Chargés de TD : Blanche Buet et Thomas Letendre.

Feuille 4 – Espace de Sobolev sur un intervalle

Exercice 1 (Convergence dominée L^p). Soient (X, μ) un espace mesuré et $p \in [1, +\infty[$. Soit $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions de X dans \mathbb{C} telle que :

- il existe $f: X \to \mathbb{C}$ telle que $f_n(x) \xrightarrow[n \to +\infty]{} f(x)$ pour μ -presque tout $x \in X$;
- il existe $g \in L^p(X, \mu)$ telle que pour tout $n \in \mathbb{N}$, $|f_n| \leq g$ presque partout.

Montrer que $f_n \xrightarrow[n \to +\infty]{} f$ dans $L^p(X, \mu)$.

Exercice 2 (Injection de Sobolev, cas I non borné). La proposition 1.8.5 du cours affirme que, si I est un intervalle ouvert borné, alors tout $u \in H^1(I)$ admet un représentant continu sur \overline{I} , et qu'il existe $C \geqslant 0$ tel que $\forall u \in H^1(I)$, $||u||_{\infty} \leqslant C||u||_{H^1}$. Le but de l'exercice est de montrer que ce résultat reste valable si on ne suppose pas I borné. Soit $I \subset \mathbb{R}$ un intervalle ouvert et soit $u \in H^1(I)$.

1. Montrer que u admet un représentant, encore noté u, tel que $|u(x) - u(y)| \leq |x - y|^{\frac{1}{2}} ||u'||_2$ pour tout $x, y \in I$. En déduire que u admet un unique représentant continu sur \overline{I} .

Dans la suite on identifiera u à son unique représentant continu.

- 2. Soit $J \subset I$ un intervalle de longueur $\ell \in]0, +\infty[$. Soit $x \in J$, montrer que pour tout $y \in J$, $|u(x)| \leq |u(y)| + \sqrt{\ell} ||u'||_2$. En déduire que $|u(x)| \leq \left(\frac{1}{\sqrt{\ell}} + \sqrt{\ell}\right) ||u||_{H^1}$ par intégration sur J.
- 3. Conclure qu'il existe $C\geqslant 0$ telle que pour tout $u\in H^1(I), \ \|u\|_{\infty}:=\sup_{x\in \overline{I}}|u(x)|\leqslant C\|u\|_{H^1}.$
- 4. Soit $x \in \overline{I}$, montrer que $\Phi_x : u \mapsto u(x)$ est une forme linéaire continue sur $H^1(I)$.

Exercice 3 (Densité de $\mathcal{D}(\mathbb{R})$). Soient I un intervalle ouvert, le but de l'exercice est de montrer que (l'espace des restrictions à I des fonctions de) $\mathcal{D}(\mathbb{R})$ est dense dans $(H^1(I), \|\cdot\|_{H^1})$.

- 1. On considère I =]a, b[, où $-\infty < a < b < +\infty$. Soit $u \in H^1(I)$, montrer qu'il existe $u_0 \in H^1_0(I)$ et $v \in \mathcal{D}(\mathbb{R})$ tels que $u = u_0 + v_{|I|}$. En déduire que $\mathcal{D}(\mathbb{R})$ est dense dans $H^1(I)$, au sens où pour tout $u \in H^1(I)$ il existe une suite $(\psi_n)_{n \in \mathbb{N}}$ d'éléments de $\mathcal{D}(\mathbb{R})$ telle que $(\psi_n)_{|I|} \xrightarrow[n \to +\infty]{H^1} u$ Indication. Rappelons que pour $f \in H^1(I)$ on a $f \in H^1_0(I)$ si et seulement si f(a) = 0 = f(b).
- 2. Considérons maintenant le cas $I = \mathbb{R}$. Soit $\chi \in \mathcal{D}(\mathbb{R})$ à valeurs dans [0,1], constante à 1 sur [-1,1] et supportée dans [-2,2]. Pour tout $n \in \mathbb{N}^*$ on pose $\chi_n : x \mapsto \chi(\frac{x}{n})$. Pour tout $u \in H^1(\mathbb{R})$, montrer que $\chi_n u \xrightarrow[n \to +\infty]{H^1} u$.
- 3. Montrer que $\mathcal{D}(\mathbb{R})$ est dense dans $H^1(\mathbb{R})$. Que dire de l'inclusion $H^1_0(\mathbb{R}) \subset H^1(\mathbb{R})$?
- 4. Pour $I \neq \mathbb{R}$, est-ce que $\mathcal{D}(I)$ est dense dans $H^1(I)$?
- 5. Il reste à traiter le cas d'intervalles du type $]-\infty, a[$ ou $]a, +\infty[$. Soit $I=]0, +\infty[$, en combinant les arguments utilisés dans les questions 1 et 2 montrer que $\mathcal{D}(\mathbb{R})$ est dense dans $H^1(I)$.

Exercice 4 (Dérivation d'un produit et intégration par parties dans H^1). Soit $I \subset \mathbb{R}$ un intervalle ouvert et soient $u, v \in H^1(I)$.

- 1. Montrer que $uv \in H^1(I)$ et que (uv)' = u'v + uv'.
- 2. En déduire que pour tout $[a,b] \subset \overline{I}$ la formule d'intégration par parties suivantes est valide :

$$\int_{a}^{b} u'(x)v(x) dx = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} u(x)v'(x) dx.$$
 (1)

Exercice 5 (Singularité ponctuelle). Soient I =]a, b[et J =]b, c[, avec $-\infty \le a < b < c \le +\infty$. Soient $u \in H^1(I)$ et $v \in H^1(J)$, on note $w = u\mathbf{1}_I + v\mathbf{1}_J$.

- 1. Est-ce que $w \in H^1(]a, c[)$?

 Indication. Calculer la dérivée de w.
- 2. Expliquer comment prolonger $u \in H^1(\mathbb{R}_+^*)$ en $\widetilde{u} \in H^1(\mathbb{R})$ tel que $\|\widetilde{u}\|_{H^1(\mathbb{R})} \leqslant \sqrt{2} \|u\|_{H^1(\mathbb{R}_+^*)}$.

Exercice 6 (La règle de la chaîne). Soit $G \in \mathcal{C}^1(\mathbb{R})$ telle que G(0) = 0. Soit I un intervalle ouvert, le but de l'exercice est de montrer que pour tout $u \in H^1(I)$, on a $G \circ u \in H^1(I)$ et

$$(G \circ u)' = (G' \circ u)u'. \tag{2}$$

- 1. Soit $u \in H^1(I)$, montrer que $G' \circ u$ est bornée. En déduire que $(G' \circ u)u'$ et $G \circ u$ sont L^2 .
- 2. Conclure en utilisant un argument de densité.
- 3. Que dire de l'hypothèse G(0) = 0 lorsque I est borné?

Définition (Convergence faible). Soit $(H, \langle \cdot, \cdot \rangle)$ un espace de Hilbert, on dit que $(x_n)_{n \in \mathbb{N}}$ converge faiblement vers x dans H si $\langle x_n, y \rangle \xrightarrow[n \to +\infty]{} \langle x, y \rangle$ pour tout $y \in H$.

Théorème 1. Soit $(x_n)_{n\in\mathbb{N}}$ une suite bornée dans l'espace de Hilbert $(H, \langle \cdot , \cdot \rangle)$, alors on peut extraire de $(x_n)_{n\in\mathbb{N}}$ une sous-suite faiblement convergente.

Exercice 7 (Inégalité de Poincaré générale). Soit I un intervalle ouvert borné et soit V un sous-espace fermé de $H^1(I)$ ne contenant aucune fonction constante non nulle.

1. Donner au moins trois exemples de sous-espaces V comme ci-dessus.

On se propose de montrer qu'il existe $C \ge 0$ telle que $||u||_2 \le C||u'||_2$ pour tout $u \in V$. On va raisonner par l'absurde, en supposant qu'il n'existe pas de tel $C \ge 0$.

- 2. Prouver qu'il existe alors une suite (u_n) dans V telle que $||u_n'||_2 \xrightarrow[n \to +\infty]{} 0$ et $\forall n \in \mathbb{N}, ||u_n||_2 = 1$.
- 3. Montrer qu'on peut de plus supposer que (u_n) converge faiblement dans V vers une fonction u.
- 4. Montrer que $\int_I u'_n(x)v(x) dx \xrightarrow[n \to +\infty]{} \int_I u'(x)v(x) dx$ pour tout $v \in L^2(I)$.
- 5. Prouver que u = 0.
- 6. Démontrer que $(u_n)_{n\in\mathbb{N}}$ admet une sous-suite uniformément convergente sur I. Indication. On pourra utiliser le théorème d'Ascoli.
- 7. Conclure.

Exercice 8 (Inégalité de Gagliardo-Nirenberg — facultatif). On considère un intervalle ouvert I non borné. Le but de l'exercice est de prouver que pour tout $u \in H^1(I)$

$$||u||_{\infty} \leqslant \sqrt{2}||u||_{2}^{\frac{1}{2}}||u'_{2}||_{2}^{\frac{1}{2}}.$$
 (3)

- 1. Soit $u \in \mathcal{D}(\mathbb{R})$. Pour tout x et $y \in I$, montrer que $u(x)^2 = u(y)^2 + 2 \int_x^y u(t) u'(t) dt$. En déduire que la restriction de u à I vérifie (3).
- 2. Montrer que (3) est vérifiée pour tout $u \in H^1(I)$.
- 3. En considérant $I =]0, +\infty[$, montrer que la constante $\sqrt{2}$ apparaissant dans (3) est optimale.