
AN

N
A
L
E
S
D
E

L’INSTI
T

U
T
F
O
U
R

IE
R

ANNALES
DE

L’INSTITUT FOURIER

Blanche BUET

Quantitative conditions of rectifiability for varifolds
Tome 65, no 6 (2015), p. 2449-2506.

<http://aif.cedram.org/item?id=AIF_2015__65_6_2449_0>

© Association des Annales de l’institut Fourier, 2015,
Certains droits réservés.

Cet article est mis à disposition selon les termes de la licence
CREATIVE COMMONS ATTRIBUTION – PAS DE MODIFICATION 3.0 FRANCE.
http://creativecommons.org/licenses/by-nd/3.0/fr/

L’accès aux articles de la revue « Annales de l’institut Fourier »
(http://aif.cedram.org/), implique l’accord avec les conditions générales
d’utilisation (http://aif.cedram.org/legal/).

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://aif.cedram.org/item?id=AIF_2015__65_6_2449_0
http://creativecommons.org/licenses/by-nd/3.0/fr/
http://aif.cedram.org/
http://aif.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Ann. Inst. Fourier, Grenoble
65, 6 (2015) 2449-2506

QUANTITATIVE CONDITIONS OF RECTIFIABILITY
FOR VARIFOLDS

by Blanche BUET (*)

Abstract. — Our purpose is to state quantitative conditions ensuring the
rectifiability of a d–varifold V obtained as the limit of a sequence of d–varifolds
(Vi)i which need not to be rectifiable. More specifically, we introduce a sequence
{Ei}i of functionals defined on d–varifolds, such that if supi Ei(Vi) < +∞ and
Vi satisfies a uniform density estimate at some scale βi, then V = limi Vi is d–
rectifiable.

The main motivation of this work is to set up a theoretical framework where
curves, surfaces, or even more general d–rectifiable sets minimizing geometrical
functionals (like the length for curves or the area for surfaces), can be approximated
by “discrete” objects (volumetric approximations, pixelizations, point clouds etc.)
minimizing some suitable “discrete” functionals.
Résumé. — L’objet de ce travail est d’énoncer des conditions quantitatives

garantissant la rectifiabilité de la limite d’une suite de varifolds qui ne sont pas
nécessairement rectifiables. Dans ce but, on définit, dans l’espace des varifolds, des
fonctionnelles Ei de telle sorte que : si supi Ei(Vi) < +∞ et si, aux échelles βi → 0,
la densité d–dimensionnelle de Vi vérifie un contrôle uniforme, alors V = limi Vi

est d–rectifiable.
Ce travail participe à la mise en place d’un cadre théorique pour l’approximation

des courbes, surfaces ou de façon plus générale, des ensembles d–rectifiables mini-
misant des fonctionnelles géométriques, par des objets “discrets” (approximations
volumiques, nuages de points etc.) minimisant des fonctionnelles géométriques dis-
crétisées.

Introduction

The set of regular surfaces lacks compactness properties (for Hausdorff
convergence for instance), which is a problem when minimizing geometric

Keywords: quantitative rectifiability, varifolds.
Math. classification: 28A75,49Q15.
(*) I would like to thank my PhD advisors Gian Paolo Leonardi and Simon Masnou for
their constant support and encouragement.



2450 Blanche BUET

energies defined on surfaces. In order to gain compactness, the set of sur-
faces can be extended to the set of varifolds and endowed with a notion
of convergence (weak–∗ convergence of Radon measures). Nevertheless, the
problem turns to be the following: how to ensure that a weak–∗ limit of var-
ifolds is regular (at least in the weak sense of rectifiability)? W. K. Allard
(see [1]) answered this question in the case where the weak–∗ converging
sequence is made of weakly regular surfaces (rectifiable varifolds to be pre-
cise). But what about the case when the weak–∗ converging sequence is
made of more general varifolds? Assume that we have a sequence of vol-
umetric approximations of some set M , how can we know if M is regular
(d–rectifiable for some d), knowing only its successive approximations ?

As a set and its volumetric approximations can be endowed with a struc-
ture of varifold (as we will see), this problem can be formulated in terms of
varifolds: we are interested in quantitative conditions on a given sequence
of d–varifolds ensuring that the limit (when it exists) is rectifiable. Before
going into technical details, let us consider the problem of rectifiability in
simplified settings.
First, let f : R → R. We are looking for conditions ensuring that f is

differentiable (in some sense). The most simple answer is to impose that the
difference quotient has a finite limit everywhere. But assume that moreover,
we ask for something more quantitative, that is to say some condition that
could be expressed through bounds on some well chosen quantities (for
instance, from a numerical point of view, it is easier to deal with bounded
quantities than with the existence of a limit)). We will refer to this kind of
condition as “quantitative conditions” (see also [6]). There exists an answer
by Dorronsoro [7] (we give here a simplified version, see [5]).

Theorem 0.1 (see [7] and [5]). — Let f : Rd → R be locally integrable
and let q > 1 such that q < 2d

d− 2 if d > 1. Then, the distributional gradient
of f is in L2 if and only if∫

Rd

∫ 1

0
γq(x, r)2 dr

r
dx < +∞

with γq(x, r)q = inf
a affine
function

1
rd+1

∫
Br(x)

|f(y)− a(y)|q dy

ANNALES DE L’INSTITUT FOURIER



QUANTITATIVE RECTIFIABILITY FOR VARIFOLDS 2451

The function γq penalizes the distance from f to its best affine approxi-
mation locally everywhere. This theorem characterizes the weak differentia-
bility (in the sense of a L2 gradient) quantitatively in terms of L2–estimate
on γq (with the singular weight 1

r ).

Now, we take a setM in Rn and we ask the same question: how to ensure
that this set is regular (meaning d–rectifiable for some d)? Of course, we
are still looking for quantitative conditions. This problem has been studied
by P.W. Jones (for 1–rectifiable sets) in connection with the travelling
salesman problem ([9]) then by K. Okikiolu ([12]), by S. Semmes and G.
David ([4]) and by H. Pajot ([13]). As one can see in the following result
stated by H. Pajot in [13], the exhibited conditions are not dissimilar to
Dorronsoro’s. We first introduce the Lq generalization of the so called Jones’
β numbers, (see [9] for Jones’ β numbers and [13] for the Lq generalization):

Definition 0.2. — Let M ⊂ Rn and d ∈ N, d 6 n.

β∞(x, r,M) = inf
P affine d−plane

sup
y∈M∩Br(x)

d(y, P )
r

if Br(x) ∩M 6= ∅ ,

β∞(x, r,M) = 0 if Br(x) ∩M = ∅ ,

βq(x, r,M) = inf
P affine d−plane

(
1
rd

∫
y∈Br(x)∩M

(
d(y, P )
r

)q
dHd(y)

) 1
q

if 1 6 q < +∞ .

The βq(x, r,M) measure the distance from the set M to its best affine
approximation at a given point x and a given scale r.

Theorem 0.3 ([13]). — Let M ⊂ Rn compact with Hd(M) < +∞. Let
q be such that 1 6 q 6∞ if d = 1

1 6 q < 2d
d− 2 if d > 2 .

We assume that for Hd–almost every x ∈M , the following properties hold:

(i) θd∗(x,M) = lim inf
r↓0

Hd(M ∩Br(x))
ωdrd

> 0,

(ii)
∫ 1

r=0
βq(x, r,M)2 dr

r
<∞.

Then M is d–rectifiable.

TOME 65 (2015), FASCICULE 6
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Let us get closer to our initial question: now we consider the same ques-
tion in the context of varifolds. Recall that from a mathematical point of
view, a d–varifold V in Ω ⊂ Rn is a Radon measure on the product Ω×Gd,n,
where

Gd,n = {d–dimensional subspaces of Rn } .
Varifolds can be loosely seen as a set of generalized surfaces: let M be a
d–submanifold (or a d–rectifiable set) in Ω and denote by TxM its tangent
plane at x, then the Radon measure V (x, P ) = Hd|M (x)⊗ δTxM (P ) is a d–
varifold associated toM , involving both spatial and tangential information
on M . The measure obtained by projecting V on the spatial part Ω is
called the mass ‖V ‖. In the previous specific case where V comes from
a d–rectifiable set M then the mass is ‖V ‖ = Hd|M . See the next section
for more details about varifolds. We can now state the first result that we
obtain in this paper about quantitative conditions of rectifiability in the
context of varifolds:

Theorem 0.4. — Let Ω ⊂ Rn be an open set and let V be a d–varifold
in Ω with finite mass ‖V ‖(Ω) < +∞. Assume that:

(i) there exist 0 < C1 < C2 such that for ‖V ‖–almost every x ∈ Ω and
for every r > 0,

(0.1) C1r
d 6 ‖V ‖(Br(x)) 6 C2r

d ,

(ii)
∫

Ω×Gd,n
E0(x, P, V ) dV (x, P ) < +∞, where

E0(x, P, V ) =
∫ 1

r=0

1
rd

∫
y∈Br(x)∩Ω

(
d(y − x, P )

r

)2
d‖V ‖(y) dr

r

defines the averaged height excess.
Then V is a rectifiable d–varifold.

The first assumption is called Ahlfors-regularity. It implies in particular
that V is d–dimensional but with some uniform control on the d–density.
Adding the second assumption both ensures that the support M of the
mas measure ‖V ‖ is a d–rectifiable set and that the tangential part of V
is coherent with M , that is to say V = ‖V ‖ ⊗ δTxM . We will refer to
these two conditions as static quantitative conditions of rectifiability for a
given d–varifold, by opposition to the next conditions, involving the limit
of a sequence of d–varifolds, which we will refer to as the approximation
case. These static conditions are not very difficult to derive from Pajot’s
Theorem, the difficult part is the next one: the approximation case.

ANNALES DE L’INSTITUT FOURIER



QUANTITATIVE RECTIFIABILITY FOR VARIFOLDS 2453

Now we consider a sequence (Vi)i of d–varifolds (weakly–∗) converging to
a d–varifold V .The problem is to find quantitative conditions on (Vi)i that
ensure the rectifiability of V ? The idea is to consider the static conditions
with uniform bounds and using a notion of scale encoded by the parameters
αi and βi in the following result:

Theorem 0.5. — Let Ω ⊂ Rn be an open set and let (Vi)i be a se-
quence of d–varifolds in Ω weakly–∗ converging to some d–varifold V of
finite mass ‖V ‖(Ω) < +∞. Fix two decreasing and infinitesimal (tending
to 0) sequences of positive numbers (αi)i and (βi)i and assume that:

(i) there exist 0 < C1 < C2 such that for ‖Vi‖–almost every x ∈ Ω and
for every βi < r < d(x,Ωc),

C1r
d 6 ‖Vi‖(Br(x)) 6 C2r

d ,

(ii) sup
i

∫
Ω×Gd,n

Eαi(x, P, Vi) dVi(x, P ) < +∞, where

Eα(x, P,W ) =
∫ 1

r=αi

1
rd

∫
y∈Br(x)∩Ω

(
d(y − x, P )

r

)2
d‖W‖(y) dr

r

denotes the α–approximate averaged height excess.
Then V is a rectifiable d–varifold.

We stress that the sequence (Vi)i in Theorem 0.5 is not necessarily made
of rectifiable d–varifolds. The parameters αi and βi allow to study the
varifolds at a large scale (from far away). The main difficulty in the proof
of Theorem 0.5 is to understand the link between
− the choice of αi ensuring a good convergence of the successive approx-

imate averaged height excess energies Eαi(x, P, Vi) to the averaged
height excess energy E0(x, P, V )

− and a notion of convergence speed of the sequence (Vi)i obtained
thanks to a strong characterization of weak–∗ convergence.

In the following example, we can guess that the parameters αi and βi must
be large with respect to the size of the mesh. Loosely speaking, in figure (a),
even in the smallest ball, the grey approximation “looks” 1–dimensional.
On the contrary, if we continue zooming like in figure (b), the grey approx-
imation “looks” 2–dimensional. The issue is to give a correct sense to this
intuitive fact.
The plan of the paper is the following: in section 1 we collect some

basic facts about rectifiability and varifolds that we need thereafter. Then
in section 2, we state and prove quantitative conditions of rectifiability
for varifolds in the static case. In section 3, we first establish a result of

TOME 65 (2015), FASCICULE 6
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(a) (b)

uniform convergence for the pointwise averaged height excess energies Eα
thanks to a strong characterization of weak–∗ convergence. This allows us
to state and prove quantitative conditions of rectifiability for varifolds in
the approximation case. In the appendix, we consider some sequence of
d–varifolds weakly–∗ converging to some rectifiable d–varifold V = θHd|M ⊗
δTxM (for some d–rectifiable set M) and we make a connection between
the minimizers of Eαi(x, ·, Vi), with respect to P ∈ Gd,n, and the tangent
plane TxM to M at x.

1. Some facts about rectifiability and varifolds

This section contains basic definitions and facts about rectifiability and
varifolds. We start by fixing some notations.

From now on, we fix d, n ∈ N with 1 6 d < n and an open set Ω ⊂ Rn.
Then we adopt the following notations.
− Ln is the n–dimensional Lebesgue measure.
− Hd is the d–dimensional Hausdorff measure.
− Ckc (Ω) is the space of continuous compactly supported functions of

class Ck in Ω.
− Br(x) = {y | |y − x| < r} is the open ball of center x and radius r.
− Gd,n = {P ⊂ Rn |P is a vector subspace of dimension d}.
− A4B = (A ∪B) \ (A ∩B) is the symmetric difference.
− Lipk(Ω) is the space of Lipschitz functions in Ω with Lipschitz con-

stant less or equal to k.
− ωd = Ld(B1(0)) is the d–volume of the unit ball in Rd.
− For P ∈ Gd,n, ΠP is the orthogonal projection onto P .

ANNALES DE L’INSTITUT FOURIER



QUANTITATIVE RECTIFIABILITY FOR VARIFOLDS 2455

− Let ω and Ω be two open sets then ω ⊂⊂ Ω means that ω is relatively
compact in Ω.

− Let µ be a measure in some measurable topological space, then suppµ
denotes the topological support of µ.

− Let A ⊂ Ω then Ac = Ω \A denotes the complementary of A in Ω.
− Given a measure µ, we denote by |µ| its total variation.

1.1. Radon measure and weak–∗ convergence

We recall here some useful properties concerning vector-valued Radon
measures and weak–∗ convergence. See [8] and [2] for more details.

Definition 1.1 (weak–∗ convergence of Radon measures, [2, Def. 1.58]).
Let µ and (µi)i be Rm–vector valued Radon measures in Ω ⊂ Rn. We say
that µi weakly–∗ converges to µ, denoted µi

∗−−−⇀
i→∞

µ if for every ϕ ∈
Cc(Ω,Rm), ∫

Ω
ϕ · dµi −−−→

i→∞

∫
Ω
ϕ · dµ .

Thanks to Banach-Alaoglu weak compactness theorem, we have the fol-
lowing result in the space of Radon measures.

Proposition 1.2 (Weak–∗ compactness, [2, Thm. 1.59 and 1.60]). —
Let (µi)i be a sequence of Radon measures in some open set Ω ⊂ Rn such
that supi |µi|(Ω) < ∞ then there exist a finite Radon measure µ and a
subsequence (µϕ(i))i weakly–∗ converging to µ.

Let us now study the consequences of weak–∗ convergence on Borel sets.

Proposition 1.3 ([8, §1.9]). — Let (µi)i be a sequence of positive
Radon measures weakly–∗ converging to µ in some open set Ω ⊂ Rn. Then,

(1) for every compact set K ⊂ Ω, lim supi µi(K) 6 µ(K) and for every
open set U ⊂ Ω, µ(U) 6 lim infi µi(U).

(2) limi µi(B) = µ(B) for every Borel set B ⊂ Ω such that µ(∂B) = 0.

Each one of the two properties in Proposition 1.3 is actually a character-
ization of weak–∗ convergence. Let us state a similar result in the vector
case.

Proposition 1.4 ([2, Prop. 1.62(b)]). — Let Ω ⊂ Rn be an open set
and let (µi)i be a sequence of Rm–vector valued Radon measures weakly–∗
converging to µ. Assume in addition that the total variations |µi| weakly–∗

TOME 65 (2015), FASCICULE 6
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converge to some positive Radon measure λ. Then |µ| 6 λ and for every
Borel set B ⊂ Ω such that λ(∂B) = 0, µi(B)→ µ(B). More generally,∫

Ω
u · dµi −→

∫
Ω
u · dµ

for every measurable bounded function u whose discontinuity set has zero
λ–measure.
We end this part with a result saying that, for a given Radon measure

µ, among all balls centred at a fixed point, at most a countable number of
them have a boundary with non zero µ–measure.
Proposition 1.5. — Let µ be a Radon measure in some open set Ω ⊂

Rn. Then,
(i) For a given x ∈ Ω, the set of r ∈ R+ such that µ(∂Br(x)) > 0 is at

most countable. In particular,

L1{r ∈ R+ | µ(∂Br(x) ∩ Ω) > 0} = 0 .

(ii) For almost every r ∈ R+,

µ {x ∈ Ω | µ(∂Br(x) ∩ Ω) > 0} = 0 .
Proof. — The first point is a classical property of Radon measures and

comes from the fact that monotone functions have at most a countable set
of discontinuities, applied to r 7→ µ(Br(x)). For the second point, we use
Fubini Theorem to get∫

r∈R+

µ {x ∈ Ω | µ(∂Br(x) ∩ Ω) > 0} dr

=
∫
x∈Ω

∫
r∈R+

1{(x,r) | µ(∂Br(x)∩Ω)>0}(x, r) dµ(x) dr

=
∫
x∈Ω
L1{r ∈ R+ | µ(∂Br(x) ∩ Ω) > 0} dµ(x) = 0 ,

thanks to (i). �

These basic results will be widely used throughout this paper.

1.2. Rectifiability and approximate tangent space

Definition 1.6 (d–rectifiable sets, [2, Def. 2.57]). — Let M ⊂ Rn.
M is said to be countably d–rectifiable if there exist countably many Lip-
schitz functions fi : Rd → Rn such that

M ⊂M0 ∪
⋃
i∈N

fi(Rd) with Hd(M0) = 0 .

ANNALES DE L’INSTITUT FOURIER
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If in addition Hd(M) < +∞ then M is said d–rectifiable.

Actually, it is equivalent to require that M can be covered by countably
many Lipschitz d–graphs up to a Hd–negligible set and thanks to Whit-
ney extension theorem, one can ask for C1 d–graphs. We can now define
rectifiability for measures.

Definition 1.7 (d–rectifiable measures, [2, Def. 2.59]). — Let µ be a
positive Radon measure in Rn. We say that µ is d–rectifiable if there exist
a countably d–rectifiable set M and a Borel positive function θ such that
µ = θHd|M .

Thus, a set M is countably d–rectifiable if and only if Hd|M is a d–
rectifiable measure. When blowing up at a point, rectifiable measures have
the property of concentrating on affine planes (at almost any point). This
property leads to a characterization of rectifiable measures. Let us define
ψx,r as

ψx,r(y) = y − x
r

.

Definition 1.8 (Approximate tangent space to a measure, [2, Def.2.79]).
Let µ be a positive Radon measure in Rn. We say that µ has an approximate
tangent space P with multiplicity θ ∈ R+ at x if P ∈ Gd,n is a d–plane
such that

1
rd
ψx,r#µ

∗−−⇀ θHd|P as r ↓ 0.

That is,
1
rd

∫
ϕ

(
y − x
r

)
dµ(y) −−→

r↓0
θ

∫
P

ϕ(y) dHd(y) ∀ϕ ∈ Cc(Rn) .

In the sequel the approximate tangent plane to M (resp. µ) at x is
denoted by TxM (resp. Txµ). As we said, this provides a way to characterize
rectifiability:

Theorem 1.9 ([2, Thm. 2.83]). — Let µ be a positive Radon measure
in Rn.

(1) If µ = θHd|M with M countably d–rectifiable, then µ admits an
approximate tangent plane with multiplicity θ(x) for Hd–almost
any x ∈M .

(2) If there exists a Borel set S such that µ(Rn \ S) = 0 and if µ
admits an approximate tangent plane with multiplicity θ(x) > 0
for Hd–almost every x ∈ S then S is countably d–rectifiable and
µ = θHd|S .

TOME 65 (2015), FASCICULE 6
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There are other characterizations of rectifiability in terms of density (see
for instance [10]). Let us point out an easy consequence of the existence of
a tangent plane at a given point:

Proposition 1.10. — Let µ be a positive Radon measure in Rn. Let
x ∈ Rn, P ∈ Gd,n and assume that µ has an approximate tangent space
Txµ with multiplicity θ(x) > 0 at x. Then for all β > 0,

1
rd
µ {y ∈ Br(x) | d(y − x, P ) < βr}

−−−→
r→0

θ(x)Hd {y ∈ Txµ ∩B1(0) | d(y, P ) < β} .

Proof. — Indeed, let ψx,r : y 7→ y−x
r , then 1

rd
ψx,r#µ weakly star con-

verges to θ(x)Hd|xµ so that for any Borel set A such that Hd|Txµ(∂A) =
Hd(∂A ∩ Txµ) = 0, we have

(1.1) 1
rd
ψx,r#µ(A) = 1

rd
µ
(
ψ−1
x,r(A)

)
−−−−→
r→0+

θ(x)Hd (Txµ ∩A) .

The conclusion follows applying (1.1) with A = {y ∈ B1(0) | d(y, P ) < β}
so that for any 0 < β < 1,

ψ−1
x,r(A) = {y ∈ Br(x) | d(y − x, P ) > βr} and Hd(A ∩ P ) = 0 .

�

1.3. Some facts about varifolds

We recall here a few facts about varifolds, (for more details, see for in-
stance [14]). As we have already mentioned, the space of varifolds can be
seen as a space of generalized surfaces. However, in this part we give ex-
amples showing that, not only rectifiable sets, but also objects like point
clouds or volumetric approximations can be endowed with a varifold struc-
ture. Then we define the first variation of a varifold which is a generalized
notion of mean curvature, and we recall the link between the boundedness
of the first variation and the rectifiability of a varifold. We also introduce a
family of volumetric discretizations endowed with a varifold structure. They
will appear all along this paper in order to illustrate problems and strate-
gies to solve them. We focus on this particular family of varifolds because
they correspond to the volumetric approximations of sets that motivated
us initially.

ANNALES DE L’INSTITUT FOURIER
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1.3.1. Definition of varifolds

We recall that Gd,n = {P ⊂ Rn |P is a vector subspace of dimension d}.
Let us begin with the notion of rectifiable d–varifold.

Definition 1.11 (Rectifiable d–varifold). — Given an open set Ω ⊂ Rn,
letM be a countably d–rectifiable set and θ be a non negative function with
θ > 0 Hd–almost everywhere in M . A rectifiable d–varifold V = v(M, θ) in
Ω is a positive Radon measure on Ω×Gd,n of the form V = θHd|M ⊗ δTxM
i.e. for all ϕ ∈ Cc(Ω×Gd,n,R),∫

Ω×Gd,n
ϕ(x, T ) dV (x, T ) =

∫
M

ϕ(x, TxM) θ(x) dHd(x)

where TxM is the approximative tangent space at x which existsHd–almost
everywhere inM . The function θ is called the multiplicity of the rectifiable
varifold.

Remark 1.12. — We are dealing with measures on Ω×Gd,n, but we did
not mention the σ–algebra we consider. We can equip Gd,n with the metric

d(T, P ) = ‖ΠT −ΠP ‖

with ΠT ∈ Mn(R) being the matrix of the orthogonal projection onto T
and ‖ ·‖ a norm onMn(R). We consider measures on Ω×Gd,n with respect
to the Borel algebra on Ω×Gd,n.

Let us turn to the general notion of varifold:

Definition 1.13 (Varifold). — Let Ω ⊂ Rn be an open set. A d–varifold
in Ω is a positive Radon measure on Ω×Gd,n.

Remark 1.14. — As Ω×Gd,n is locally compact, Riesz Theorem allows
to identify Radon measures on Ω × Gd,n and continuous linear forms on
Cc(Ω×Gd,n) (we used this fact in the definition of rectifiable d–varifolds)
and the convergence in the sense of varifolds is then the weak–∗ conver-
gence.

Definition 1.15 (Convergence of varifolds). — A sequence of d–vari-
folds (Vi)i weakly–∗ converges to a d–varifolds V in Ω if, for all ϕ ∈ Cc(Ω×
Gd,n), ∫

Ω×Gd,n
ϕ(x, P ) dVi(x, P ) −−−→

i→∞

∫
Ω×Gd,n

ϕ(x, P ) dV (x, P ) .

We now give some examples of varifolds:

TOME 65 (2015), FASCICULE 6
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Example 1.16. — Consider a straight line D ⊂ R3, then the measure
v(D) = H1

|D ⊗ δD is the canonical 1–varifold associated to D.

Example 1.17. — Consider a polygonal curve M ⊂ R2 consisting of 8
line segments S1, . . . , S8 of directions P1, . . . , P8 ∈ G1,2, then the measure
v(M) =

∑8
i=1H1

|Si ⊗ δPi is the canonical varifold associated to M .

(a) Polygonal curve (b) Point cloud

Example 1.18. — Consider a d–submanifold M ⊂ Rn. According to the
definition of rectifiable d–varifolds, the canonical d–varifold associated to
M is v(M) = Hd⊗δTxM or v(M, θ) = θHd⊗δTxM adding some multiplicity
θ : M → R+.

Example 1.19 (Point cloud). — Consider a finite set of points {xj}Nj=1 ⊂
Rn with additional information of masses {mj}Nj=1 ⊂ R+ and tangent
planes {Pj}j=1...N ⊂ Gd,n then the measure

N∑
j=1

mjδxj ⊗ δPj

defines a d–varifolds associated with the point cloud.

Definition 1.20 (Mass). — If V = v(M, θ) is a d–rectifiable varifold,
the measure θHd|M is called the mass of V and denoted by ‖V ‖. For a
general varifold V , the mass of V is the positive Radon measure defined by
‖V ‖(B) = V (π−1(B)) for every B ⊂ Ω Borel, with{

π : Ω×Gd,n → Ω
(x, S) 7→ x

For a curve, the mass is the length measure, for a surface, it is the area
measure, for the previous point cloud, the mass is

∑
jmjδxj . The mass

loses the tangent information and keeps only the spatial part.
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1.3.2. First variation of a varifold

The set of d–varifolds is endowed with a notion of generalized curvature
called first variation. Let us recall the divergence theorem on a submanifold:

Theorem 1.21 (Divergence theorem). — Let Ω ⊂ Rn be an open set
and let M ⊂ Rn be a d–dimensional C2– submanifold. Then, for all X ∈
C1
c(Ω,Rn),∫

Ω∩M
divTxMX(x) dHd(x) = −

∫
Ω∩M

H(x) ·X(x) dHd(x) ,

where H is the mean curvature vector.

For P ∈ G and X = (X1, . . . , Xn) ∈ C1
c(Ω,Rn), the operator divP is

defined as

divP (x) =
n∑
j=1
〈∇PXj(x), ej〉 =

n∑
j=1
〈ΠP (∇Xj(x)), ej〉

with (e1, . . . , en) canonical basis of Rn.

This variational approach is actually a way to define mean curvature that
can be extended to a larger class than C2–manifolds: the class of varifolds
with bounded first variation. We can now define the first variation of a
varifold.

Definition 1.22 (First variation of a varifold). — The first variation
of a d–varifold in Ω ⊂ Rn is the linear functional

δV : C1
c(Ω,Rn) → R
X 7→

∫
Ω×Gd,n divPX(x) dV (x, P )

This linear functional is generally not continuous with respect to the C0
c

topology. When it is true, we say that the varifold has locally bounded first
variation:

Definition 1.23. — We say that a d–varifold on Ω has locally bounded
first variation when the linear form δV is continuous that is to say, for
every compact set K ⊂ Ω there is a constant cK such that for every X ∈
C1
c(Ω,Rn) with suppX ⊂ K,

|δV (X)| 6 cK sup
K
|X| .

Now, if a d–varifold V has locally bounded first variation, the linear form
δV can be extended into a continuous linear form on Cc(Ω,Rn) and then
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by Riesz Theorem, there exists a Radon measure on Ω (still denoted δV )
such that

δV (X) =
∫

Ω
X · δV for every X ∈ Cc(Ω,Rn)

Thanks to Radon-Nikodym Theorem, we can derive δV with respect to
‖V ‖ and there exist a function H ∈

(
L1
loc(Ω, ‖V ‖)

)n and a measure δVs
singular to ‖V ‖ such that

δV = −H‖V ‖+ δVs .

The function H is called the generalized mean curvature vector. Thanks
to the divergence theorem, it properly extends the classical notion of mean
curvature for a C2 submanifold.

1.3.3. Another example: a family of volumetric approximations endowed
with a varifold structure

Let us explain what we mean by volumetric approximation. For us, a
mesh of an open set Ω is a countable and locally finite partition

K =
⊔
K∈K

K

of Ω, no other assumptions on the shape of the cells or on the geometry of
the mesh are needed except that the size of the mesh

δ = sup
K∈K

diamK < +∞

is finite. Given a d–rectifiable set M ⊂ Rn (a curve, a surface...) and a
mesh K, we can define for any cell K ∈ K, a mass mK (the length of the
piece of curve in the cell, the area of the piece of surface in the cell) and a
mean tangent plane PK as

mK = Hd(M ∩K) and PK ∈ arg min
S∈Gd,n

∫
M∩K

|TxM − S|2 dHd(x) ,

and similarly, given a rectifiable d–varifold V , defining

mK = ‖V ‖(K) and PK ∈ arg min
S∈Gd,n

∫
K×Gd,n

|P − S|2 dV (x, P ) ,

gives what we call a volumetric approximation of V . We now introduce the
family of varifolds of this form:
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Example 1.24. — Consider a mesh K and
a family {mK , PK}K∈K ⊂ R+ ×Gd,n. We
can associate the diffuse d–varifold:

V =
∑
Kcell

mK

|K|
Ln|K ⊗ δPK , |K| = Ln(K) .

This d–varifold is not rectifiable since
its support is n–rectifiable but not d–
rectifiable. We will refer to the set of d–
varifolds of this special form as discrete
varifolds.
Let us now compute the first variation of such a varifold:

Proposition 1.25. — Let K be a mesh of Rn and denote E the set of
faces of K. For K+, K− ∈ K, we denote by σ = K+|K− ∈ E the common
face toK+ andK−, and nK+,σ is then the outer-pointing normal to the face
σ (pointing outside K+). Decompose the set of faces into E = Eint∪Eb∪E0
where

• Eint is the set of faces σ = K+|K− such that mK+ , mK− > 0, called
internal faces,

• E0 is the set of faces σ = K+|K− such that mK+ , mK− = 0,
• Eb is the set of remaining faces σ = K+|K− such that mK+ > 0 and
mK− = 0 or conversely mK+ = 0 and mK− > 0, called boundary
faces. In this case, σ is denoted by K+|· with mK+ > 0.

For {mK , PK}K∈K ⊂ R+ ×Gd,n, let us define the d–varifold

VK =
∑
K∈K

mK

|K|
Ln|K ⊗ δPK .

Then,

|δVK| =
∑

σ∈Eint,
σ=K−|K+

∣∣∣∣[mK+

|K+|
ΠPK+

−
mK−

|K−|
ΠPK−

]
(nK+,σ)

∣∣∣∣ Hn−1
|σ

+
∑
σ∈Eb,
σ=K|·

mK

|K|
|ΠPKnK,σ| Hn−1

σ ,

where ΠP is the orthogonal projection onto the d-plane P .

We stress that the terms internal faces and boundary faces do not refer
to the structure of the mesh K but to the structure of the support of VK.
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Proof. — Let VK =
∑
K∈K

mK

|K|
Ln|K ⊗ δPK be a discrete varidold associated

with the mesh K and let X ∈ C1
c(Ω,Rn). Then,

δVK(X) =
∫

Ω×Gd,n
divSX(x) dVK(x, S) =

∑
K∈K

mK

|K|

∫
K

divPKX(x) dLn(x).

Let us compute this term. Fix (τ1, . . . , τd) a basis of the tangent plane PK
so that ∫

K

divPKX(x) dLn(x) =
d∑
j=1

∫
K

DX(x)τj · τj dLn(x) ,

and DX(x)τj · τj =
n∑
k=1

(∇Xk(x) · τj)τkj so that

∫
K

divPKX(x) dLn(x) =
d∑
j=1

n∑
k=1

τkj

∫
K

(∇Xk(x) · τj) dLn(x)

= −
d∑
j=1

n∑
k=1

τkj

∫
∂K

Xkτj · nout dHd

= −
∫
∂K

d∑
j=1

(τj · nout)
n∑
k=1

Xkτ
k
j dHd

= −
∫
∂K

d∑
j=1

(τj · nout)(X · τj) dHd

= −
∫
∂K

X(x) · (ΠPKnout) dHd(x) ,

where ΠPK is the orthogonal projection onto PK and nout is the outward-
pointing normal. Consequently

|δVK(X)| =

∣∣∣∣∣∑
K∈K

mK

|K|

∫
∂K

X(x) · (ΠPKnout) dHd(x)

∣∣∣∣∣
6 ‖X‖∞

∑
K∈K

mK

|K|
|ΠPKnout|Hd(∂K) .

For a fixed mesh, the sum is locally finite and then, VK has locally bounded
first variation. But what happens if the size of the mesh tends to 0? In order
to compute the total variation of δVK as a Radon measure, we just have to
rewrite the sum as a sum on the faces E of the mesh. This is more natural
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since δVK is concentrated on faces. Thus

δVK = −
∑

σ∈Eint,
σ=K−|K+

[
mK+

|K+|
ΠPK+

nK+,σ +
mK−

|K−|
ΠPK−

nK−,σ

]
Hn−1
|σ

−
∑
σ∈Eb,
σ=K|·

mK

|K|
ΠPKnK,σHn−1

|σ

= −
∑

σ∈Eint,
σ=K−|K+

[
mK+

|K+|
ΠPK+

−
mK−

|K−|
ΠPK−

]
· (nK+,σ)Hn−1

|σ

−
∑
σ∈Eb,
σ=K|·

mK

|K|
ΠPKnK,σHn−1

|σ .

Therefore,

|δVK| =
∑

σ∈Eint,
σ=K−|K+

∣∣∣∣[mK+

|K+|
ΠPK+

−
mK−

|K−|
ΠPK−

]
· (nK+,σ)

∣∣∣∣ Hn−1
|σ

+
∑
σ∈Eb,
σ=K|·

mK

|K|
|ΠPKnK,σ| Hn−1

|σ .

�

Example 1.26. — Let us estimate this first variation in a simple case.
Let us assume that the mesh is a regular cartesian grid of Ω =]0, 1[2⊂ R2

of size hK so that for all K ∈ K and σ ∈ E ,

|K| = h2
K and H1(σ) = hK .

Consider the vector line D of direction given by the unit vector 1√
2 (1, 1).

Let V = H1
|D ⊗ δD be the canonical 1–varifold associated to D and VK the

volumetric approximation of V in the mesh K, then

|δVK|(Ω) =
∑

σ∈Eint,
σ=K−|K+

∣∣∣∣[mK+

|K+|
ΠPK+

−
mK−

|K−|
ΠPK−

]
· (nK+,σ)

∣∣∣∣ H1(σ)

+
∑
σ∈Eb,
σ=K|·

mK

|K|
|ΠPKnK,σ| H1(σ)

= 1
hK

∑
σ∈Eint,

σ=K−|K+

∣∣mK+ −mK−

∣∣ ∣∣ΠDnK+,σ

∣∣+ 1
hK

∑
σ∈Eb,
σ=K|·

mK |ΠDnK,σ| .
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And |ΠDnK,σ| =
√

2
2 (for any K, σ) so that

|δVK|(Ω) =
√

2
2hK

∑
σ∈Eint,

σ=K−|K+

∣∣mK+ −mK−

∣∣+
√

2
2hK

∑
σ∈Eb,
σ=K|·

mK

︸ ︷︷ ︸
=‖V ‖(Ω)

.

So that if we now consider successive volumetric approximations of VKi
associated with successive meshes Ki whose size hKi tends to 0 when i

tends to ∞,

|δVKi |(Ω) =
√

2
2hKi

 ∑
σ∈Eint,

σ=K−|K+

∣∣mK+ −mK−

∣∣+ ‖V ‖(Ω)


>

√
2

2hKi
‖V ‖(Ω) −−−→

i→∞
+∞ .

More generally, the problem is that the tangential direction PK and the
direction of the face σ have no reason to be correlated so that the term
|ΠPKnK,σ| can be large (close to 1) and thus, if the mesh is not adapted
to the tangential directions |δVKi |(Ω) may explode when the size of the
mesh hKi tends to 0. Of course, we are not saying that |δVKi |(Ω) always
explodes when refining the mesh, but that it may happen and it is not
something easy to control except by adapting the mesh to the tangential
directions PK in the boundary cells. This is clearly a problem showing that
the classical notion of first variation is not well adapted to this kind of
volumetric discretization.

1.3.4. Control of the first variation and rectifiability

We will end these generalities about varifolds by linking the control of
the first variation (generalized mean curvature) to the regularity of the
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varifolds. Let us begin with some property of the so called height excess
proved by K. Brakke in [3, §5.7]. There exist sharper estimates established
by U. Menne in [11].

Theorem 1.27 (Height excess decay). — Let V = v(M, θ) = θHd|M ⊗
δTxM be a rectifiable d–varifold in some open set Ω ⊂ Rn. Assume that V is
integral (that is θ(x) ∈ N for ‖V ‖–almost every x) and assume that V has
locally bounded first variation. Then for V –almost every (x, P ) ∈ Ω×Gd,n,

heightex(x, P, V, r) := 1
rd

∫
Br(x)

(
d(y − x, P )

r

)2
d‖V ‖(y) = ox(r) .

Remark 1.28. — Let us notice that

Eα(x, P, V ) =
∫ 1

r=α
heightex(x, P, V, r) dr

r
.

That is why we called these quantities averaged height excess.

We now state a compactness result linking the rectifiability to the control
of the first variation. It is exactly the kind of result we are interested in,
with the exception that, in our setting, the approximating varifolds are
generally not rectifiable and, moreover, the following control on the first
variation is not satisfied.

Theorem 1.29 (Allard Compactness Theorem, [14, §42.7]). — Let
(Vi)i = (v(Mi, θi))i be a sequence of d–rectifiable varifolds with locally
bounded first variation in an open set Ω ⊂ Rn and such that θi > 1 ‖Vi‖–
almost everywhere. If

sup
i
{‖Vi(W )‖+ |δVi|(W )} 6 c(W ) < +∞

for every open setW ⊂ Ω, then there exists a subsequence (Vin)n weakly–∗
converging to a rectifiable d–varifold V , with locally bounded first variation
in Ω, such that θ > 1, and moreover

|δV |(W ) 6 lim inf
n→∞

|δVin |(W ) ∀W ⊂⊂ Ω .

If for all i, Vi is an integral varifold then V is integral too.

The problem is that even if the limit d–varifold is rectifiable and has
bounded first variation, it is not necessarily the case of an approximating
sequence of varifolds. For instance, a point cloud varifold does not have
bounded first variation. As for discrete d–varifolds of Example 1.24, we
have computed the first variation and seen that it is bounded for a fixed
mesh, however, when the size of the mesh tends to zero, the total variation
of the first variation is no longer bounded (in general) because of some
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boundary terms. We need some other way to ensure rectifiability. That is
why we are looking for something more volumetric than the first variation,
as defined in the introduction, in order to enforce rectifiability:

Eα(x, P, V ) =
∫ 1

r=α

1
rd

∫
y∈Br(x)∩Ω

(
d(y − x, P )

r

)2
d‖V ‖(y) dr

r
.

We now have two questions we want to answer:
(1) Assume that (Vi)i is a sequence of d–varifolds weakly–∗ converging

to some d–varifold V with the following control

(1.2) sup
i

∫
Ω×Gd,n

Eαi(x, P, Vi) dVi(x, P ) < +∞ ,

can we conclude that V is rectifiable ?
(2) Is this condition better adapted to the case of (non-rectifiable) vol-

umetric approximating varifolds (i.e. sequences of discrete varifolds
as defined in Example(1.24) ? We will prove that as soon as Vi
weakly–∗ converges to V , there exists a subsequence satisfying the
control (1.2).

We begin with studying the static case.

2. Static quantitative conditions of rectifiability for
varifolds

In this section, we begin with studying E0(x, P, V ), the averaged height
excess, with respect to P ∈ Gd,n (for a fixed d–varifold and a fixed x ∈ Ω).
We show that if V has bounded first variation then the approximate tangent
plane at x is the only plane for which E0 can be finite. Then we state and
prove quantitative conditions of rectifiability for varifolds in the static case.
Let us recall how we defined E0(x, P, V ) in Theorem 0.4.

Definition 2.1 (Averaged height excess). — Let V be a d–varifold in
Ω ⊂ Rn open subset. Then we define

E0(x, P, V ) =
∫ 1

r=0

1
rd

∫
y∈Br(x)∩Ω

(
d(y − x, P )

r

)2
d‖V ‖(y) dr

r
.

We first study the averaged height excess E0(x, P, V ) with respect to
P ∈ Gd,n for a fixed rectifable d–varifold.
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2.1. The averaged height excess energy E0(x, P, V )

Notice that if ‖V ‖ = Hd|M then for every d–vector plane P ∈ Gd,n,∫ 1

r=0
β2(x, r,M)2 dr

r

=
∫ 1

r=0
inf

S∈{affine d−plane}

(
1
rd

∫
y∈Br(x)∩M

(
d(y, S)
r

)2
dHd(y)

)
dr

r

6
∫ 1

r=0

1
rd

∫
y∈Br(x)∩M

(
d(y − x, P )

r

)2
dHd(y) dr

r
= E0(x, P, V ) .

Thus, assume that for Hd–almost every x ∈ M , θd∗(x,M) > 0 holds and
that there exists some Px ∈ Gd,n such that E0(x, Px,Hd|M ) < +∞. Then
thanks to Pajot’s Theorem 0.3,M is d–rectifiable. As we will see, the point
is that for any x ∈M where the tangent plane TxM exists, then Px = TxM

is the best candidate, among all d–planes P , to satisfy E0(x, Px,Hd|M ) <
+∞. Consequently, in order to test the rectifiability of a d–varifold V , it is
natural to study E0(x, P, V ) for (x, P ) in suppV (which is more restrictive
than for any (x, P ) ∈ supp ‖V ‖ ×Gd,n). More concretely, we will study∫

Ω×Gd,n
E0(x, P, V ) dV (x, P )

rather than ∫
Ω

inf
P∈G

E0(x, P, V ) d‖V ‖(x).

In this whole part, we fix a rectifiable d–varifold in some open set Ω ⊂ Rn
and we study the behaviour of E0(x, P, V ) with respect to P ∈ Gd,n. We
are going to show that for a rectifiable d–varifold, this energy is critical:
under some assumptions, it is finite if and only if P is the approximate
tangent plane. More precisely:

Proposition 2.2. — Let V = v(M, θ) be a rectifiable d–varifold in an
open set Ω ⊂ Rn. Then,

(1) Let x ∈M be such that the approximate tangent plane TxM to M
at x exists and θ(x) > 0 (thus for ‖V ‖–almost every x) then for all
P ∈ Gd,n such that P 6= TxM ,

E0(x, P, V ) = +∞ .

(2) If in addition V is integral (θ ∈ N ‖V ‖–almost everywhere) and has
bounded first variation then for ‖V ‖–almost every x,

E0(x, TxM,V ) < +∞ .
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Proof. — We begin with the first assertion. Let x ∈M be such that the
approximate tangent plane TxM to M at x exists. Let P ∈ Gd,n such that
P 6= TxM . Thanks to Prop. 1.10, for all β > 0 we have

1
rd
‖V ‖ {y ∈ Br(x) | d(y − x, P ) < βr}

−−−−→
r→0+

θ(x)Hd (TxM ∩ {y ∈ B1(0) | d(y, P ) < β}) .

Now for all β > 0,

E0(x, P, V ) =
∫ 1

r=0

dr

rd+1

∫
Br(x)

{
d(y − x, P )

r

}2
d‖V ‖(y)

>
∫ 1

r=0

dr

r

1
rd

∫
{y∈Br(x) | d(y−x,P )>βr}

β2 d‖V ‖(y)

= β2
∫ 1

r=0

dr

r

1
rd
‖V ‖ {y ∈ Br(x) | d(y − x, P ) > βr} .

Let us estimate

1
rd
‖V ‖ {y ∈ Br(x) | d(y − x, P ) > βr}

= 1
rd
‖V ‖(Br(x))︸ ︷︷ ︸
−−−→
r→0

θ(x)ωd

− 1
rd
‖V ‖ {y ∈ Br(x) | d(y − x, P ) < βr}︸ ︷︷ ︸
−−−→
r→0

θ(x)Hd(TxM∩{y∈B1(0) | d(y,P )<β})

.

As P 6= TxM , there exists some constant cP depending on P and TxM

such that
Hd(TxM ∩ {y ∈ B1(0) | d(y, P ) < β}) 6 cPβ .
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Consequently,

lim
r→0

1
rd
‖V ‖ {y ∈ Br(x) | d(y − x, P ) > βr}

= θ(x)
(
ωd −Hd(TxM ∩ {y ∈ B1(0) | d(y, P ) < β})

)
> θ(x)(ωd − cPβ)

> θ(x)ωd2 for β small enough.

Eventually there exist β > 0 and r0 > 0 such that for all r 6 r0

1
rd
‖V ‖ {y ∈ Br(x) | d(y − x, P ) > βr} > θ(x)ωd4 ,

and thus
E0(x, P, V ) > θ(x)ωd4 β2

∫ r0

r=0

dr

r
= +∞ .

The second assertion is a direct consequence of Brakke’s estimate (see
Proposition 1.27) for the height excess of an integral d–varifold with boun-
ded first variation:

E0(x, TxM,V ) =
∫ 1

r=0

1
r

heightex(x, P, V, r)︸ ︷︷ ︸
=ox(1)

dr < +∞ .

�

2.2. The static theorem

We begin with some lemmas before proving the static theorem (Theo-
rem 0.4). This first proposition recalls that the first assumption of the static
theorem (Ahlfors regularity) implies that ‖V ‖ is equivalent to Hd| supp ‖V ‖.

Proposition 2.3. — Let Ω ⊂ Rn be an open set and µ be a positive
Radon measure in Ω.

(i) Let β1, β2 : Ω → R+ continuous and such that for all x ∈ Ω,
β1(x) < β2(x), and let C > 0. Then the sets

A =
{
x ∈ Ω | ∀r ∈ (β1(x), β2(x)) , µ(Br(x)) > Crd

}
and B =

{
x ∈ Ω | ∀r ∈ (β1(x), β2(x)) , µ(Br(x)) 6 Crd

}
are closed.

(ii) If there exist C1, C2 > 0 such that C1ωdr
d 6 µ(Br(x)) 6 C2ωdr

d

for µ–almost all x ∈ Ω and for all 0 < r < d(x,Ωc), then

C1Hd|E 6 µ 6 2dC2Hd|E with E = suppµ .
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Proof.
(i) Let us prove that

A =
{
x ∈ Ω | ∀r ∈ (β1(x), β2(x)) , µ(Br(x)) > Crd

}
is closed. Let (xk)k ⊂ A such that xk −−→

k∞
x ∈ Ω and let r >

0 such that β1(x) < r < β2(x). For k large enough, β1(xk) <

r < β2(xk) so that Crd 6 µ(Br(xk)). If µ(∂Br(x)) = 0 then
µ(Br(xk)) −−−−−→

k→+∞
µ(Br(x)) and then Crd 6 µ(Br(x)) for almost

every r ∈ (β1(x), β2(x)). But this is enough to obtain the property
for all r ∈ (β1(x), β2(x)). Indeed, if µ(∂Br(x)) > 0 then take r−k < r

such that for all k,

µ(∂Br−
k

(x)) = 0 and r−k −−−−−→
k→+∞

r ,

and thus

µ(Br(x)) > µ(Br−
k

(x)) > Cr−k
d −−−−−→
k→+∞

Crd .

Eventually x ∈ A and A is closed. We can prove that B is closed
similarly.

(ii) As the set

E1 =
{
x ∈ Ω | ∀0 < r < d(x,Ωc), µ(Br(x)) > C1ωdr

d
}

is closed (thanks to (i)) and of full µ–measure, then E = suppµ ⊂
E1. Therefore, for every x ∈ E,

θd∗(µ, x) = lim inf
r→0+

µ(Br(x))
ωdrd

> C1 .

So that (see [2, Thm. 2.56]) µ > C1Hd|E .
(iii) For the same reason,

E = suppµ

⊂ E2 =
{
x ∈ Ω | ∀0 < r < d(x,Ωc), µ(Br(x)) 6 C2ωdr

d
}
.

Therefore, for every x ∈ E,

θ∗ d(µ, x) = lim sup
r→0+

µ(Br(x))
ωdrd

6 C2 .

So that (again by [2, Thm. 2.56]) µ 6 2dC2Hd|E . �

The following lemma states that under some density assumption, the
quantity minP∈Gd,n E0(x, P, V ) controls the quantity linked to Jones’ β
numbers.
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Lemma 2.4. — Let Ω ⊂ Rn be an open set and let V be a d–varifold in
Ω. Assume that there is some constant C > 0 and a Borel set E ⊂ Ω such
that Hd|E 6 C‖V ‖ then for all x ∈ Ω,

(2.1)
∫ 1

0
β2(x, r, E)2 dr

r
6 C min

P∈Gd,n
E0(x, P, V ) .

Proof. — First notice that Gd,n ⊂ {affine d–plane}, therefore∫ 1

r=0
β2(x, r, E)2 dr

rd+1

=
∫ 1

r=0
inf

P∈{affine d–plane}

(∫
E∩Br(x)

(
d(y, P )
r

)2
dHd(y)

)
dr

rd+1

6 inf
P∈{affine d–plane}

∫ 1

r=0

(∫
E∩Br(x)

(
d(y, P )
r

)2
dHd(y)

)
dr

rd+1

6 min
P∈Gd,n

∫ 1

r=0

(∫
E∩Br(x)

(
d(y − x, P )

r

)2
dHd(y)

)
dr

rd+1 .

Then, the assumption Hd|E 6 C‖V ‖ implies that for any positive function

u,
∫
E

u dHd 6 C
∫

Ω
u d‖V ‖ so that

min
P∈Gd,n

∫ 1

r=0

(∫
Br(x)

(
d(y − x, P )

r

)2
dHd|E(y)

)
dr

rd+1

6 C min
P∈Gd,n

E0(x, P, V ) ,

which proves 2.1. �

We now state a lemma that will enable us to localise the property of
rectifiability.

Lemma 2.5. — Let Ω ⊂ Rn be an open set and µ be a positive Radon
measure in Ω. Then there exists a countable family of open sets (ωn)n such
that for all n, ωn ⊂⊂ ωn+1 ⊂⊂ Ω, µ(∂ωn) = 0 and Ω = ∪nωn.

Proof. — For all t > 0, let us consider the family of open sets

ωt = Bt(0) ∩ {x ∈ Ω | d(y,Ωc) > 1/t} .

The family (ωt)t is increasing so that µ(ωt) is increasing and has at most
a countable number of jumps. Then for almost every t, µ(ωt) = 0 and it is
easy to conclude. �
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The last step before proving Theorem 0.4 is to link the rectifiability of the
mass ‖V ‖ and the rectifiability of the whole varifold. The key point is the
coherence between the tangential part of the varifold and the approximate
tangent plane to the spatial part ‖V ‖.

Lemma 2.6. — If V is a d–varifold in Ω ⊂ Rn such that
− ‖V ‖ is d–rectifiable,
− V ({(x, P ) ∈ Ω×Gd,n | E0(x, P, V ) = +∞}) = 0,

then V is a rectifiable d–varifold.

Proof. — The mass ‖V ‖ is d–rectifiable so that ‖V ‖ = θHd|M for some
d-rectifiable set M . We have to show that V = ‖V ‖ ⊗ δTxM . Applying a
disintegration theorem ([2, Thm. 2.28]), there exist finite Radon measures
νx in Gd,n such that for ‖V ‖–almost every x ∈ Ω, νx(Gd,n) = 1 and V =
‖V ‖ ⊗ νx. We want to prove that for ‖V ‖–almost every x, νx = δTxM or
equivalently,

νx({P ∈ Gd,n | P 6= TxM}) = 0 .
For a d–rectifiable measure ‖V ‖ = θHd|M , we have shown in Proposition 2.2
that for ‖V ‖–almost every x ∈ Ω,

P 6= TxM =⇒ E0(x, P, V ) = +∞ ,

thus

{(x, P ) ∈ Ω×Gd,n | P 6= TxM}
⊂ A0 ×Gd,n ∪ {(x, P ) ∈ Ω×Gd,n | E0(x, P, V ) = +∞}

with ‖V ‖(A0) = 0. Therefore V ({(x, P ) ∈ Ω×Gd,n | P 6= TxM}) = 0.
Thus

V ({(x, P ) ∈ Ω×Gd,n | P 6= TxM})

=
∫

Ω×Gd,n
1{P 6=TxM}(x, P ) dV (x, P )

=
∫

Ω

(∫
Gd,n

1{P 6=TxM}(x, P ) dνx(P )
)
d‖V ‖(x)

=
∫

Ω
νx({P ∈ Gd,n | P 6= TxM}) d‖V ‖(x)

which means that for ‖V ‖–almost every x ∈ Ω,

νx({P ∈ Gd,n | P 6= TxM}) = 0 ,

thus for ‖V ‖–almost every x ∈ Ω, νx = δTxM and V = ‖V ‖ ⊗ δTxM is a
d–rectifiable varifold. �
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Let us now prove the static theorem:

Theorem 0.4. — Let Ω ⊂ Rn be an open set and let V be a d–varifold
in Ω of finite mass ‖V ‖(Ω) < +∞. Assume that:

(i) there exist 0 < C1 < C2 such that for ‖V ‖–almost every x ∈ Ω and
for all 0 < r < d(x,Ωc) such that Br(x) ⊂ Ω,

C1ωdr
d 6 ‖V ‖(Br(x)) 6 C2ωdr

d ,

(ii) V ({(x, P ) ∈ Ω×Gd,n |E0(x, P, V ) = +∞}) = 0.
Then V is a rectifiable d–varifold.

Remark 2.7. — If in particular
∫

Ω×Gd,n
E0(x, P, V ) dV (x, P ) < +∞

then the assumption (ii) is satisfied.

Proof. — Now we just have to gather the previous arguments and apply
Pajot’s Theorem (Theorem 0.3).

Step 1: First hypothesis implies (thanks to Proposition 2.3) that, setting
C3 = 2dC2 > 0 and E = supp ‖V ‖, we have

C1Hd|E 6 ‖V ‖ 6 C3Hd|E .

Hence C1Hd(E) 6 ‖V ‖(Ω) < +∞. Moreover, as ‖V ‖ and Hd|E are Radon
measures and ‖V ‖ is absolutely continuous with respect to HdE , then by
Radon-Nikodym Theorem there exists some function θ ∈ L1(Hd|E) such
that ‖V ‖ = θHd|E with

θ(x) = d‖V ‖
dHd|E

(x) = lim
r→0+

‖V ‖(Br(x))
Hd(E ∩Br(x)) > C1 > 0 for Hd a.e. x ∈ E .

Step 2: Thus we can now apply Lemma 2.4 so that for any x ∈ Ω,∫ 1

0
β2(x, r, E)2 dr

r
6 C3 min

P∈Gd,n
E0(x, P, V ) ,

but thanks to the second assumption,

V ({(x, P ) ∈ Ω×Gd,n |E0(x, P, V ) = +∞}) = 0 .

Let

B = {x ∈ Ω | min
P∈Gd,n

E0(x, P, V ) = +∞}

= {x ∈ Ω | ∀P ∈ Gd,n, E0(x, P, V ) = +∞}
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then

B ×Gd,n = {(x, P ) ∈ Ω×Gd,n | ∀Q ∈ Gd,n, E0(x,Q, V ) = +∞}
⊂{(x, P ) ∈ Ω×Gd,n | E0(x, P, V ) = +∞} .

Therefore

‖V ‖(B) = V (B ×Gd,n)
6 V ({(x, P ) ∈ Ω×Gd,n | E0(x, P, V ) = +∞}) = 0 .

So that minP∈Gd,n E0(x, P, V ) is finite for ‖V ‖–almost any x ∈ Ω. And by
step 1, ‖V ‖ = θHd|E with θ > C1 for Hd–almost every x ∈ E, thus for
Hd–almost every x ∈ E,

(2.2)
∫ 1

0
β2(x, r, E)2 dr

r
< +∞ ,

and

(2.3) θd∗(x,E) = lim inf
r→0+

Hd(E ∩Br(x))
ωdrd

>
1
C3

‖V ‖(Br(x))
ωdrd

>
C1

C3
> 0 .

Step 3: We need to consider some compact subset of E to apply Pajot’s
Theorem. The set E being closed in Ω, thus for every compact set K ⊂
Ω, E ∩ K is compact. Thanks to Lemma 2.5, let (ωn)n be an increasing
sequence of relatively compact open sets such that Ω = ∪nωn and for all
n, Hd(E ∩ ∂ωn) = 0. Let Kn = ωn, then

− for all x ∈ (E∩Kn)\∂Kn = E∩ωn we have θd∗(x,E∩Kn) = θd∗(x,E)
and thus by (2.3) and since Hd(E ∩ ∂Kn) = 0,

(2.4) θd∗(x,E ∩Kn) > 0 for Hd–almost every x ∈ E ∩Kn ,

− thanks to (2.2), for Hd–almost every x ∈ E ∩Kn,

(2.5)
∫ 1

0
β2(x, r, E ∩Kn)2 dr

r
6
∫ 1

0
β2(x, r, E)2 dr

r
< +∞ .

According to (2.4) and (2.5), we can apply Pajot’s Theorem to get the
d–rectifiability of E ∩Kn for all n and hence the d–rectifiability of E and
‖V ‖ = θHd|E .

Eventually Lemma 2.6 leads the d–rectifiability of the whole varifold V .
�
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3. The approximation case

We will now study the approximation case. As we explained before, we
introduce some scale parameters (denoted αi and βi) allowing us to consider
the approximating objects “from far enough”. The point is to check that we
recover the static conditions (the assumptions (i) and (ii) of Theorem 0.4)
in the limit. We begin with some technical lemmas concerning Radon mea-
sures. Then we prove a strong property of weak–∗ convergence allowing us
to gain some uniformity in the convergence. We end with the proof of the
quantitative conditions of rectifiability for varifolds in the approximation
case.

3.1. Some technical tools about Radon measures

Let us state two technical tools before starting to study the approxima-
tion case.

Lemma 3.1. — Let Ω ⊂ Rn be an open set and (µi)i be a sequence of
Radon measures weakly–∗ converging to some Radon measure µ in Ω. Let
x ∈ Ω and xi −−−→

i→∞
x.Then, for every r > 0,

lim sup
i

µi(Br(x)4Br(xi)) 6 µ(∂Br(x)) .

In particular, if µ(∂Br(x)) = 0 then µi(Br(x)4Br(xi)) −−−→
i→∞

0.

Proof. — Let us define the ring of center x and radii rmin and rmax:

R(x, rmin, rmax) := {y ∈ Ω | rmin 6 |y − x| 6 rmax} .
It is easy to check that for all i, Br(xi)4Br(x)
is included into the closed ring of center x and
radii rimin = r−|x−xi| and rimax = r+|x−xi|,
that is

Br(xi)4Br(x) ⊂ R(x, r−|x−xi|, r+ |x−xi|) .

Without loss of generality we can assume that
(|x − xi|)i is decreasing, then the sequence of
rings (R(x, r−|x−xi|, r+ |x−xi|))i is decreas-
ing so that for all p 6 i,

µi(Br(xi)4Br(x)) 6 µi(R(x, r − |x− xi|, r + |x− xi|)
6 µi(R(x, r − |x− xp|, r + |x− xp|)) .
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Consequently, letting i tend to ∞ and using the fact that R(x, r − |x −
xp|, r + |x− xp|) is compact, we have for all p,

lim sup
i→+∞

µi(Br(xi)4Br(x)) 6 µ(R(x, r − |x− xp|, r + |x− xp|)) ,

and thus by letting p→ +∞ we finally have,

lim sup
i→+∞

µi(Br(xi)4Br(x)) 6 µ(∂Br(x)) .

�

Proposition 3.2. — Let Ω ⊂ Rn be an open set and let (µi)i be a
sequence of Radon measures weakly–∗ converging to a Radon measure µ.
Then, for every x ∈ suppµ, there exist xi ∈ suppµi such that

|x− xi| −−−→
i→∞

0 .

Proof. — Let x ∈ suppµ, and choose xi ∈ suppµi such that
d(x, suppµi) = |x − xi| (recall that suppµi is closed). Let us check that
|x − xi| −−−→

i→∞
0. By contradiction, there exist η > 0 and a subsequence

(xϕ(i))i such that for all i, |xϕ(i)− x| > η. Therefore, for all y ∈ suppµϕ(i),
|y − x| > |xϕ(i) − x| > η so that

∀i, Bη(x) ∩ suppµϕ(i) = ∅ and thus µϕ(i) (Bη(x)) = 0 .

Hence µ (Bη(x)) 6 lim infi µϕ(i) (Bη(x)) = 0 and x /∈ suppµ. �

3.2. Density estimates

We now look for density estimates for the limit varifold. Indeed, for sets
of dimension larger than d, for instance d+ 1, the energy E0(x, P, V ) does
not convey information of rectifiability since

1
rd+1

∫
Br(x)

(
d(y − x, P )

r

)2
d‖V ‖(y) 6 ‖V ‖(Br(x))

rd+1 6 θ∗d+1(‖V ‖, x)

is finite for almost any x, not depending on the regularity of ‖V ‖. So
that the first assumption in the static theorem (Ahlfors regularity (0.1) in
Theorem 0.4) is quite natural. In this part, we link density estimates on Vi
and density estimates on V and then recover the first assumption of the
static theorem.
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Proposition 3.3. — Let Ω ⊂ Rn be an open set. Let (µi)i be a se-
quence of Radon measures in Ω, weakly–∗ converging to some Radon mea-
sure µ. Assume that there exist 0 < C1 < C2 and a positive decreasing
sequence (βi)i tending to 0 such that for µi–almost every x ∈ Ω and for
every r > 0 such that βi < r < d(x,Ωc),

C1r
d 6 µi(Br(x)) 6 C2r

d .

Then for µ–almost every x ∈ Ω and for every 0 < r < d(x,Ωc),

C1r
d 6 µ(Br(x)) 6 C2r

d .

Proof. — Let

Ai =
{
x ∈ Ω | ∀r ∈]βi, d(x,Ωc)[, C1r

d 6 µi(Br(x)) 6 C2r
d
}
.

(i) First notice that Ai is closed (thanks to Proposition 2.3(i)) and
µi(Ω \Ai) = 0 so that suppµi ⊂ Ai.

(ii) Let x ∈ suppµ and let 0 < r < d(x,Ωc). By Proposition 3.2, let
xi ∈ suppµi such that xi → x then

|µi(Br(x))− µi(Br(xi))| 6 µi (Br(xi)4Br(x))
6 µi(R(x, r − |x− xi|, r + |x− xi|) ,

so that by Proposition 3.1,

lim sup
i
|µi(Br(x))− µi(Br(xi))| 6 µ(Br(x)) .

Therefore, for almost every 0 < r < d(x,Ωc), µi(Br(xi)) −−−→
i→∞

µ(Br(x)). Eventually, as xi ∈ suppµi ⊂ Ai then for almost every
r < d(x,Ωc),

C1r
d 6 µ(Br(x)) = lim

i
µi(Br(xi)) 6 C2r

d .

We can obtain this inequality for all r as in Proposition 2.3, taking
r−k < r < r+

k and r−k , r
+
k → r and such that µ(∂Br+

k
(x)) = 0,

µ(∂Br−
k

(x)) = 0. �
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3.3. Uniformity of weak–∗ convergence in some class of
functions

If we try to estimate Eα(x, P, Vα)−Eα(x, P, V ), we can have the follow-
ing:

|Eα(x, P, Vα)− Eα(x, P, V )| 6

1
αd+3

∫ 1

r=0

∣∣∣∣∣
∫
Br(x)

d(y − x, P )2d‖Vα‖(y)−
∫
Br(x)

d(y − x, P )2d‖V ‖(y)

∣∣∣∣∣ dr .
We now prove that the integral term tends to 0 when Vα

∗−⇀ V . For this
purpose, we need a stronger way to write weak–∗ convergence (with some
uniformity) using the compactness of some subset of C0

c(Ω):

Proposition 3.4. — Let Ω ⊂ Rn be an open set and (µi)i be a sequence
of Radon measures in Ω weakly–∗ converging to a Radon measure µ. Let
ω ⊂⊂ Ω such that µ(∂ω) = 0, then for fixed k,C > 0,

sup
{∣∣∣∣∫

ω

ϕdµi −
∫
ω

ϕdµ

∣∣∣∣ : ϕ ∈ Lipk(ω), ‖ϕ‖∞ 6 C
}
−−−→
i→∞

0

Proof. — As we already said, the idea is to make use of the compactness
of the family {ϕ ∈ Lipk(ω), ‖ϕ‖∞ 6 C}. By contradiction, there exists a
sequence (ϕi)i with ϕi ∈ Lipk(ω) and ‖ϕi‖∞ 6 C for all i and such that∣∣∣∣∫

ω

ϕi dµi −
∫
ω

ϕi dµ

∣∣∣∣ does not converge to 0 .

So that, up to some extraction, there exists ε > 0 such that for all i,∣∣∣∣∫
ω

ϕi dµi −
∫
ω

ϕi dµ

∣∣∣∣ > ε .

Every ϕi can be extended to ϕi ∈ C(ω) ∩ Lipk(ω) and then{
(ϕi)i ⊂ C(ω) ∩ Lipk(ω) is equilipschitz,
supi ‖ϕi‖∞ 6 C .

By Ascoli’s Theorem, up to a subsequence, there exists a function ϕ ∈
C(ω) ∩ Lipk(ω) with ‖ϕ‖∞ 6 C such that

ϕi −→ ϕ uniformly in ω .
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We now estimate:

ε <

∣∣∣∣∫
ω

ϕi dµi −
∫
ω

ϕi dµ

∣∣∣∣
6

∣∣∣∣∫
ω

ϕi dµi −
∫
ω

ϕdµi

∣∣∣∣+
∣∣∣∣∫
ω

ϕdµi −
∫
ω

ϕdµ

∣∣∣∣+
∣∣∣∣∫
ω

ϕdµ−
∫
ω

ϕi dµ

∣∣∣∣
6 ‖ϕi − ϕ‖∞ µi(ω) +

∣∣∣∣∫
ω

ϕdµi −
∫
ω

ϕdµ

∣∣∣∣+ ‖ϕ− ϕi‖∞ µ(ω)

As µ(∂ω) = 0 then µi(ω) −−−→
i→∞

µ(ω) < +∞ (since µ(ω) 6 µ(ω) and
ω is compact) so that the first and last terms tend to 0. Moreover, since
µ(∂ω) = 0 then for every f ∈ C0(ω) (not necessarily compactly supported),∫

f dµi −−−→
i→∞

∫
f dµ ,

which allows to conclude that the second term also tends to 0 which leads
to a contradiction. �

The following result is the key point of the proof of Theorem 0.5. Let us
first define for two Radon measures µ and ν in Ω,

∆k,C
ω (µ, ν) :=

sup


∫ d(ω,Ωc)

2

r=0

∣∣∣∣∣
∫
Br(x)∩ω

ϕdµ−
∫
Br(x)∩ω

ϕdν

∣∣∣∣∣ dr :
ϕ ∈ Lipk(ω),
‖ϕ‖∞ 6 C,
x ∈ ω

 .

Proposition 3.5. — Let Ω ⊂ Rn be an open set. Let (µi)i be a se-
quence of Radon measures weakly–∗ converging to a Radon measure µ
in Ω and such that supi µi(Ω) < +∞. Let ω ⊂⊂ Ω be open such that
µ(∂ω) = 0 then, for fixed k,C > 0,

∆k,C
ω (µi, µ) −−−−→

i→+∞
0 .

Proof. — The upper bound on the radius r ensures that the closure of
every considered ball, Br(x) for x ∈ Ω, is included in Ω. We argue as in
the proof of Proposition 3.4, assuming by contradiction that, after some
extraction, there exist a sequence (ϕi)i with ϕi ∈ Lipk(ω) and ‖ϕi‖∞ 6 C
for all i, and a sequence (xi)i with xi ∈ ω for all i, and ε > 0 such that for
all i, ∫ d(ω,Ωc)

2

r=0

∣∣∣∣∣
∫
Br(xi)∩ω

ϕi dµi −
∫
Br(xi)∩ω

ϕi dµ

∣∣∣∣∣ dr > ε .

By Ascoli’s Theorem and up to an extraction, there exist a function ϕ ∈
C0(ω) ∩ Lipk(ω) with ‖ϕ‖∞ 6 C such that ϕi −→ ϕ uniformly in ω.
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Moreover ω is compact so that, up to another extraction, there exists x ∈ ω
such that xi −→ x. We now estimate for every r,∣∣∣∣∣
∫
Br(xi)∩ω

ϕi dµi −
∫
Br(xi)∩ω

ϕi dµ

∣∣∣∣∣
6

∣∣∣∣∣
∫
Br(xi)∩ω

ϕi dµi −
∫
Br(xi)∩ω

ϕdµi

∣∣∣∣∣+

∣∣∣∣∣
∫
Br(xi)

ϕdµi −
∫
Br(x)

ϕdµi

∣∣∣∣∣
+

∣∣∣∣∣
∫
Br(x)∩ω

ϕdµi −
∫
Br(x)∩ω

ϕdµ

∣∣∣∣∣+

∣∣∣∣∣
∫
Br(x)∩ω

ϕdµ−
∫
Br(xi)∩ω

ϕdµ

∣∣∣∣∣
+

∣∣∣∣∣
∫
Br(xi)∩ω

ϕdµ−
∫
Br(xi)∩ω

ϕi dµ

∣∣∣∣∣
6 ‖ϕi − ϕ‖∞ µi (Br(xi)) + ‖ϕ‖∞ µi (Br(xi)4Br(x))

+

∣∣∣∣∣
∫
Br(x)∩ω

ϕdµi −
∫
Br(x)∩ω

ϕdµ

∣∣∣∣∣ + ‖ϕ‖∞ µ (Br(xi)4Br(x))

+ ‖ϕ− ϕi‖∞ µ(Br(xi))

6 ‖ϕi − ϕ‖∞ (µi(Ω) + µ(Ω)) +

∣∣∣∣∣
∫
Br(x)∩ω

ϕdµi −
∫
Br(x)∩ω

ϕdµ

∣∣∣∣∣
+ ‖ϕ‖∞ (µi (Br(xi)4Br(x)) + µ (Br(xi)4Br(x))) .(3.1)

The first term in the right hand side of (3.1) tends to 0 since supi µi(Ω) <
+∞ also implies µ(Ω) < +∞. Concerning the second term, as µ(∂ω) = 0
then for all r ∈ (0, d(ω,Ωc)

2 ), µ(∂(Br(x)∩ω)) 6 µ(∂Br(x)) and therefore the
second term tends to 0 for every r such that µ(∂Br(x)) = 0, i.e. for almost
every r ∈ (0, d(ω,Ωc)

2 ). As for the last term, thanks to Proposition 3.1 we
know that lim supi µi(Br(x)4Br(xi))+µ(Br(x)4Br(xi)) 6 2µ(∂Br(x)) =
0 for almost every r ∈ (0, d(ω,Ωc)

2 ). Moreover the whole quantity (3.1) is
uniformly bounded by

5C
(
µ(Ω) + sup

i
µi(Ω)

)
.

Consequently the right hand side of (3.1) tends to 0 for almost every r ∈
(0, d(ω,Ωc)

2 ) (such that µ(∂Br(x)) = 0) and is uniformly bounded by the
constant 5C

(
µ(Ω) + supj µj(Ω)

)
, then by Lebesgue dominated theorem,

we have

ε <

∫ d(ω,Ωc)
2

r=0

∣∣∣∣∣
∫
Br(xi)∩ω

ϕi dµi −
∫
Br(xi)∩ω

ϕi dµ

∣∣∣∣∣ dr −−−→i→∞
0
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which concludes the proof. �

We can now study the convergence of Eαi(x, P, Vi) − Eαi(x, P, V ) uni-
formly with respect to P and locally uniformly with respect to x. In-
deed, the previous result (Proposition(3.5) is given in some compact subset
ω ⊂⊂ Ω. Consequently, we define a local version of our energy:

Definition 3.6. — Let Ω ⊂ Rn be an open set and ω ⊂⊂ Ω be a
relatively compact open subset. For every d–varifold V in Ω and for every
x ∈ ω and P ∈ Gd,n, we define

Eωα (x, P, V ) =
∫ min

(
1, d(ω,Ωc)

2

)
r=α

1
rd

∫
Br(x)∩ω

(
d(y − x, P )

r

)2
d‖V ‖ dr

r
.

Remark 3.7. — Notice that

Eωα(x, P, V ) =
∫ min

(
1, d(ω,Ωc)

2

)
r=α

1
rd

∫
Br(x)∩ω

(
d(y − x, P )

r

)2
d‖V ‖ dr

r

6
∫ 1

r=α

1
rd

∫
Br(x)∩Ω

(
d(y − x, P )

r

)2
d‖V ‖ dr

r

= Eα(x, P, V ) .

Proposition 3.8. — Let (Vi)i be a sequence of d–varifolds weakly–∗
converging to a d–varifold V in some open set Ω ⊂ Rn and such that
supi ‖Vi‖(Ω) < +∞. For all open subsets ω ⊂⊂ Ω such that ‖V ‖(∂ω) = 0,
let us define

ηωi := sup


∫ min

(
1, d(ω,Ωc)

2

)
r=0

∣∣∣∣∣
∫
Br(x)∩ω

ϕd‖Vi‖ −
∫
Br(x)∩ω

ϕd‖V ‖

∣∣∣∣∣ dr :

ϕ ∈ Lip2(diamω)2(ω),
‖ϕ‖∞ 6 (diamω)2,

x ∈ ω


Then,

(1) for every 0 < α 6 1, sup
x∈ω

P∈Gd,n

|Eωα (x, P, Vi)− Eωα (x, P, V )| 6 ηωi
αd+3 ,

(2) ηωi −−−→
i→∞

0
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Proof. — (1) is a direct application of Proposition 3.5, since ‖Vi‖
weakly–∗ converges to ‖V ‖. Now let us estimate

|Eωα (x, P, Vi)− Eωα (x, P, V )|

6
1

αd+3

∫ min
(

1, d(ω,Ωc)
2

)
r=0

∣∣∣∣∣
∫
Br(x)∩ω

d(y − x, P )2d‖Vi‖(y)

−
∫
Br(x)∩ω

d(y − x, P )2d‖V ‖(y)

∣∣∣∣∣ dr .
For all x ∈ ω, P ∈ Gd,n, let ϕx,P (y) := d(y − x, P )2. One can check that

(i) ϕx,P is bounded in ω by (diamω)2 indeed ϕx,P (y) 6 |y − x|2 6
(diamω)2,

(ii) ϕx,P ∈ Lip2(diamω)(ω) indeed

|ϕx,P (y)− ϕx,P (z)| =
∣∣d(y − x, P )2 − d(z − x, P )2∣∣

6 2(diamω) |d(y − x, P )− d(z − x, P )|
6 2(diamω) d(y − z, P ) 6 2(diamω) |y − z| .

Consequently,

sup
x∈ω

P∈Gd,n

∫ min
(

1, d(ω,Ωc)
2

)
r=0

∣∣∣∣∣
∫
Br(x)∩ω

d(y − x, P )2d‖Vi‖(y)

−
∫
Br(x)∩ω

d(y − x, P )2d‖V ‖(y)

∣∣∣∣∣ dr 6 ηωi

and thus,

sup
x∈ω

P∈Gd,n

|Eωα(x, P, Vi)− Eωα (x, P, V )| 6 ηωi
αd+3 .

�

It is now easy to deduce the following fact:

Proposition 3.9. — Let (Vi)i be a sequence of d–varifolds weakly–∗
converging to a d–varifold V in some open set Ω ⊂ Rn, and let ω ⊂⊂ Ω
be such that ‖V ‖(∂ω) = 0. Assume that supi ‖Vi‖(Ω) < +∞, then, there
exists a decreasing sequence (αi)i of positive numbers tending to 0 and
such that

(3.2) sup
x∈ω

P∈Gd,n

∣∣Eωαi(x, P, Vi)− Eωαi(x, P, V )
∣∣ −−−−→
i→+∞

0 ,
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and for every x ∈ ω, P ∈ Gd,n, the following pointwise limit holds

(3.3) Eω0 (x, P, V ) = lim
i→∞

Eωαi(x, P, Vi) .

Conversely, given a decreasing sequence (αi)i of positive numbers tending
to 0, there exists an extraction ϕ (depending on αi, Vi but independent of
x ∈ ω and P ∈ Gd,n) such that

(3.4) sup
x∈ω

P∈Gd,n

∣∣Eωαi(x, P, Vϕ(i))− Eωαi(x, P, V )
∣∣ −−−−→
i→+∞

0 ,

and again for every x ∈ ω, P ∈ Gd,n, the following pointwise limit holds

(3.5) Eω0 (x, P, V ) = lim
i→∞

Eωαi(x, P, Vϕ(i)) .

Proof. — Thanks to Proposition 3.8, for every α > 0,

sup
x∈ω

P∈Gd,n

|Eωα (x, P, Vi)− Eωα (x, P, V )| 6 ηωi
αd+3 and ηωi −−−→

i→∞
0 ,

hence we can choose (αi)i such that ηωi
αd+3
i

−−−→
i→∞

0. Conversely, given the

sequence (αi)i tending to 0, we can extract a subsequence (ηωϕ(i))i such that
ηωϕ(i)

αd+3
i

−−−→
i→∞

0. For fixed x ∈ ω and P ∈ Gd,n, the pointwise convergences to

the averaged height excess energy Eω0 , (3.3) and (3.5), are a consequence of
the previous convergence properties (3.2) and (3.4), and of the monotone
convergence Eωα(x, P, V ) −−−→

α→0
Eω0 (x, P, V ). �

Now, we can use this uniform convergence result in ω ×Gd,n to deduce
the convergence of the integrated energies.

Proposition 3.10. — Let Ω ⊂ Rn be an open set and let (Vi)i be a
sequence of d–varifolds in Ω weakly–∗ converging to some d–varifold V and
such that supi ‖Vi‖(Ω) < +∞. Fix a decreasing sequence (αi)i of positive
numbers tending to 0. Let ω ⊂⊂ Ω with ‖V ‖(∂ω) = 0. Then there exists
an extraction ψ such that∫
ω×Gd,n

Eω0 (x, P, V ) dV (x, P ) = lim
i→∞

∫
ω×Gd,n

Eωαi(x, P, Vψ(i)) dVψ(i)(x, P ) .

Proof. — Step 1: Let (αi)i ↓ 0 and Vi
∗−−−⇀

i→∞
V . Thanks to Proposi-

tion(3.9), there exists an extraction ϕ such that

sup
x∈ω

P∈Gd,n

∣∣Eωαi(x, P, Vϕ(i))− Eωαi(x, P, V )
∣∣ −−−→
i→∞

0 .
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But supi Vϕ(i)(ω ×Gd,n) 6 supi ‖Vi‖(Ω) < +∞, hence∣∣∣∣∣
∫
ω×Gd,n

Eωαi(x, P, Vϕ(i)) dVϕ(i)(x, P ) −
∫
ω×Gd,n

Eωαi(x, P, V ) dVϕ(i)(x, P )

∣∣∣∣∣
−−−→
i→∞

0 .(3.6)

Step 2: Now, we estimate∣∣∣∣∣
∫
ω×Gd,n

Eωαi(x, P, V ) dVϕ(i)(x, P )−
∫
ω×Gd,n

Eωαi(x, P, V ) dV (x, P )

∣∣∣∣∣
6
∫ min

(
1, d(ω,Ωc)

2

)
r=αi

∣∣∣∣∣
∫
ω×Gd,n

∫
Br(x)∩ω

(
d(y − x, P )

r

)2
d‖V ‖(y) dVϕ(i)(x, P )

−
∫
ω×Gd,n

∫
Br(x)∩ω

(
d(y − x, P )

r

)2
d‖V ‖(y) dV (x, P )

∣∣∣∣∣ dr

rd+1

6
1

αd+3
i

∫ min
(

1, d(ω,Ωc)
2

)
r=αi

∣∣∣∣∣
∫
ω×Gd,n

gr(x, P )dVϕ(i)(x, P )

−
∫
ω×Gd,n

gr(x, P ) dV (x, P )

∣∣∣∣∣ dr ,
with gr(x, P ) =

∫
Br(x)∩ω

d(y − x, P )2 d‖V ‖(y).

For every r < min
(

1, d(ω,Ωc)
2

)
, gr is bounded by 1. Moreover the set of

discontinuities of gr, denoted by disc(gr), satisfies

disc(gr) ⊂ {(x, P ) ∈ ω ×Gd,n : ‖V ‖(∂(Br(x) ∩ ω)) > 0}
⊂ {(x, P ) ∈ ω ×Gd,n : ‖V ‖(∂Br(x)) > 0} .

Hence V (disc(gr)) 6 ‖V ‖ ({x ∈ ω : ‖V ‖(∂Br(x)) > 0}) = 0 for almost
every r by Proposition 1.5. Consequently, for a.e. r,∣∣∣∣∣

∫
ω×Gd,n

gr(x, P )dVϕ(i)(x, P )−
∫
ω×Gd,n

gr(x, P ) dV (x, P )

∣∣∣∣∣ −−−→i→∞
0 ,

and then by dominated convergence,∫ min
(

1, d(ω,Ωc)
2

)
r=0

∣∣∣∣∣
∫
ω×Gd,n

gr(x, P )dVϕ(i)(x, P )

−
∫
ω×Gd,n

gr(x, P ) dV (x, P )

∣∣∣∣∣ dr −−−→i→∞
0 .
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It is then possible to extract, again, a subsequence (Vψ(i))i such that∣∣∣∣∣
∫
ω×Gd,n

Eωαi(x, P, V ) dVψ(i)(x, P ) −
∫
ω×Gd,n

Eωαi(x, P, V ) dV (x, P )

∣∣∣∣∣
−−−→
i→∞

0 .(3.7)

Step 3: Eventually by (3.6), (3.7) and monotone convergence, there exists
an extraction ψ such that∫
ω×Gd,n

Eω0 (x, P, V ) dV (x, P ) = lim
i→∞

∫
ω×Gd,n

Eωαi(x, P, V ) dV (x, P )

= lim
i→∞

∫
ω×Gd,n

Eωαi(x, P, Vψ(i)) dVψ(i)(x, P ) .

�

3.4. Rectifiability theorem

We can now state the main result.

Theorem 0.5. — Let Ω ⊂ Rn be an open set and let (Vi)i be a sequence
of d–varifolds in Ω weakly–∗ converging to some d–varifold V and such that
supi ‖Vi‖(Ω) < +∞. Fix (αi)i and (βi)i decreasing sequences of positive
numbers tending to 0 and assume that:

(i) there exist 0 < C1 < C2 such that for ‖Vi‖–almost every x ∈ Ω and
for every βi < r < d(x,Ωc),

(3.8) C1ωdr
d 6 ‖Vi‖(Br(x)) 6 C2ωdr

d ,

(ii)

(3.9) sup
i

∫
Ω×Gd,n

Eαi(x, P, Vi) dVi(x, P ) < +∞ .

Then V is a rectifiable d–varifold.

Proof. — The point is to see that these two assumptions (3.8) and (3.9)
actually imply the assumptions of the static theorem (Theorem 0.4 for the
limit varifold V ).

Step 1: The first assumption (3.8) and Proposition 3.3 lead to the first
assumption of the static theorem: there exist 0 < C1 < C2 such that for
‖V ‖–almost every x ∈ Ω and for every 0 < r < d(x,Ωc),

C1ωdr
d 6 ‖V ‖(Br(x)) 6 C2ωdr

d .
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Step 2: Let ω ⊂⊂ Ω be a relatively compact open subset such that
‖V ‖(∂ω) = 0 then, thanks to Proposition 3.10, we know that there exists
some extraction ϕ such that

(3.10)
∫
ω×Gd,n

Eω0 (x, P, V ) dV (x, P ) = lim
i→∞

∫
ω×Gd,n

Eωαi(x, P, Vϕ(i)) dVϕ(i)(x, P ).

But Eωα is decreasing in α and αϕ(i) 6 αi, therefore for every (x, P ) ∈
ω ×Gd,n,

Eωαi(x, P, Vϕ(i)) 6 Eωαϕ(i)
(x, P, Vϕ(i)) ,

hence

(3.11) sup
i

∫
ω×Gd,n

Eωαi(x, P, Vϕ(i)) dVϕ(i)(x, P )

6 sup
i

∫
ω×Gd,n

Eωαϕ(i)
(x, P, Vϕ(i)) dVϕ(i)(x, P ) .

Moreover, recall that Eωαi(x, P, Vi) 6 Eαi(x, P, Vi) and thus

(3.12) sup
i

∫
ω×Gd,n

Eωαi(x, P, Vi) dVi(x, P )

6 sup
i

∫
Ω×Gd,n

Eαi(x, P, Vi) dVi(x, P ) 6 C .

Eventually, by (3.10), (3.11) and (3.12),

(3.13)
∫
ω×Gd,n

Eω0 (x, P, V ) dV (x, P ) 6 C .

Step 3: By (3.13), for every ω ⊂⊂ Ω such that ‖V ‖(∂ω) = 0 we get that

V ({(x, P ) ∈ ω ×Gd,n | Eω0 (x, P, V ) = +∞}) = 0 .
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At the same time, for x ∈ ω and P ∈ Gd,n,

|E0(x, P, V )− Eω0 (x, P, V )|

=
∫ 1

r=min
(

1, d(ω,Ωc)
2

) 1
rd+1

∫
Br(x)∩Ω

(
d(y − x, P )

r

)2
d‖V ‖(y) dr

+
∫ min

(
1, d(ω,Ωc)

2

)
r=0

1
rd+1

∫
Br(x)∩(Ω\ω)

(
d(y − x, P )

r

)2
d‖V ‖(y) dr

6
∫ min

(
1, d(ω,Ωc)

2

)
r=d(x,ωc)

1
rd+1

∫
Br(x)∩Ω

(
d(y − x, P )

r

)2
d‖V ‖(y) dr

+
(

2
d(ω,Ωc)

)d+1
‖V ‖(Ω)

6

((
2

d(ω,Ωc)

)d+1
+
(

1
d(x, ωc)

)d+1
)
‖V ‖(Ω) < +∞ .

Hence Eω0 (x, P, V ) = +∞ if and only if E0(x, P, V ) = +∞, and conse-
quently,

V ({(x, P ) ∈ ω ×Gd,n | E0(x, P, V ) = +∞})
= V ({(x, P ) ∈ ω ×Gd,n | Eω0 (x, P, V ) = +∞}) .

Now, thanks to Lemma 2.5, we decompose Ω into Ω = ∪kωk with ∀k,
ωk+1 ⊂⊂ ωk ⊂⊂ Ω and ‖V ‖(∂ωk) = 0. Then

V ({(x, P ) ∈ Ω×Gd,n | E0(x, P, V ) = +∞})
= lim

k
V ({(x, P ) ∈ ωk ×Gd,n | E0(x, P, V ) = +∞})

= lim
k
V ({(x, P ) ∈ ωk ×Gd,n | Eωk0 (x, P, V ) = +∞})

= 0 .

Applying the static theorem (Theorem 0.4) allows us to conclude the
proof. �

In Theorem 0.5, we have found conditions (3.8) and (3.9) ensuring the
rectifiability of the weak–∗ limit V of a sequence of d–varifolds (Vi)i. Recall
that the condition

(3.14) sup
i
|δVi|(Ω) < +∞

together with the condition (3.8) also ensure the rectifiability of the weak–∗
limit V of (Vi)i. But, in Proposition 1.25, we have computed the first vari-
ation of a discrete varifold (discrete varifolds are defined in Example 1.24)

TOME 65 (2015), FASCICULE 6



2490 Blanche BUET

and we have seen in Example 1.26 that even in the case where the limit
varifold V is very simple (we considered a straight line), the natural ap-
proximations of V by discrete varifolds Vi generally do not satisfy (3.14)
even though |δV |(Ω) = 0.
We now check that the condition (3.9) in Theorem 0.5 is better adapted

to general sequences of varifolds than the control of the first variation (3.14).
Indeed, in the next Proposition, we prove that given a d–varifold V with
some regularity property, and given any sequence of d–varifolds Vi

∗−−−⇀
i→∞

V ,
there exists a subsequence of (Vi)i satisfying a local version of condi-
tion (3.9) in Theorem 0.5.

Proposition 3.11. — Let Ω ⊂ Rn be an open set and let V be a d–
varifold in Ω such that∫

Ω×Gd,n
E0(x, P, V ) dV (x, P ) < +∞ .

Let (Vi)i be a sequence of d–varifolds weakly–∗ converging to V with
supi ‖Vi‖(Ω) < +∞. Then, given αi ↓ 0, for every ω ⊂⊂ Ω such that
‖V ‖(∂ω) = 0, there exists a subsequence (Wi)i = (Vϕ(i))i such that

(3.15) sup
i

∫
ω×Gd,n

Eωαi(x, P,Wi) dWi(x, P ) < +∞ .

Proof. — It is a direct consequence of Proposition 3.10. �

The condition (3.15) is expressed in terms of the local version Eωα of Eα.
In the case where the varifolds are contained in the same compact set, then
global condition (3.9) of Theorem 0.5 is satisfied by some subsequence.

Proposition 3.12. — Let αi ↓ 0. Let V be a rectifiable d–varifold in
Rn with compact support and such that∫

ω×Gd,n
E0(x, P, V ) dV (x, P ) < +∞ .

Assume moreover that there exists some sequence of d–varifolds (Vi)i weak-
ly–∗ converging to V with supi ‖Vi‖(Rn) < +∞. Then for any ω ⊂⊂ Rn
such that supp ‖V ‖+B1(0) ⊂ ω and for all i, supp ‖Vi‖+B1(0) ⊂ ω, there
exists a subsequence (Vϕ(i))i such that

sup
i

∫
ω×Gd,n

Eαi(x, P, Vϕ(i)) dVϕ(i)(x, P ) < +∞ .

Proof. — It is again a direct consequence of Proposition 3.10 (since ω
is compact and ‖V ‖(∂ω) = 0) combined with the fact that supp ‖V ‖ +
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B1(0) ⊂ ω implies

Eωα(x, P, V ) =
∫ min

(
1, d(ω,(Rn)c)

2

)
r=α

1
rd

∫
Br(x)∩ω

(
d(y − x, P )

r

)2
d‖V ‖ dr

r

= Eα(x, P, V ) .

�

Given Vi
∗−−−−⇀

i→+∞
V and αi ↓ 0, the previous Propositions 3.11 and 3.12

give a subsequence (Vϕ(i))i satisfying (3.9)

sup
i

∫
Eαi(x, P, Vϕ(i)) dVϕ(i)(x, P ) < +∞

In the following proposition, we focus on sequences of discrete varifolds
defined in Example 1.24. Under some uniform regularity assumption on V ,
we give a sequence (Vi)i of discrete varifolds such that

Vi
∗−−−−⇀

i→+∞
V ,

and a condition linking the scale parameter αi and the size δi of the mesh
associated to the discrete varifold Vi, ensuring that (3.9) holds for Vi and
not for a subsequence.

Theorem 3.13. — Let V = v(M, θ) be a rectifiable d–varifold in Rn
with finite mass ‖V ‖(Ω) < +∞ and compact support. Let δi ↓ 0 be a
sequence of infinitesimals and (Ki)i a sequence of meshes satisfying

sup
K∈Ki

diam(K) 6 δi −−−−→
i→+∞

0 .

Assume that there exists 0 < β < 1 and C > 0 such that for ‖V ‖–almost
every x, y ∈ Ω,

‖TxM − TyM‖ 6 C|x− y|β .

Define the sequence of discrete varifolds:

Vi =
∑
K∈Ki

mi
K

|K|
Ln ⊗ δP i

K
with mi

K = ‖V ‖(K)

and P iK ∈ arg min
P∈Gd,n

∫
K×Gd,n

‖P − S‖ dV (x, S) .

Then,
(i) Vi

∗−−−−⇀
i→+∞

V ,
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(ii) For any sequence of infinitesimals αi ↓ 0 and such that for all i,

(3.16) δβi
αd+3
i

−−−−→
i→+∞

0 ,

we have,∫
Rn×Gd,n

E0(x, P, V ) dV (x, P ) = lim
i→+∞

∫
Rn×Gd,n

Eαi(x, P, Vi) dVi(x, P )

< +∞ .

Remark 3.14. — We insist on the fact that the condition on the scale
parameters αi and the size of the mesh δi is not dependent on Vi but only
on the regularity of V i.e. on β (and on the dimension d).

Notation. — For the sake of simplicity, we now identify an element Q ∈
Gd,n and the associated orthogonal projector ΠQ ∈ Mn(R). For instance
ΠTxM −ΠQ is now denoted TxM −Q.

Proof. — Step 1: Let ϕ ∈ Lip(Rn×Gd,n) with Lipschitz constant lip(ϕ),
then

|〈Vi, ϕ〉 − 〈V, ϕ〉| 6 δilip(ϕ)‖V ‖(Rn)+lip(ϕ)
∫
Rn×Gd,n

∥∥P i(y)− T
∥∥ dV (y, T ) ,

where P i : Rn → Gd,n is cell-wise constant, and P i = P iK in K.
Indeed,

|〈Vi, ϕ〉 − 〈V, ϕ〉|

=

∣∣∣∣∣
∫
Rn×Gd,n

ϕ(x, S) dVi(x, S)−
∫
Rn×Gd,n

ϕ(y, T ) dV (y, T )

∣∣∣∣∣
=

∣∣∣∣∣ ∑
K∈Ki

∫
K

ϕ(x, P iK)‖V ‖(K)
|K|

dLn(x)−
∑
K∈Ki

∫
K×Gd,n

ϕ(y, T ) dV (y, T )

∣∣∣∣∣
=

∣∣∣∣∣ ∑
K∈Ki

∫
x∈K

∫
K×Gd,n

ϕ(x, P iK) dV (y, T ) dL
n(x)
|K|

−
∑
K∈Ki

∫
x∈K

∫
K×Gd,n

ϕ(y, T ) dV (y, T ) dL
n(x)
|K|

∣∣∣∣∣
6
∑
K∈Ki

∫
x∈K

∫
(y,T )∈K×Gd,n

∣∣ϕ(x, P iK)− ϕ(y, T )
∣∣︸ ︷︷ ︸

6lip(ϕ)(|x−y|+‖P iK−T‖)

dV (y, T ) dL
n(x)
|K|

(3.17)
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6 δilip(ϕ)‖V ‖(Rn) + lip(ϕ)
∫
Rn×Gd,n

∥∥P i(y)− T
∥∥ dV (y, T ) .

(3.18)

Step 2: We now study the convergence of the term

(3.19)
∫
Rn×Gd,n

∥∥P i(y)− T
∥∥ dV (y, T ) 6 2Cδβi ‖V ‖(R

n) −−−−→
i→+∞

0 .

First define, for all i, Ai : Rn →Mn(R) cell-wise constant:

Ai = AiK = 1
‖V ‖(K)

∫
K

TuM d‖V ‖(u) constant in the cell K ∈ Ki .

Then,∫
Rn×Gd,n

∥∥Ai(y)− T
∥∥ dV (y, T )

=
∑
K∈Ki

∫
K

∥∥∥∥ 1
‖V ‖(K)

∫
K

TuM d‖V ‖(u)− TyM
∥∥∥∥ d‖V ‖(y)

6
∑
K∈Ki

∫
K

1
‖V ‖(K)

∫
K

‖TuM − TyM‖︸ ︷︷ ︸
6C|u−y|β6Cδβ

i

d‖V ‖(u) d‖V ‖(y)

6 Cδβi ‖V ‖(R
n) .

Consequently,∫
K

∥∥Ai(y)− TyM
∥∥ d‖V ‖(y) = εiK with

∑
K∈Ki

εiK < Cδβi ‖V ‖(R
n) .

In particular, for all K ∈ Ki, there exists yK ∈ K such that∥∥Ai(yK)− TyKM
∥∥ 6 εiK

‖V ‖(K) .

Define T i : Rn → Gd,n, constant in each cell, by T i(y) = T iK = TyKM for
K ∈ Ki and y ∈ K, and then,∫

Rn×Gd,n

∥∥T i(y)− T
∥∥ dV (y, T ) =

∑
K∈Ki

∫
K

‖TyKM − TyM‖ d‖V ‖(y)

6
∑
K∈Ki

∫
K

‖TyKM − Ai(y)︸ ︷︷ ︸
=Ai(yK)

‖ d‖V ‖(y) +
∫
Rn×Gd,n

∥∥Ai(y)− T
∥∥ dV (y, T )

6
∑
K∈Ki

∫
K

εiK
‖V ‖(K)d‖V ‖(y) + Cδβi ‖V ‖(R

n)

6 2Cδβi ‖V ‖(R
n) .
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Now remind that for all K ∈ Ki, P iK ∈ arg min
P∈Gd,n

∫
K×Gd,n

‖P − T‖ dV (y, T )

so that,

∫
Rn×Gd,n

∥∥P i(y)− T
∥∥ dV (y, T ) =

∑
K∈Ki

∫
K×Gd,n

∥∥P iK − T∥∥ dV (y, T )

6
∑
K∈Ki

∫
K×Gd,n

∥∥T iK − T∥∥ dV (y, T )

6 2Cδβi ‖V ‖(R
n)

Step 3: Vi
∗−−−−→

i→+∞
V . Thanks to Steps 1 and 2, we have proved that for

any ϕ ∈ Lip(Ω×Gd,n),

(3.20) 〈Vi, ϕ〉 −−−−→
i→+∞

〈V, ϕ〉 ,

it remains to check the case ϕ ∈ C0
c(Rn × Gd,n). Let ϕ ∈ C0

c(Rn × Gd,n)
and ε > 0. We can extend ϕ into ϕ ∈ C0

c(Rn×Mn(R)) by Tietze-Urysohn
Theorem since Gd,n is closed. Then, by density of Lip(Rn ×Mn(R)) in
C0
c(Rn ×Mn(R)) with respect to the uniform topology, there exists ψ ∈

Lip(Rn ×Mn(R)) such that
∥∥ϕ− ψ∥∥∞ < ε. Let now ψ ∈ Lip(Rn ×Gd,n)

be the restriction of ψ to Rn ×Gd,n, then,

|〈V,ϕ〉−〈Vi,ϕ〉|6 |〈V, ϕ〉 − 〈V, ψ〉|+ |〈V, ψ〉 − 〈Vi, ψ〉|+ |〈Vi, ψ〉 − 〈Vi, ϕ〉|
6 ‖V ‖(Rn)‖ϕ−ψ‖∞+ |〈V,ψ〉−〈Vi,ψ〉|+‖Vi‖(Rn)‖ϕ−ψ‖∞ .

As ‖Vi‖(Rn) = ‖V ‖(Rn) for all i, by definition of Vi, and

|〈V, ψ〉 − 〈Vi, ψ〉| −−−−→
i→+∞

0 by (3.20) ,

there exists i large enough such that

|〈V, ϕ〉 − 〈Vi, ϕ〉| 6 (2‖V ‖(Rn) + 1) ε ,

which concludes the proof of the weak–∗ convergence.
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We now estimate,

∣∣∣∣∣
∫
Rn×Gd,n

Eα(x, P, V ) dV (x, P )−
∫
Rn×Gd,n

Eα(x, P, Vi) dVi(x, P )

∣∣∣∣∣
(3.21)

6

∣∣∣∣∣
∫
Rn×Gd,n

Eα(x, P, V ) dV (x, P )−
∫
Rn×Gd,n

Eα(x, P, V ) dVi(x, P )

∣∣∣∣∣
(3.22)

+

∣∣∣∣∣
∫
Rn×Gd,n

Eα(x, P, V ) dVi(x, P )−
∫
Rn×Gd,n

Eα(x, P, Vi) dVi(x, P )

∣∣∣∣∣
(3.23)

Step 4: We begin with (3.22) and we prove that

(3.24)

∣∣∣∣∣
∫
Rn×Gd,n

Eα(x, P, V ) dVi(x, P )−
∫
Rn×Gd,n

Eα(x, P, V ) dV (x, P )

∣∣∣∣∣
6

1
αd+3 ‖V ‖(R

n)2
[
4δi + 2Cδβi

]
.

Indeed,

∣∣∣∣∣
∫
Rn×Gd,n

Eα(x, P, V ) dVi(x, P )−
∫
Rn×Gd,n

Eα(x, P, V ) dV (x, P )

∣∣∣∣∣
=

∣∣∣∣∣
∫
Rn×Gd,n

∫ 1

r=α

∫
y∈Br(x)

(
d(y − x, P )

r

)2
d‖V ‖(y) dr

rd+1 dVi(x, P )

−
∫
Rn×Gd,n

∫ 1

r=α

∫
y∈Br(x)

(
d(y − x, P )

r

)2
d‖V ‖(y) dr

rd+1 dV (x, P )

∣∣∣∣∣
6
∫ 1

r=α

1
rd+3

∫
y∈Rn

∣∣∣∣∣
∫
Rn×Gd,n

1{|y−x|<r}(x) (d(y − x, P ))2
dVi(x, P )

(3.25) −
∫
Rn×Gd,n

1{|y−x|<r}(x) (d(y − x, P ))2
dV (x, P )

∣∣∣∣∣ d‖V ‖(y) dr
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And as in Step 1 in (3.17), for fixed y and α < r < 1, we have by definition
of Vi: ∣∣∣∣∣

∫
Rn×Gd,n

1{|y−x|<r}(x) (d(y − x, P ))2
dVi(x, P )(3.26)

−
∫
Rn×Gd,n

1{|y−x′|<r}(x′) (d(y − x′, P ′))2
dV (x′, P ′)

∣∣∣∣∣
6
∑
K∈Ki

∫
x∈K

∫
K×Gd,n

∣∣∣1Br(y)(x)
(
d(y − x, P iK)

)2
−1Br(y)(x′) (d(y − x′, P ′))2

∣∣∣ dV (x′, P ′) dL
n(x)
|K|

And in (3.26), either x, x′ ∈ Br(y) and in this case∣∣∣1Br(y)(x)
(
d(y − x, P iK)

)2 − 1Br(y)(x′) (d(y − x′, P ′))2
∣∣∣

6 2r
∣∣d(y − x, P iK)− d(y − x′, P ′)

∣∣
6 2r

(
|x− x′|+ |y − x′|‖P iK − P ′‖

)
6 2

(
|x− x′|+ ‖P iK − P ′‖

)
,

either
{
x ∈ Br(y) and x′ /∈ Br(y) or,
x′ ∈ Br(y) and x /∈ Br(y),

and in this case

∣∣∣1Br(y)(x)
(
d(y − x, P iK)

)2 − 1Br(y)(x′) (d(y − x′, P ′))2
∣∣∣ 6 r2 6 1 .

Notice that, as |x − x′| 6 δi this second case can only happen for x, x′ ∈
Br+δi(y) \Br−δi(y). Consequently,∣∣∣∣∣
∫
Rn×Gd,n

1{|y−x|<r}(x) (d(y − x, P ))2
dVi(x, P )

−
∫
Rn×Gd,n

1{|y−x′|<r}(x′) (d(y − x′, P ′))2
dV (x′, P ′)

∣∣∣∣∣
6
∑
K∈Ki

∫
x∈K

∫
K×Gd,n

2
(
|x− x′|+ ‖P iK − P ′‖

)
dV (x′, P ′) dL

n(x)
|K|

+
∑
K∈Ki

r2‖V ‖ (K ∩Br+δi(y) \Br−δi(y)) |K ∩Br+δi(y) \Br−δi(y)|
|K|︸ ︷︷ ︸
61
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6 2δi ‖V ‖(Rn) +
∫
Rn×Gd,n

‖P i(x′)− P ′‖ dV (x′, P ′)

+ ‖V ‖ (Br+δi(y) \Br−δi(y))

6 2
(
δi + Cδβi

)
‖V ‖(Rn) + ‖V ‖ (Br+δi(y) \Br−δi(y)) ,

thanks to (3.19) in Step 2. Notice that∫ 1

r=0
‖V ‖ (Br+δi(y) \Br−δi(y)) dr

=
∫ 1

r=0
‖V ‖ (Br+δi(y)) dr −

∫ 1

r=δi
‖V ‖ (Br−δi(y)) dr

=
∫ 1+δi

r=δi
‖V ‖ (Br(y)) dr −

∫ 1−δi

r=0
‖V ‖ (Br(y)) dr

6
∫ 1+δi

r=1−δi
‖V ‖(Br(y)) dr 6 2δi‖V ‖(Rn) .

Eventually, by (3.25),∣∣∣∣∣
∫
Rn×Gd,n

Eα(x, P, V ) dVi(x, P )−
∫
Rn×Gd,n

Eα(x, P, V ) dV (x, P )

∣∣∣∣∣
6

1
αd+3

∫ 1

r=0

∫
Rn

2
(
δi + Cδβi

)
‖V ‖(Rn)

+ ‖V ‖ (Br+δi(y) \Br−δi(y)) d‖V ‖(y) dr

6
1

αd+3

[
2
(
δi + Cδβi

)
‖V ‖(Rn)2

+
∫
Rn

∫ 1

r=0
‖V ‖ (Br+δi(y) \Br−δi(y)) dr d‖V ‖(y)

]
6

1
αd+3 ‖V ‖(R

n)2
[
4δi + 2Cδβi

]
.

Step 5: It remains to estimate (3.23), we prove that

(3.27)

∣∣∣∣∣
∫
Rn×Gd,n

Eα(x, P, V ) dVi(x, P )−
∫
Rn×Gd,n

Eα(x, P, Vi) dVi(x, P )

∣∣∣∣∣
6

1
αd+3 4‖V ‖(Rn)2δi.

Indeed, exactly as previously (but fixing x and integrating against ‖Vi‖,
‖V ‖ instead of Vi, V , so that the term depending on P i does not take part
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into this estimate), we have

|Eα(x, P, Vi)− Eα(x, P, V )|

6
1

αd+3

∫ 1

r=0

∣∣∣∣∣
∫
Br(x)

d(y − x, P )2 d‖Vi‖(y)

−
∫
Br(x)

d(y′ − x, P )2 d‖V ‖(y′)

∣∣∣∣∣ dr
6

1
αd+3

∫ 1

r=0
(2δi‖V ‖(Rn) + ‖V ‖ (Br+δi(y) \Br−δi(y))) dr

6
1

αd+3 ‖V ‖(R
n)4δi .(3.28)

We conclude this step by integrating against Vi, reminding that Vi(Rn ×
Gd,n) = ‖Vi‖(Rn) = ‖V ‖(Rn).

Step 6: By (3.24) and (3.27),∣∣∣∣∣
∫
Rn×Gd,n

Eαi(x, P, V ) dV (x, P )−
∫
Rn×Gd,n

Eαi(x, P, Vi) dVi(x, P )

∣∣∣∣∣
6

1
αd+3
i

‖V ‖(Rn)2
(

8δi + 2Cδβi
)

−−−−→
i→+∞

0(3.29)

thanks to (3.16). Then, by monotone convergence and (3.29),∫
Rn×Gd,n

E0(x, P, V ) dV (x, P ) = lim
i→+∞

∫
Rn×Gd,n

Eαi(x, P, V ) dV (x, P )

= lim
i→+∞

∫
Rn×Gd,n

Eαi(x, P, Vi) dVi(x, P ) .

�

Appendix A. The approximate averaged height excess
energy as a tangent plane estimator

Throughout this section, (Vi)i is a sequence of d–varifolds weakly–∗ con-
verging to some d–varifold V and (αi)i is a decreasing sequence of positive
numbers tending to 0 and such that

(A.1) sup
x∈ω

P∈Gd,n

∣∣Eωαi(x, P, Vi)− Eωαi(x, P, V )
∣∣ −−−→
i→∞

0 .
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The existence of such a sequence of (αi)i is given by Proposition 3.8 in
general, and in the case of discrete varifolds associated to a varifold V ,
(A.1) holds as soon as

δi

αd+3
i

−−−−→
i→+∞

0 thanks to (3.28) .

We want to show that under this condition on the choice of (αi)i, for fixed
x ∈ Ω, the minimizers of P 7→ Exαi(P ) = Eωαi(x, P, Vi) converge, up to some
subsequence, to minimizers of P 7→ Ex0 (P ) = Eω0 (x, P, V ). In the proofs,
we shorten Exαi(P ) = Eωαi(x, P, Vi) and Ex0 (P ) = Eω0 (x, P, V ). We begin
with studying the pointwise approximate averaged height excess energy
with respect to P ∈ G, for fixed x ∈ Ω and for a fixed d–varifold V .

A.1. The pointwise approximate averaged height excess energy

We now fix a d–varifold (not supposed rectifiable nor with bounded
first variation) in some open set Ω ⊂ Rn and we study the continuity
of Eα(x, P, V ) with respect to P ∈ Gd,n and then x ∈ Ω.

Proposition A.1. — Let 0 < α < 1. Let V be a d–varifold in an open
set Ω ⊂ Rn such that ‖V ‖(Ω) < +∞. Then, for every P , Q ∈ Gd,n,

|Eα(x, P, V )− Eα(x,Q, V )| 6 2‖P −Q‖
∫ 1

r=α

1
rd+1 ‖V ‖(Br(x)) dr

In particular, P 7→ Eα(x, P, V ) is Lipschitz with constant Kα 6
2‖V ‖(Ω)
αd+1 .

If in addition ∀α < r < 1, ‖V ‖(Br(x)) 6 Crd then Kα 6 C‖V ‖(Ω) ln 1
α .

Proof. — Let P , Q ∈ Gd,n then,

|Eα(x, P, V )− Eα(x,Q, V )|

6
∫ 1

r=α

1
rd+1

∫
Br(x)

∣∣∣∣∣
(
d(y − x, P )

r

)2
−
(
d(y − x,Q)

r

)2
∣∣∣∣∣ d‖V ‖(y) dr .

If πP (respectively πQ) denotes the orthogonal projection onto P (respec-
tively Q), recall that |d(y − x, P )− d(y − x,Q)| 6 ‖P −Q‖|y − x|. Indeed

d(y − x, P ) = |y − x− πP (y − x)|
6 |y − x− πQ(y − x)|+ |πQ(y − x)− πP (y − x)|
6 d(y − x,Q) + ‖πQ − πP ‖op︸ ︷︷ ︸

=‖P−Q‖ by definition

|y − x| .

TOME 65 (2015), FASCICULE 6



2500 Blanche BUET

Moreover y ∈ Br(x) so that d(y − x, P )
r

6 1 and thus∣∣∣∣∣
(
d(y − x, P )

r

)2
−
(
d(y − x,Q)

r

)2
∣∣∣∣∣ 6 2

∣∣∣∣d(y − x, P )
r

− d(y − x,Q)
r

∣∣∣∣
6 2‖P −Q‖ |y − x|

r
6 2‖P −Q‖ .

Consequently,

|Eα(x, P, V )− Eα(x,Q, V )| 6 2‖P −Q‖
∫ 1

r=α

1
rd+1 ‖V ‖(Br(x)) dr .

�

We now study the continuity of x 7→ Eα(x, P, V ).

Proposition A.2. — Let 0 < α < 1. Let V be a d–varifold in an open
set Ω ⊂ Rn such that ‖V ‖(Ω) < +∞. Then,

sup
P∈Gd,n

|Eα(x, P, V )− Eα(z, P, V )| −−−→
z→x

0 .

Proof. — First notice that for all x, y, z ∈ Ω and P ∈ Gd,n,

|d(y − x, P )− d(y − z, P )| =
∣∣|y − x− πP (y − x)| − |y − z − πP (y − z)|

∣∣
6 |z − x− πP (z − x)| = d(z − x, P ) .

We now split Br(x) ∪ Br(z) into (Br(x) ∩Br(z)) and (Br(x)4Br(z)) so
that∣∣∣∣∣

∫
Br(x)

(
d(y − x, P )

r

)2
d‖V ‖(y)−

∫
Br(z)

(
d(y − z, P )

r

)2
d‖V ‖(y)

∣∣∣∣∣
6
∫
Br(x)∩Br(z)

∣∣∣∣∣
(
d(y − x, P )

r

)2
−
(
d(y − z, P )

r

)2
∣∣∣∣∣ d‖V ‖(y)(A.2)

+
∫
Br(x)\Br(z)

(
d(y − x, P )

r

)2
d‖V ‖(y)(A.3)

+
∫
Br(z)\Br(x)

(
d(y − z, P )

r

)2
d‖V ‖(y) .(A.4)

We use the estimate linking d(y− x, P ) and d(y− z, P ) to control the first
integral and then we show that the two other terms tend to 0.
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Concerning the first integral (A.2):∫
Br(x)∩Br(z)

∣∣∣∣∣
(
d(y − x, P )

r

)2
−
(
d(y − z, P )

r

)2
∣∣∣∣∣ d‖V ‖(y)

6
∫
Br(x)∩Br(z)

2
∣∣∣∣d(y − x, P )

r
− d(y − z, P )

r

∣∣∣∣ d‖V ‖(y)

6 2 |z − x|
r
‖V ‖ (Br(x) ∩Br(z)) .

Concerning the two other integrals (A.3) and (A.4):∫
Br(x)\Br(z)

(
d(y − x, P )

r

)2
d‖V ‖(y) +

∫
Br(z)\Br(x)

(
d(y − z, P )

r

)2
d‖V ‖(y)

6 ‖V ‖ (Br(x)4Br(z)) 6 R(x, r − |z − x|, r + |z − x|) ,

where R(x, rmin, rmax) := {y ∈ Ω | rmin 6 |y − x| 6 rmax}. Therefore,

|Eα(x, P, V )− Eα(z, P, V )|

6 2|z − x|
∫ 1

r=α
‖V ‖(Br(x) ∩Br(z))

dr

rd+2 +
∫ 1

r=α
‖V ‖ (Br(x)4Br(z))

dr

rd+1

6
1

αd+1

[
2|z − x|
d+ 1 ‖V ‖(Ω) +

∫ 1

r=0
‖V ‖ (R(x, r − |z − x|, r + |z − x|)) dr

]
.

The second term tends to 0 when |z − x| → 0, by dominated convergence,
since

lim
z→x
‖V ‖ (R(x, r − |z − x|, r + |z − x|)) = ‖V ‖(∂Br(x)) .

�

A.2. Γ–convergence of P 7→ Eωαi(x, P, Vi) to P 7→ Eω0 (x, P, V ).

Proposition A.3. — Let Ω ⊂ Rn be an open set and let ω ⊂⊂ Ω be
a relatively compact open subset such that ‖V ‖(∂ω) = 0. Let (Vi)i be a
sequence of d–varifolds weakly–∗ converging to V . Assume that (αi)i are
chosen as explained in (A.1), uniformly in ω. For (Si)i ⊂ Gd,n such that
Si −−→

i∞
S then, for all x ∈ ω,

lim
i→∞

Eωαi(x, S, Vi) = Eω0 (x, S, V ) 6 lim inf
i→∞

Eωαi(x, Si, Vi) .

Proof. — By monotone convergence, we already know that

(A.5) Eω0 (x, S, V ) = lim
i→∞

Eωαi(x, S, V ) .
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So we now want to estimate
∣∣Eωαi(x, S, V )− Eωαi(x, Si, V )

∣∣. Let us start
with extracting some (Sϕ(i))i such that

‖Sϕ(i) − S‖
1

αd+1
i

−−−→
i→∞

0

so that we can now apply the regularity property (Proposition A.1) of
Eα(x, P, V ) with respect to P :

∣∣Eωαi(x, S, V )− Eωαi(x, Sϕ(i), V )
∣∣ 6 2

αd+1
i

‖V ‖(ω)‖S − Sϕ(i)‖ −−−→
i→∞

0.

thus

(A.6) Eω0 (x, S, V ) = lim
i→∞

Eωαi(x, Sϕ(i), V ).

Notice that ϕ only depends on (αi)i.
As the sequence (αi)i is decreasing, αϕ(i) 6 αi and then Eωαi(x,Q, V ) 6

Eωαϕ(i)
(x,Q, V ) for all Q ∈ Gd,n, which implies in particular that

(A.7) lim
i→∞

Eωαi(x, Sϕ(i), V ) 6 lim inf
i→∞

Eωαϕ(i)
(x, Sϕ(i), V ) .

We now apply the uniform convergence of
∣∣Eωαi(·, ·, V )− Eωαi(·, ·, Vi)

∣∣ (A.1),

(A.8)
∣∣∣Eωαϕ(i)

(x, Sϕ(i), V )− Eωαϕ(i)
(x, Sϕ(i), Vϕ(i))

∣∣∣ −−−→
i→∞

0 ,

so that by (A.6), (A.7) and (A.8)
(A.9)
Eω0 (x, S, V ) 6 lim inf

i→∞
Eωαϕ(i)

(x, Sϕ(i), V ) = lim inf
i→∞

Eωαϕ(i)
(x, Sϕ(i), Vϕ(i)) .

As lim infiEωαi(x, Si, Vi) = limiE
ω
αθ(i)

(x, Sθ(i), Vθ(i)) for some extraction θ,
we now apply (A.9) to these extracted sequences (Sθ(i))i and (Vθ(i))i so
that there exists an extraction ϕ such that

Eω0 (x, S,V ) 6 lim inf
i→∞

Eωαθ(ϕ(i))
(x, Sθ(ϕ(i)),Vθ(ϕ(i))) = lim

i
Eωαθ(i)(x, Sθ(i),Vθ(i))

= lim inf
i

Eωαi(x, Si, Vi) ,

since the whole sequence Eωαθ(i)(x, Sθ(i), Vθ(i)) converges. �
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We now turn to the consequences of this Γ–convergence property on the
minimizers.

Proposition A.4. — Let Vi be a sequence of d–varifolds weakly–∗ con-
verging to V in some open set Ω ⊂ Rn and assume that (αi)i are cho-
sen as explained in (A.1), uniformly in ω ⊂⊂ Ω open subset such that
‖V ‖(∂ω) = 0. For x ∈ ω and i ∈ N, let Ti(x) ∈ arg minP∈Gd,n E

ω
αi(x, P, Vi).

Then,
(1) Any converging subsequence of (Ti(x))i tends to a minimizer of

Eω0 (x, ·, V ).
(2) min

P∈Gd,n
Eωαi(x, P, Vi) −−−→i→∞

min
P∈Gd,n

Eω0 (x, P, V ).

(3) If V is an integral rectifiable d–varifold with bounded first variation
then

arg min
P∈Gd,n

Eω0 (x, P, V ) = {TxM} ,

hence for ‖V ‖–almost every x, Ti(x) −−−→
i→∞

TxM .

Proof. — First, for fixed x and i, P 7→ Eωαi(x, P, Vi) is continuous and
Gd,n is compact so that arg minP∈Gd,n E

ω
αi(x, P, Vi) 6= ∅. Let

Ti(x) ∈ arg min
P∈Gd,n

Eωαi(x, P, Vi)

be a sequence of minimizers, as Gd,n is compact, one can extract a sub-
sequence converging to some T∞(x). Now applying the previous result
(Proposition A.3), we get for every P ∈ Gd,n,

Eω0 (x, T∞(x), V ) 6 lim inf
i→∞

Eωαi(x, Ti(x), Vi)

6 lim sup
i→∞

Eωαi(x, Ti(x), Vi)

6 lim sup
i→∞

Eωαi(x, P, Vi)

= lim
i
Eωαi(x, P, Vi) = Eω0 (x, P, V )

6 Eω0 (x, T∞(x), V ) for P = T∞(x) .

Therefore T∞(x) minimizes Eω0 (x, ·, V ) which allows to conclude that the
limit of any subsequence of minimizers of Eωαi(x, ·, Vi) is a minimizer of
Eω0 (x, ·, V ). It also proves that

lim
i

min
P∈Gd,n

Eωαi(x, P, Vi) = lim
i
Eωαi(x, Ti(x), Vi) = Eω0 (x, T∞(x), V )

= min
P∈Gd,n

Eω0 (x, P, V ) .
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Assume now that Eω0 (x, ·, V ) admits a unique minimizer T (x). We have
just shown that every subsequence of (Ti(x))i converges to T (x). As Gd,n
is compact, it is enough to show that the whole sequence is converging to
T (x). Now if V is an integral d–rectifiable varifold with bounded first vari-
ation, for ‖V ‖–almost every x, TxM is the unique minimizer of Eω0 (x, ·, V )
(see Prop. 2.2) so that for ‖V ‖–almost every x ∈ ω,

Ti(x) −−−→
i→∞

TxM .

�

Remark A.5. — Since Eω0 (x, ·, V ) has no continuity property, the exis-
tence of a minimizer of Eω0 (x, ·, V ) is not clear a priori. However, as Gd,n is
compact, every sequence of minimizers (Ti(x))i admits a converging sub-
sequence so that arg minP∈Gd,n E

ω
0 (x, P, V ) is not empty.

We end with studying the continuity of the minimum min
P∈Gd,n

Eαi(x, P, Vi)

with respect to x (for fixed i and Vi).

Proposition A.6. — Assume that Vi weakly–∗ converges to V in some
open set Ω ⊂ Rn and let (αi)i > 0. Then for every fixed i and ω ⊂⊂ Ω, the
function x 7→ min

P∈Gd,n
Eωαi(x, P, Vi) is continuous in ω.

Moreover, every converging sequence of minimizers(
Ti(zk) ∈ arg min

P
Eωαi(zk, P, Vi)

)
k

tends to a minimizer of Eωαi(x, ·, Vi) when zk → x and for a fixed i.

Remark A.7. — As i is fixed, meaning actually that a scale α = αi > 0
and a d–varifold V = Vi are fixed, we keep the notations Vi and αi, with the
explicit index i, only to be coherent with the whole context of this section
and with the notations of the previous results. But that is why we do not
assume anything on the choice of αi > 0 and ω ⊂⊂ Ω.

Proof. — Let i be fixed. First we show that if (zk)k ⊂ ω is such that|zk − x| −−−−→k→∞
0

Ti(zk) −−−−→
k→∞

T∞i where Ti(zk) ∈ arg minP Eωαi(zk, P, Vi) ,
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then,

(A.10) T∞i ∈ arg min
P

Eωαi(x, P, Vi) and

min
P

Eωαi(zk, P, Vi) = Eωαi(zk, Ti(zk), Vi) −−−−→
k→∞

Eωαi(x, T
∞
i , Vi)

= min
P

Eωαi(x, P, Vi) .

Indeed,∣∣Eωαi(x, T∞i , Vi)− Eωαi(zk, Ti(zk), Vi)
∣∣

6
∣∣Eωαi(x, T∞i , Vi)− Eωαi(x, Ti(zk), Vi)

∣∣
+
∣∣Eωαi(x, Ti(zk), Vi)− Eωαi(zk, Ti(zk), Vi)

∣∣
6 K(αi)‖T∞i − Ti(zk)‖+ sup

P

∣∣Eωαi(x, P, Vi)− Eωαi(zk, P, Vi)∣∣
applying Proposition A.1 to the first term, K(αi) is a constant depending
only on αi. Moreover, by Proposition A.2, the second term tends to zero
when k goes to ∞. Consequently,

Eαi(x, T∞i , Vi) = lim
k→∞

Eαi(zk, Ti(zk), Vi) .

And for every P ∈ Gd,n,

Eωαi(x, T
∞
i , Vi) = lim

k→∞
Eωαi(zk, Ti(zk), Vi)

6 lim
k→∞

Eωαi(zk, P, Vi)

= Eωαi(x, P, Vi) by Proposition A.2,

which yields (A.10).
It remains to prove the continuity of x 7→ min

P∈Gd,n
Eωαi(x, P, Vi). Let x and

(zk)k ∈ ω be such that zk −−−−→
k→∞

x and consider a subsequence (zϕ(k))k
such that

(A.11) lim sup
k

Eωαi(zk, Ti(zk), Vi) = lim
k
Eωαi(zϕ(k), Ti(zϕ(k)), Vi) .

As Gd,n is compact, there exists an extraction θ such that (Ti(zϕ(θ(k))))k
is converging and then applying the previous argument (A.10) to (zϕ(θ(k)))k
and (Ti(zϕ(θ(k))))k,

(A.12) lim
k→+∞

Eωαi
(
zϕ(θ(k)), Ti(zϕ(θ(k))), Vi

)
= min
P∈Gd,n

Eωαi(x, P, Vi) .

Eventually, by (A.11) and (A.12),

lim sup
k→+∞

Eωαi(zk, Ti(zk), Vi) = min
P∈Gd,n

Eωαi(x, P, Vi) .
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Similarly lim inf
k

Eωαi(zk, Ti(zk), Vi) = min
P

Eωαi(x, P, Vi) which concludes the
proof of the continuity. �
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