 0, . . . , 0) /∈ F (U) but F (0) = (J(0), 0, . . . , 0) ∈ F (U), whence F (U) cannot contain any open set
around F (0).
If DF (0) ∈ L(V,Rp+1) were surjective, then G = kerDF (0) is a (closed since F is C1) vector subspace
of V . Take E a supplementary of G in V so that E is isomorphic to ImDF (0) = Rp+1 and DF (0)|E ∈
Isom(E,Rp+1) (isomorphism theorem).

Define F̃ = F|E : U ∩E → Rp+1, for all x ∈ U ∩E, F̃ (x) = F (x) as the restriction of F to E and equipp

E with the norm ‖ · ‖E induced by V (i.e. for all x ∈ E, ‖x‖E = ‖x‖V ). Then F̃ is differentiable and

6Define Ω̂ = Ω − x∗, Ĵ : Ω̂ → Rp+1, Ĵ(x) = J(x + x∗) and ĝi : Ω̂ → Rp+1, ĝi(x) = gi(x + x∗). Then DĴ(0) = DJ(x∗),

Dĝi(0) = Dgi(x∗) and minimizing J in Ω with constraint gi = 0 is equivalent to minimizing Ĵ in Ω̂ with constraint ĝi = 0.
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DF̃ (x) = DF (x)|E ∈ L(E,Rp+1). Indeed, let x ∈ U ∩ E and h ∈ E,

F̃ (x+ h)− F̃ (x) = F (x+ h)− F (x)

= DF (x)(h) + o(‖h‖V︸ ︷︷ ︸
=‖h‖E

) .

Notice that as E and Rp+1 are finite dimensional, E could actually be equipped with any norm.
As F̃ : U ∩E → Rp+1 is differentiable and of class C1 since DF is continuous in U and for x, y ∈ U ∩E,

‖DF̃ (x)−DF̃ (y)‖L(E,Rp+1) = sup
h∈E, ‖h‖E=1

‖DF̃ (x)(h)−DF̃ (y)(h)‖ = sup
h∈E, ‖h‖V =1

‖DF (x)(h)−DF (y)(h)‖

≤ sup
h∈V, ‖h‖V =1

‖DF (x)(h)−DF (y)(h)‖ = ‖DF (x)−DF (y)‖L(V,Rp+1) .

Moreover, 0 ∈ U ∩ E and DF̃ (0) : E → Rp+1 is an isomorphism, by the inverse function theorem, there

exists U ′ ⊂ E ∩ U open in E containing 0 and W ⊂ Rp+1 open set containing F̃ (0) = F (0) such that

F̃ : U ′ →W is a C1–diffeomorphism. Consequently,

F (0) ∈ W = F̃ (U ′) ⊂ F̃ (U) = F (U ∩ E) ⊂ F (U) ,

contradicts the fact that there is not open subset of F (U) containing F (0) and DF (0) is not surjective.
Eventually, ImDF (0) is a strict subset of Rp+1 and is therefore contained in some hyperplane of Rp+1.
There exists Λ = (λ0, λ1, . . . , λp) ∈ Rp+1 such that for all h ∈ V , < Λ, DF (0) >= 0, i.e.

λ0DJ(0) +

p∑
i=1

λiDgi(0) = 0 .

As λ0 = 0 would imply that (Dg1(0), . . . , Dgp(0)) are linearly dependent, we conclude that λ0 6= 0 and
divide by it. �

Exercise 9. Maximize in R2, x4 + y4 under the constraint x6 + y6 = 1.

Exercise 10. Let f : R3 → R be defined by f(x, y, z) = x − y + z. Find the extrema of f under the
constraints x2 + y2 + z2 = 4 and x+ y + z = 1.

Exercise 11 (An example in infinite dimension ...). Let us consider the vector space

E0 =
{
u ∈ C2([a, b],R) : f(a) = f(b) = 0

}
,

provided with the C2–norm ‖u‖C2 = sup[a,b] |u|+ |u′|+ |u′′|. Let L,K : R3 → R be C2 and for all u ∈ E0,
we define

J(u) =

∫ b

a
L(t, u(t), u′(t)) dt and G(u) =

∫ b

a
K(t, u(t), u′(t)) dt .

• Show that J is differentiable and compute its differential.
• Show that if u∗ minimizes J in E0 then for all t ∈ [a, b],

d

dt

(
∂3L(t, u(t), u′(t))

)
= ∂2L(t, u(t), u′(t)) .

• Show that if u∗ minimizes J in E0 under the constraint G(u) = α then there exists λ ∈ R such
that for all t ∈ [a, b],

d

dt

(
∂3(L+ λK)(t, u(t), u′(t))

)
= ∂2(L+ λK)(t, u(t), u′(t)) .

• Show that if L,K are autonomous (independent of x1) then u∗ satisfies Erdmann’s condition:
there exists a constant µ ∈ R such that for all t ∈ [a, b],

(L+ λK)(u(t), u′(t))− u′(t)∂3(L+ λK)(u(t), u′(t)) = µ .

• Apply it to the Catenary’s problem.
• Apply it to Dido problem: given two points A and B, determine the curve (of fixed length)

joining these two points and such that the area enclosed by the curve and the the segment [A,B]
is maximal.

Show that such a curve has constant curvature.
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4.2. Inequality constraints. In this section V has finite dimension and we assume that

A = {x ∈ V : g1(x) = . . . = gp(x) = 0 and h1(x) ≤ 0, . . . , hq(x) ≤ 0} ,

with g1, . . . , gp, h1, . . . , hq : V → R of class C1. Let us decompose A into A = M ∩ C where

M = {x ∈ V : g1(x) = . . . = gp(x) = 0} andC = {x ∈ V : h1(x) ≤ 0, . . . , hq(x) ≤ 0} .

• Assuming that at some point x ∈ A, the vectors (∇g1(x), . . . ,∇gp(x)) are linearly independdent,
then M is a sub-manifold of V in a neighbourhood of x and

TxM =

p⋂
j=1

kerDgj(x) .

From the case of equality constraint, we know that the first optimality condition at a point x∗ ∈ A
will write as DJ(x∗)(h) = 0 for all h ∈ Tx∗M∩? where ? depends on the inequlity constraints ...
• With respect to the inequality constraints, let x ∈ A and i ∈ {1, . . . , q}, if hi(x) < 0, then it will be

possible to make variations in all possible directions h around x while keeping hi(x+h) < 0 for h
small enough. Loosely speaking, the constraint hi ≤ 0 is not seen from such an x, such constraints
are said inactive, see Definition 11. If now hi(x) = 0, only somme ”inner” directions h ∈ V will
satisfy hi(x+ h) ≤ 0 for h small enough. Proposition 21 states that if < ∇hi(x), h >< 0, then h
is an ”inner” direction.

Definition 11 (Active constraints). Let x ∈ A, the set

I(x) = {i ∈ {1, . . . , q} : hi(x) = 0}

is called the set of active constraints at x.

Proposition 21 (First order condition of optimality: geometric part). Assume that g1, . . . , gp, h1, . . . hq,
A, M and C are defined as above. Let x∗ ∈ A and assume that the vectors (∇g1(x∗), . . . ,∇gp(x∗)) are
linearly independent. Let J : V → R of class C1. Assume that x∗ is a local minimizer of J in A, then,

(12)

p⋂
j=1

kerDgj(x∗) ∩ {h ∈ V : ∀i ∈ I(x∗), < ∇hi(x∗), h >< 0} ⊂ {h ∈ V :< ∇J(x∗), h >≥ 0} .

Proof. As the vectors (∇g1(x∗), . . . ,∇gp(x∗)) are linearly independent, M is locally a sub-manifold around

x∗ and Tx∗M =

p⋂
j=1

kerDgj(x∗).

Let h ∈ Tx∗M such that for all i ∈ I(x), < ∇hi(x∗), h >< 0, we have to prove that < ∇J(x∗), h >≥ 0.
Let γ :]− ε, ε[→M curve of class C1 such that γ(0) = x∗ and γ′(0) = h. Let us show that

∃δ > 0, ∀t ∈ [0, δ], γ(t) ∈ C (⇔ ∀i ∈ {1, . . . , q}, hi(γ(t)) ≤ 0) .

Let i ∈ {1, . . . , q}.
Case i /∈ I(x∗): In this case, hi(γ(0)) = hi(x∗) < 0 and by continuity of hi ◦ γ, ∃δi > 0 such that for all
t ∈ [0, δi], hi ◦ γ(t) < 0.
Case i ∈ I(x∗): Let us write

γ(t) = γ(0) + tγ′(0) + tr(t) = x∗ + t(h+ r(t)) ,

with r :]− ε, ε[→ R such that limt→0 r(t) = 0. Then, as hi(xast) = 0,

hi(γ(t)) = hi(x∗ + t(h+ r(t))︸ ︷︷ ︸
O(t)

)

= hi(x∗)+ < ∇hi(x∗), t(h+ r(t)) > +o(t)

= t < ∇hi(x∗), h > + t < ∇hi(x∗), r(t)) >︸ ︷︷ ︸
o(t)

+o(t)

= t< ∇hi(x∗), h >︸ ︷︷ ︸
<0

+o(t) .

Therefore, ∃δi > 0 such that for all t ∈ [0, δi], hi(γ(t)) < 0.
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Take δ = min
i∈{1,...,q}

δi, then ∀i ∈ {1, . . . , q}, ∀t ∈ [0, δ], hi(γ(t)) ≤ 0 that is γ(t) ∈ C, as γ(t) ∈ M (by

definition of γ), then γ(t) ∈ A. By local minimality of x∗ in A and continuity of γ, up to decreasing
δ > 0, for all t ∈ [0, δ],

J(γ(t)) ≥ J(∗) = J(γ(0)) .

As J(γ(t))− J(γ(0)) = t(J ◦ γ)′(0) + o(t) and (J ◦ γ)′(0) =< ∇J(γ(0)), γ′(0) >=< ∇J(x∗), h >, we have

t < ∇J(x∗), h > +o(t) ≥ 0 ⇒ lim
t→0,t>0

< ∇J(x∗), h >≥ 0 .

�

In order to pass from (??) to something more easy to handle, we need some ”algebraic” result (as in the
case of equality constraints). The result we need is known as Farkas Lemma:
...
The end of this section is ”under construction” ...

Definition 12 (Qualification). The constraints are said to be qualified at x ∈ A if

(13) the vectors (∇g1(x), . . . ,∇gp(x)) are linearly independent,

and if there exists a direction h ∈ V such that for all i, for all j ∈ I(x),

(14) 〈∇gi(x), h〉 = 0 and 〈∇hj(x), h〉 < 0 .

Remark 12. A stronger assumption implying that the constraints are qualified at x is:

the vectors (∇gi(x),∇hj(x))i=1...p,j∈I(x) are linearly independant.

Theorem 22 (Karush-Kuhn-Tucker). Let V be a finite vector space and J, g1, . . . , gp, h1, . . . , hq : V → R.
Let x∗ ∈ A, assume that J, gi, hj are C1 in a neighbourhood of x∗ and that x∗ is a relative minimum of
J in A where the constraints are qualified ( (13) and (14)).
Then, there exist Lagrange multipliers λ1, . . . , λp, µ1, . . . , µq ∈ R such that

(1)

(15) ∇J(x∗) +

p∑
i=1

λi∇gi(x∗) +

q∑
j=1

µj∇hj(x∗) = 0 ;

(2) µj ≥ 0 for all j = 1, . . . , q ;
(3) µj = 0 if hj(x∗) < 0 (or equivalently here µjhj(x∗) = 0).

Example 3. Minimize f(x, y) = −x+ y under the inequality constraints y ≥ x2 and x+ y ≤ 1.

Let us define in R2, h1(x, y) = x2 − y and h2(x, y) = x+ y − 1 and

A = {(x, y) ∈ R2 | h1(x, y) ≤ 0, h2(x, y) = 0} .
Existence: f is continuous in A compact.
Qualification of the constraints: we have ∇h1(x, y) = (2x,−1) 6= 0 and ∇h2(x, y) = (1, 1) 6= 0.
Therefore, when only one constraint i0 is active, the qualification is satisfied since the family (∇hi0(x, y))
is linearly independent. It remains to check the case where h1(x, y) = h2(x, y) = 0 whose solutions are(

−1−
√

5

2
,
3 +
√

5

2

)
,

(
−1 +

√
5

2
,
3−
√

5

2

)
and at those two points, ∇h1 and ∇h2 are independent. We can conclude that the constraint are qualified
at every point of A.
K.K.T. conditions: if (x, y) minimizes f in A, there exists λ ≥ 0, µ ≥ 0 such that

 ∇f(x, y) + λ∇h1(x, y) + µh2(x, y) = 0
λh1(x, y) = 0 et µh2(x, y) = 0
h1(x, y) ≤ 0 et h2(x, y) ≤ 0

⇔


−1 + 2λx+ µ = 0
1− λ+ µ = 0
λ(x2 − y) = 0
µ(x+ y − 1) = 0
x2 ≤ y et x+ y ≤ 1

• If λ = 0, then 1 = µ = −1 which is impossible.
• If λ 6= 0 and µ = 0, then λ = 1 and then x = 1

2 and y = x2 = 1
4 .
(

1
2 ,

1
4

)
∈ A and f

(
1
2 ,

1
4

)
= −1

4 .
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• If λ 6= 0 and µ 6= 0, then (x, y) ∈
{(
−1−

√
5

2 , 3+
√

5
2

)
,
(
−1+

√
5

2 , 3−
√

5
2

)}
and

f

(
−1−

√
5

2
,
3 +
√

5

2

)
= 2 +

√
5 > −1

4
et f

(
−1 +

√
5

2
,
3−
√

5

2

)
= 2−

√
5 .

As 2−
√

5 + 1
4 = 9−4

√
5

4 > 0 since 9− 4
√

5 = 9−
√

80 > 0, we have 2−
√

5 > −1
4 .

Eventually, there is a unique minimizer of f in A
(

1
2 ,

1
4

)
.

the case of convex functions ...

5. Numerical algorithms: descent methods

In this section, we study iterative algorithm to solve unconstrained and then constrained optimization
problems in a finite vector space V = Rn. Let J : Rn → R be smooth (at least C1) and assume that
x∗ ∈ Rn be a solution of J(x∗) = minJ . Our purpose is to compute numerically x∗.

5.1. The 1–dimensional case.

5.1.1. Dichotomy. Assume that f is unimodal in [a, b] ⊂ R, that is, f strictly decreasing on [a, x∗[ and
strictly increasing on ]x∗, b].
Divide [a, b] into 4 intervals of same length and depending on the value of f at a, b and the 3 intermediate
points, find an interval of length b−a

2 containing x∗ and iterate.

|xk+1 − x∗| ≤
1

2
|xk − x∗| .

The convergence is linear.

5.1.2. Golden section search. Linear convergence.

5.1.3. Newton method. Newton’s method is generally used to find a zeros of functions. The idea is to
linearise

f(x) ' f(xk) + (x− xk)f ′(xk) ,
and to define

xk+1 = xk +
f(xk)

f ′(xk)
.

In order to minimize f , Newton’s method is applied to f ′ and

xk+1 = xk +
f ′(xk)

f ′′(xk)
.

When the method converges, the order is quadratic.

5.1.4. Secant method. As in Newton method but f ′(xk) is approximated by

f(xk)− f(xk−1)

xk − xk−1
.

For the minimization problem, this must be done on f ′ and f ′′.

5.2. Descent method: principle. Descent Method[General Principle].

• Fix x0 ∈ Rn (k = 0),
• while (stopping criterion

– choose dk ∈ Rn a descent direction
– choose ρk step size
– set xk+1 = xk + ρkdk
– k ←− k + 1.

5.2.1. Relaxation method. A natural choice of directions dk consists in taking successively the n canonical
directions (e1, . . . , en) of Rn, even though if such, dk has no reason to be a descent direction (in the sense
of Definition 13) at each step. The algorithm is thus
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Algorithm 1: Relaxation method

• Choose x0 ∈ Rn.
• Given xk, xk+1 is constructed as follows.

– xk+1,1 = xk + ρk,1e1 with ρk,1 such that

J(xk + ρk,1e1) = min
ρ∈R

J(xk + ρe1) ;

– xk+1,2 = xk+1,1 + ρk,2e2 with ρk,2 such that

J(xk+1,1 + ρk,2e2) = min
ρ∈R

J(xk+1,1 + ρe2) ;

– . . . ;
– xk+1 = xk+1,n = xk,n−1 + ρk,nen with ρk,n such that

J(xk+1,n−1 + ρk,nen) = min
ρ∈R

J(xk+1,n−1 + ρen) .

5.2.2. Descent direction.

Definition 13 (Descent direction). We say that d ∈ Rn is a (strict) descent direction at x0 if there
exists ρ0 > 0 such that for all ρ ∈]0, ρ0],

J(x0 + ρd) < J(x0) .

A descent direction is a direction along which J is locally decreasing.

Proposition 23. Let x, d ∈ Rn.

• If 〈∇J(x), d〉 < 0 then d is a descent direction at x.
• If −∇J(x) 6= 0, then it is a descent direction at x, and it is even the steepest descent direction.

Proof. • Let h : t ∈ R 7→ J(x + td). We have that h′(t) = 〈∇J(x+ td), d〉 so that h′(0) =
〈∇J(x), d〉 < 0. And moreover,

h′(0) = lim
t→0 t>0

J(x+ td)− J(x)

t
,

and consequently, there exists t0 > 0 such that ∀0 < t < t0,

J(x+ td)− J(x)

t
< 0 ⇒ J(x+ td) < J(x)

and thus d is a descent direction.
• As 〈∇J(x),−∇J(x)〉 = −‖∇J(x)‖2 < 0 (∇J(x) 6= 0) it is a descent direction by the previous

point. It is the steepest descent direction meaning that − d

dt
J(x+ td) is the largest possible. By

Cauchy-Schwartz,

− d

dt
J(x+ td) = 〈∇J(x), d〉 ≤ ‖∇J(x)‖ ‖d‖

with equality if and only if d and ∇J(x) are positively dependent.
�

Remark 13. The gradient is orthogonal to the level-sets of J .

Example 4. Let J(x, y) = x2 + ηy2, η > 1.

There exist different descent method depending on the choice of the descent direction dk and the step
size ρk.

5.2.3. Elliptic functional. We introduce the class of elliptic functionals which is both well suited to study
the convergence of minimization algorithm and large enough to embrace a large part of cost functions.

Definition 14 (Elliptic functional). A functional J : V → R defined on a Hilbert space (V,< ·, · >) is
called elliptic if it is C1 and if there exists α > 0 such that

〈∇J(y)−∇J(x), y − x〉 ≥ α‖y − x‖2 for all x, y ∈ V .
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Remark 14. A functional J : V → R which is twice differentiable is elliptic if and only if for every
x, y ∈ V , 〈

∇2J(x)y, y
〉
≥ α‖y‖2 .

Proposition 24. Let J : V → R be an elliptic functional. Then J is coercive and strictly convex.

Corollary 25. Let J : V → R be an elliptic functional and let A ⊂ V be a convex set. Consider the
minimization problem find x∗ ∈ A such that

(16) J(x∗) = min
x∈A

J(x) .

Then,

• x∗ ∈ A is solution of the problem (16) if and only if for all x ∈ A,

〈∇J(x∗), x− x∗〉 ≥ 0 ;

• if A is closed, the problem (16) has a unique solution.

Proof. It is an immediate consequence of Proposition 24, Theorem 10 and Theorem 17. �

Theorem 26. If the functional J : Rn → R is elliptic, the relaxation method converges.

5.3. Gradient Methods. As −∇J(x) is the steepest descent direction, we choose dk = −∇J(xk). It
remains to choose the size step ρk.

5.3.1. Gradient method with fixed step size step.

Theorem 27 (Gradient with fixed step size). Let J : Rn → R be an elliptic (with ellipticity constant α)
function and assume that there exists M > 0 such that for every x, y ∈ V ,

‖∇J(y)−∇J(x)‖ ≤M‖y − x‖ .

Then, if 0 < ρ <
2α

M2
,

• the gradient with fixed step size ρ converges to the unique solution of the minimization problem
x∗;
• moreover, the convergence is of order one:

‖xk+1 − x∗‖ ≤ β‖xk − x∗‖ with β =
√

1− 2αρ+M2ρ2 < 1 .

Remark 15 (Gradient with variable step). Choosing variable step sizes ρk such that there exist a, b > 0

such that 0 < a ≤ ρk ≤ b <
2α

M2
, the conclusions of Theorem 27 still hold with

β = max
{√

1− 2αa+M2a2,
√

1− 2αb+M2b2
}
.

Remark 16 (Case of a quadratic functional). Let A be a n by n symmetric, positive definite matrix, b ∈ Rn

and J be the quadratic functional defined in Rn as J(x) =
1

2
〈Ax, x〉− 〈b, x〉. Let 0 < λ1 ≤ λ2 ≤ . . . ≤ λn

be the eigenvalues of A then J satisfies the assumptions of Theorem 27 with α = λ1 and M = λn and

thus β =
2λ1

λ2
n

.

Exercise 12. In the case of a quadratic functional, there is actually a better choice of step size ρ =
2

λ1 + λn

and then β =
λn − λ1

λn + λ1
.

Lemma 28. Let J be α–elliptic, then J is coercive, strictly convex and has a unique minimizer x∗ ∈ Rn.
Moreover, for all x, y ∈ Rn,

(17) J(y)− J(x) ≥ 〈∇J(x), y − x〉+
α

2
‖y − x‖2 .
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Proof. We begin with the estimate (17). Let x, y ∈ Rn and apply Taylor with integral rest formula.

J(y)− J(x) =

∫ 1

t=0
〈∇J(x+ t(y − x)), y − x〉 dt

= 〈∇J(x), y − x〉+

∫ 1

t=0
{〈∇J(x+ t(y − x)), y − x〉 − 〈∇J(x), y − x〉} dt

≥ 〈∇J(x), y − x〉+

∫ 1

t=0
〈∇J(x+ t(y − x))−∇J(x), t(y − x)〉 dt

t

≥ 〈∇J(x), y − x〉+

∫ 1

t=0
αt2‖y − x‖2 dt

t︸ ︷︷ ︸
=
α

2
‖y − x‖2

In particular J is strictly convex thanks to Proposition 16 and J is coercive. Indeed,

J(y) ≥ J(0) + 〈∇J(0), y〉+
α

2
‖y‖2

≥ J(0)− ‖∇J(0)‖ ‖y‖+
α

2
‖y‖2 −−−−−−→

‖y‖→+∞
+∞ .

Therefore J has a unique minimizer x∗ in Rn. �

Proof of Theorem 27. As ∇J(x∗) = 0, then

xk+1 − x∗ = xk − ρ∇J(xk) +∇J(x∗)− x∗
= xk − x∗ + ρ (∇J(x∗)−∇J(xk)) .

Therefore,

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 − 2ρ 〈∇J(xk)−∇J(x∗), xk − x∗〉+ ρ2‖∇J(xk)−∇J(x∗)‖2

≤ (1 + ρ2M2 − 2ρα)‖xk − x∗‖2 .
�

5.3.2. Gradient method with optimal step. Descent method with optimal step size: A natural choice for
ρk is choose the optimal one , that is ρk solution to the 1–dimensional minimization problem

J(xk + ρkdk) = min
ρ∈R

J(xk + ρdk) .

This method reduces a n–dimensional optimisation problem to successive 1–dimensional problems. Gra-
dient with optimal step size: dk = −∇J(xk).

Theorem 29 (Gradient with optimal step size). If J is elliptic, then the gradient with optimal step size
method is well-defined at each step (∀k, ∃ρk) and converges to x∗.

Remark 17. In the case where J(x) = 1
2a(x, x)− b(x) is a quadratic elliptic functional, once dk is fixed,

determining ρk such that

(18) J(xk + ρkdk) = min
ρ∈R

J(xk + ρdk)

= min
ρ∈R

(
1

2
a(dk, dk)ρ

2
k + (a(xk, dk)− b(dk)) ρk +

1

2
a(xk, xk)− b(xk)

)
is direct.

Remark 18 (Orthogonality of successive directions). Let hk(ρ) = J(xk + ρdk) = J(xk − ρ∇J(xk)), hk is
C1 and

h′k(ρ) = 0 ⇔ 〈∇J(xk − ρ∇J(xk)),−∇J(xk)〉 = 0 ⇔ 〈∇J(xk+1),∇J(xk)〉 = 0 .

Consequently, two successive descent directions are orthogonal.

The main drawback of this methods is that there is a 1–dimensional minimization problem to solve at
each step. Moreover, it is pointless to optimize the step size if the descent direction is ”bad”, indeed the
choice dk = −∇J(xk) relies on a local estimate.
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5.3.3. Projected gradient: handling convex constraints. From a practical point of view, it essentially
allows to handle constraints of the form A =

∏n
i=1[ai, bi]. The principle is the same as for any descent

method, but at each step, there is an additional projection onto the constraints set. Let A be the closed
convex set of constraints and P be the associated projection onto A. Then xk+1 is defined as

xk+1 = P (xk + ρkdk) .

The problem is that this projector is generally difficult to compute. There is at least one case where P
has a simple expression: for V =

∏n
i=1[ai, bi] then

(P (x))i = min{max(ai, xi), bi} =

 ai if xi < ai
xi if xi ∈ [ai, bi]
bi if xi > bi

.

For the projected gradient with variable step, the same convergence property holds as for the gradient
with fixed/variable step.

Theorem 30 (Projected gradient with fixed step size). Let A be a closed convex set and J : A ⊂ Rn → R
be an elliptic (with ellipticity constant α) function and assume that there exists M > 0 such that for every
x, y ∈ V ,

‖∇J(y)−∇J(x)‖ ≤M‖y − x‖ .

Then, if there exist a, b > 0 such that for all k, 0 < a ≤ ρk ≤ b <
2α

M2
,

• the projected gradient with variable step size ρk converges to the unique solution of the minimiza-
tion problem x∗;
• moreover, the convergence is of order one:

‖xk+1 − x∗‖ ≤ β‖xk − x∗‖ with β =
√

1− 2αρ+M2ρ2 < 1 .

Proof. As x∗ minimizes J in A, Euler’s equation implies that for all y ∈ A, 〈∇J(x∗), y − x∗〉 ≥ 0, hence
for all y ∈ A,

〈(x∗ − ρk∇J(x∗))− x∗, y − x∗〉 ≤ 0 ,

which characterize x∗ as the projection on A of x∗ − ρk∇J(x∗), that is P (x∗ − ρk∇J(x∗)) = x∗. Conse-
quently, following the proof in the case without constraints and using the fact that P is 1–lipschitz,

‖xk+1 − x∗‖2 = ‖P (xk − ρk∇J(xk))− P (x∗)‖2

≤ ‖xk − ρk∇J(xk)− x∗‖2

≤ (1− 2ρkα+ ρ2
kM

2)‖xk − x∗‖2 .
�

Example 5. Let A = B(0, 1 closed unit ball of Rn, then

P (x) =

{
x if ‖x‖ ≤ 1
x
‖x‖ otherwise

5.3.4. Newton’s method. Idea: use Newton’s method in order to solve x∗ ∈ Rn such that ∇J(x∗) = 0.

xk+1 = xk −
(
∇2J(xk)

)−1∇J(xk) .

Generalized Newton methods:
xk+1 = xk − (A(xk))

−1∇J(xk) .

with A(xk) = ρkId, we recover gradient methods.

5.3.5. Penalization method.

5.4. The case J quadratic.

5.4.1. Failure of gradient methods.

5.4.2. Conjugated gradient.

6. Duality and Uzawa algorithm

In this section, V,W are finite vector spaces, even though it is possible to state more general results in
Hilbert spaces.
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6.1. Introduction to duality. Let us come back to the problem of minimization under inequality
constraints:

(19) J(x∗) = min
x∈A

J(x)

with
A = {x ∈ V : h1(x) ≤ 0, . . . , hq(x) ≤ 0} .

Let us denote h : V → Rq, x 7→ (h1(x), . . . , hq(x)), for the sake of simplicity, J and h are assumed to be
defined and C1 in V . If we introduce the Lagrangian

L : V × (R+)q → R
(x, µ) 7→ J(x) +

∑q
i=1 µihi(x) ,

then, if x∗ is a minimizer (and the qualification condition satisfied at x∗), the conclusion of Kuhn–Tucker
Theorem implies that there exists µ∗ ∈ (R+)q such that (x∗, µ∗) satisfy

∇xL(x∗, µ∗) = ∇J(x∗) +

q∑
i=1

µ∗,i∇hi(x∗) = 0

∇µL(x∗, µ∗) = h(x∗) = 0 .

And thus (x∗, µ∗) is a critical point of L. Actually, under some additional convexity assumptions, it is
possible to be more precise on the type of this critical point.

Theorem 31. • If (x∗, µ∗) ∈ V × (R+)q is a saddle point of L then x∗ ∈ A and is a solution to the
constrained minimization problem (19).
• Conversely, if hi are convex in A and the constraints are qualified in A, then if xast is a solution

to the minimization problem (19), there exists µ∗ ∈ (R+)q such that (x∗, µ∗) is a saddle point of
L.

Definition 15 (Saddle point). Let X ⊂ V and M ⊂ W and L : X ×M → R. A point (x, µ) ∈ X ×M
is said to be a saddle point of L in X ×M if

• x minimizes L(·, µ) in X and,
• µ minimizes L(x, ·) in M .

In other words,
sup
µ∈Y

L(x∗, µ) = L(x∗, µ∗) = infx∈XL(x, µ∗) .

Theorem 32 (Duality). (x∗, µ∗) is a saddle point of L in X ×M if and only if

sup
µ∈M

inf
x∈X

L(x, µ) = L(x∗, µ∗) = inf
x∈X

sup
µ∈M

L(x, µ) .

Remark 19. Notice that
sup
µ∈M

inf
x∈X

L(x, µ) ≤ inf
x∈X

sup
µ∈M

L(x, µ)

is always true.

If we denote
I(x) = sup

µ∈M
L(x, µ) and G(x) = inf

x∈X
L(x, µ) ,

I(x∗) = min
x∈V
I(x) is called the primal problem

and
G(µ∗) = max

µ∈M
G(µ) is called the dual problem .

In the case where L(x, µ) = J(x) +
∑q

i=1 µih(x) is defined in V × (R+)q, and under the assumptions of
Theorem 31, we know that x∗ minimizes J in A if and only if there exists µ∗ ∈ (R+)q such that (x∗, µ∗)
is a saddle point of L in V × (R+)q. Therefore, (x∗, µ∗) is solution of the primal problem if and only if it
is solution of the second problem.
Notice that the primal problem is exactly the inequality constrained problem as

sup
µ∈(R+)q

J(x) +

q∑
i=1

µih(x) =

{
J(x) if x ∈ A
+∞ otherwise.
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While the dual problem is generally easier to handle since there is no constraint in x ∈ V and only the
simple constraints µi ≥ 0. This is the idea of Uzawa algorithm: solve the dual problem rather than the
primal.

6.2. Uzawa algorithm. Uzawa algorithm is just the projected gradient method applied to the dual
problem. The projection operator P+ : Rq → (R+)q is simply computed as

P+(µ = (µ1, . . . , µq)) = (max(µi, 0))i .

Algorithm 2: Uzawa algorithm

• Start from µ0 ∈ (R+)q.
• Given xk−1 and µk, xk and µk+1 are constructed as follows.

– xk is a minimizer of the unconstrained problem minx∈V L(x, µk) = G(µk);
– Choose ρk;
– Set µk+1 = P+(µk + ρk∇G(µk)) where

∇G(µk) = (hi(xk))i .

Remark 20. The fact that xk indeed tends to a solution of the primal problem remains to check and the
formula giving the gradient of G holds only under suitable assumptions, as the continuous dependence of
xµ = minx∈V L(x, µ) with respect to µ.
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7. Corrections

Correction 5. Let A ⊂ V be a convex set. Check that J : A→ R is convex ⇔ epi(J) is convex.

It is a simple application of definitions. Assume first that J is convex. Let (x1, λ1), (x2, λ2) ∈ epi(J) and
t ∈ [0, 1], then t(x1, λ1) + (1 − t)(x2, λ2) ∈ epi(J). Indeed, for i = 1, 2, λi ≥ J(xi) so that, using the
convexity of J ,

tλ1 + (1− t)λ2 ≥ tJ(x1) + (1− t)J(x2) ≥ J(tx1 + (1− t)x2) .

The converse property has a similar proof. Assume now that epi(J) is convex. Let x1, x2 ∈ A, t ∈ [0, 1]. As
(x1, J(x1)), (x2, J(x2)) ∈ epi(J) and epi(J) is convex, then (tx1+(1−t)x2, tJ(x1)+(1−t)J(x2)) ∈ epi(J).
Consequently, tJ(x1) + (1 − t)J(x2) ≥ J(tx1 + (1− t)x2, tJ(x1) + (1 − t)J(x2)). And we proved that J
is convex.

Correction 6. We consider the Hilbert (thus reflexive) space

l2(R) =

{
(xn)n∈N :

∞∑
n=0

x2
n <∞

}
,

provided with the scalar product (xn)n · (yn)n =
∑∞

n=0 xnyn, and we define

f : l2(R) → R
(xn)n 7→

(
‖x‖2 − 1

)2
+
∑∞

n=0
x2n
n+1 .

Check that f is coercive and lower semi continuous and check that however, f does not admit minimizer
on l2(R).

• f is coercive:

f(x) ≥
(
‖x‖2 − 1

)2 −−−−−−→
‖x‖→+∞

+∞ .

• f is strongly l.s.c. (continuous actually): x 7→
(
‖x‖2 − 1

)2
is strongly continuous and

∞∑
n=0

(xn)2

n+ 1
= (xn)n · L((xn)n)

where L((xn)n) =
(
xn
n+1

)
n
. As the scalar product is strongly continuous, it remains to prove that

the application L : l2(R)→ l2(R) is continuous. As 1
n+1 ≤ 1, for x = (xn)n, y = (yn)n ∈ l2(R) we

have

‖L(x)− L(y)‖ =
∞∑
n=0

(xn − yn)2

(n+ 1)2
≤
∞∑
n=0

(xn − yn)2 = ‖x− y‖2 −−−−−−→
‖x−y‖→0

0.

• f does not admit a minimizer: for all x ∈ l2(R), f(x) > 0. Indeed, let x ∈ l2(R), f(x) ≥ 0 and if

f(x) = 0 then
(
‖x‖2 − 1

)2
= 0 which implies ‖x‖ = 1 and

∑∞
n=0

(xn)2

n+1 which implies x = 0. Let

us now show that inf l2(R) f = 0. For k ∈ N, define the sequence xk ∈ l2(R) by xkn = δn,k so that

‖xk‖ = 1 and f(xk) = 1
k+1

k→∞−−−→ 0.

We can deduce from the previous properties that f is not weakly l.s.c. in l2(R).

Correction 7. Let f : R→ R be continuous and consider

L : L2([0, 1]) → R
u 7→

∫ 1
0 f(u(x)) dx .

Show that L is weakly l.s.c. implies f convex.

Let a, b ∈ R and t ∈ [0, 1] and consider a 1–periodic function ψ : R→ R s. t. ψ(x) =
a if 0 ≤ x < t
b if t ≤ x ≤ 1

.

Let then uk(x) = ψ(kx) for k ∈ N∗.
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• For all k ∈ N∗,
∫ 1

0
f(uk) = tf(a) + (1− t)f(b). Indeed, thanks to the change of variable y = kx

and periodicity of ψ, we get∫ 1

0
f(uk) =

∫ 1

x=0
f(ψ(kx)) dx =

1

k

∫ k

y=0
f(ψ(y)) dy =

1

k
k

∫ 1

0
f(ψ) = tf(a) + (1− t)f(b) .

• The sequence (uk)k L2([0, 1])–weakly converges to the constant function ta + (1 − t)b. Indeed,
from the previous point with f(z) = z2, we have that ‖uk‖2L2 = ta2 + (1 − t)b2. therefore

(uk)k is uniformly bounded in L2([0, 1]) and thus there is a subsequence L2–weakly converging to
u ∈ L2([0, 1]). Let v ∈ C([0, 1]),∫ 1

0
ukv =

1

k

∫ k

y=0
ψ(y)v(y/k) dy =

1

k
a
k−1∑
i=0

∫ i+t

i
v(y/k)dy +

1

k
b
k−1∑
i=0

∫ i+1

i+t
v(y/k)dy

= a

k−1∑
i=0

∫ i+t
k

i
k

v(y)dy + b

k−1∑
i=0

∫ i+1
k

i+t
k

v(y)dy .

For every k ∈ N∗, there exists (mean value theorem) ck ∈
[
i
k ,

i+t
k

]
such that

k

t

∫ i+t
k

i
k

v(y)dy = v(ck) .

By generalized Riemann sums theorem, we have
1

k

k−1∑
i=0

v(ck) −→
∫ 1

0
v and therefore

∫ 1

0
ukv −→

∫ 1

0
(ta+ (1− t)b)v.

We can conclude that u = ta + (1 − t)b. In order to obtain the weak convergence of the whole
sequence, it is enough to use the density of C([0, 1]) in L2([0, 1]) (for the L2–norm) and the fact
that ‖uk − u‖L2 ≤ ‖u‖L2 + ta2 + (1− t)b2 is bounded independently of k.7

If now L is L2–weakly l.s.c., then

f(ta+ (1− t)b) =

∫ 1

0
f(u) ≤ lim inf

k∞

∫ 1

0
f(uk) = tf(a) + (1− t)f(b).

And f is convex.

Correction 8 (An example in infinite dimension ...). Let us consider the vector space

E0 =
{
u ∈ C2([a, b],R) : f(a) = f(b) = 0

}
,

provided with the C2–norm ‖u‖C2 = sup[a,b] |u|+ |u′|+ |u′′|. Let L,K : R3 → R be C2 and for all u ∈ E0,
we define

J(u) =

∫ b

a
L(t, u(t), u′(t)) dt and G(u) =

∫ b

a
K(t, u(t), u′(t)) dt .

(1) Show that J is differentiable and compute its differential.
(2) Show that if u∗ minimizes J in E0 then for all t ∈ [a, b],

d

dt

(
∂3L(t, u(t), u′(t))

)
= ∂2L(t, u(t), u′(t)) .

7Let ε > 0, v ∈ L2([0, 1]] and set C = ‖u‖L2 + ta2 + (1− t)b2. By density, let vε ∈ C([0, 1]) be such that ‖v− vε‖L2 ≤ ε
2C

.
We have∣∣∣∣∫ 1

0

(u− uk)v

∣∣∣∣ ≤
∣∣∣∣∫ 1

0

(u− uk)vε

∣∣∣∣ +

∣∣∣∣∫ 1

0

(u− uk)(v − vε)
∣∣∣∣ ≤

∣∣∣∣∫ 1

0

(u− uk)vε

∣∣∣∣︸ ︷︷ ︸
≤ ε

2
for k large enough

+ ‖u− uk‖L2‖v − vε‖L2︸ ︷︷ ︸
≤ ε

2

27



(3) Show that if u∗ minimizes J in E0 under the constraint G(u) = α with DG(u∗) 6= 0, then there
exists λ ∈ R such that for all t ∈ [a, b],

(20)
d

dt

(
∂3(L+ λK)(t, u(t), u′(t))

)
= ∂2(L+ λK)(t, u(t), u′(t)) .

(4) Show that if L,K are autonomous (independent of x1) then u∗ satisfies Erdmann’s condition:
there exists a constant µ ∈ R such that for all t ∈ [a, b],

(21) (L+ λK)(u(t), u′(t))− u′(t)∂2(L+ λK)(u(t), u′(t)) = µ .

(5) Apply it to the Catenary’s problem.
(6) Apply it to Dido problem: given two points A and B, determine the curve (of fixed length)

joining these two points and such that the area enclosed by the curve and the the segment [A,B]
is maximal.

Show that such a curve has constant curvature.

(1) J and G are differentiable, indeed, from exercise 6, for all h ∈ C1([a, b],R), thus for all h ∈ E0 =
C2([a, b],R),

J(u+ h)− J(u) = lu(h) + ru(h) ,

with lu linear and continuous, and ru(h) = o(‖h‖C1). As ‖u‖C1 ≤ ‖u‖C2 , lu : C2([a, b],R)→ R is
linear continuous with respect to ‖ · ‖C2 and ru(h) = o(‖h‖C2). Consequently J is differentiable
and DJ(u) = lu (lu restricted to C2([a, b],R)).

In addition, J is C1. Indeed, let u, h ∈ E0 s.t. ‖h‖C2 ≤ 1, then

‖DJ(u+ h)−DJ(u)‖op ≤
∫ b

a

∥∥∇L(t, u(t) + h(t), u′(t) + h′(t))− (t, u(t), u′(t))
∥∥ dt

and for all t ∈ [a, b], (t, u(t) + h(t), u′(t) + h′(t)) and (t, u(t), u′(t)) are contained in some fixed
compact set, in which ∇L is κ–Lipschitz (since C2). Hence

‖DJ(u+ h)−DJ(u)‖op ≤ κ
∫ b

a

∥∥(0, h(t), h′(t)
∥∥ dt ≤ κ(b− a)‖h‖C2 ,

and the continuity of DJ follows.
(2) See next question.
(3) Let us apply Lagrange multipliers theorem. J and G are C1 and the constraints are qualified if

and only if DG(u) 6= 0, hence there exists λ 6= 0 such that DJ(u∗) + λDG(u∗) = 0, that is, for
every h ∈ E0,∫ b

a
∂2(L+ λK)(t, u(t), u′(t))h(t) + ∂3(L+ λK)(t, u(t), u′(t))h′(t) dt = 0 .

As h(a) = h(b) = 0, it follows from by parts integration that∫ b

a

{
∂2(L+ λK)(t, u(t), u′(t))h(t)− d

dt
∂3(L+ λK)(t, u(t), u′(t))

}
h(t) dt = 0 .

Then, by the fundamental lemma of calculus of variations, (20) holds.
(4) Let us differentiate the left hand side of (21). For all t ∈ [a, b],

d

dt

{
(L+ λK)(u(t), u′(t))− u′(t)∂2(L+ λK)(u(t), u′(t))

}
= u′(t)∂1(L+ λK)(u(t), u′(t))− u′(t) d

dt
∂2(L+ λK)(u(t), u′(t))

= 0

thanks to the previous question.
(5) Assume that the chain is described as the graph of a regular function u over the segment [a, b].

Then the potential energy of the chain is proportional to the integral of the height of the chain
along the chain itself, that is

J(u) =

∫ b

a
u(t)

√
1 + u′(t)2 dt ,
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and the length constraint is then G(u) :=

∫ b

a

√
1 + u′(t)2 dt− l = 0. The problem of minimizing

J under the constraint G(u) = 0 falls in the scope of the previous questions when defining
L,K : R3 → R of class C2 as

L(x1, x2) = x1

√
1 + (x2)2 and K(x1, x2) =

√
1 + (x2)2 − l

b− a
.

Therefore, if u is a minimizer of J under the constraint G(u) = 0, either DG(u) = 0 (and this
corresponds to the minimal length possible l = b−a and u is equally constant to 08), either there
exists λ, µ ∈ R such that (21) holds. As

(L+ λK)(x1, x2) = (x1 + λ)
√

1 + x2
2 −

λl

b− a
and x2∂2(L+ λK)(x1, x2) = (x1 + λ)

x2
2√

1 + x2
2

,

and λl
b−a is a constant, (21) rewrites as ∃µ ∈ R s.t.

(u+ λ)
√

1 + (u′)2 − (u+ λ)
(u′)2√

1 + (u′)2
= µ ⇔ u+ λ = µ

√
1 + (u′)2 .

Setting v = u + λ, we obtain the differential equation v = µ
√

1 + (v′)2. Either µ = 0 and u is
constant (equal to λ = 0) and l = b− a, or v2 ≥ µ2 > 0 and for all t ∈ [a, b],

|v′(t)| =

√(
v(t)

µ

)2

− 1 .

On any interval where v′ is non zero, we conclude that v is of the form

v(t) = µ cosh

(
t+ c1

µ

)
or v(t) = µ cosh

(
−t+ c2

µ

)
= µ cosh

(
t− c2

µ

)
.

If v′(t) = 0 on some interval, then v(t) = µ or v(t) = −µ. When trying to glue those three
possible forms of solution at some point, then continuity and C2 regularity implie that

v(t) = µ cosh

(
t+ c

µ

)
, c ∈ R .

As v(a) = v(b) = λ and a < b, then

µ cosh

(
a+ c

µ

)
= µ cosh

(
a+ c

µ

)
= λ ⇒ a+ c = b+ c or a+ c = −b− c

whence c = −a+ b

2
and λ = µ cosh

(
b− a
2µ

)
. It remains to use the length constraint to determine

µ. As v = u+ λ = µ
√

1 + (u′)2,

l =
1

µ

∫ b

a
v(t) dt =

∫ b

a
cosh

(
t− a+b

2

µ

)
dt = µ

(
sinh

(
b− a
2µ

)
− sinh

(
a− b
2µ

))
= 2µ sinh

(
b− a
2µ

)
.

Eventually

u(t) = µ

(
cosh

(
t− a+b

2

µ

)
− cosh

(
b− a
2µ

))
with 2µ sinh

(
b− a
2µ

)
= l .

8Indeed, as ∂1K(u(t), u′(t)) = 0, DG(u) = 0 is equivalent to
d

dt
∂2K(u(t), u′(t)) = 0 so that their exists some β ∈ R such

that
u′√

1 + (u′)2
= β.

After easy computations, this leads to (u′)2 constant and by continuity, u′ constant. Hence u is affine and u(a) = u(b)
eventually imply that u is constant and l = b− a.

29


