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0. INTRODUCTION 

The Iurpose of this work is to establish a formula for the Chern charac- 
ter asso :iated with a family of Dirac operators on manifolds with boundary 
and the corresponding global boundary conditions of Atiyah, Patodi, and 
Singer 1 APS 11. 

We li -st recall the results of [ APS 11. Let 2 be an even-dimensional com- 
pact oriented spin manifold with boundary 8Z endowed with a metric gz 
which i! a product near the boundary. Let D be the Dirac operator on Z, 
and let Daz be the Dirac operator on 8Z. Atiyah, Patodi, and Singer 
CAPS1 1 introduced global pseudo-differential conditions on the boundary 
associat :d with the spectral decomposition of Daz and so defined a 
Fredholm differential operator D + . They gave a formula for the index 
Ind D + of the form 

IndD+ = w-f(O). 
s Z 

(0.1) 

In (0.1 ), w is the local Atiyah-Singer characteristic polynomial 
[ASl, A S2, ABP], and $0) is a spectral invariant of Daz, called the 
reduced eta invariant of D az Formula (0.1) was used in [APSl] to . 
calculat: the signature of the manifold Z. 

In [C 1, C2], Cheeger gave a different approach to the calculation of the 
signature of a manifold with boundary. In [Cl, C2] a cone C(8Z) is 
attache< to the boundary aZ, so that Z’ = Z vdz C(aZ) is a manifold with 
conical singularity. If r is the radial coordinate on C(aZ), if gaz is the 
metric cn aZ, the cone C(8Z) is equipped with the metric 

dr= + r2gaz. (0.2) 

A Dirac operator is then defined on the manifold Z’ which is proved to 
be Fredholm. Its L, is equal to the index of Atiyah, Patodi, and Singer 
[APSl]. More precisely, the kernel and cokernel of this new Dirac operator 
are shol In to be canonically isomorphic to the kernel and cokernel of the 
Dirac qlerator of [APSl], while for nonzero eigenvalues, the eigenspaces 
are unre’ated. By using the classical heat equation method in index theory 
[ABP], together with the functional calculus on cones [Cl, C2]-which 
involves the Bessel functions-Cheeger provides an alternative proof of the 
result of Atiyah, Patodi, and Singer [APSl] for the signature of a manifold 
with botmdary. In particular, the contribution of the conical singularity to 
the indet was shown to be equal to the reduced &a invariant of [APSl] 
by using the functional calculus. The results of [Cl, C2] were extended by 
Chou [CJh] to general Dirac operators. 
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In [Bl 1, Bismut gave a local heat equation version of the index theorem 
of Atiyah and Singer for families [AS2]. If M +z B is a submersion with 
fiber Z, a canonical closed differential form representing the Chern charac- 
ter of the considered family of Dirac operators was exhibited in [Bl 1. The 
proof of [BI] uses the superconnection formalism of Quillen [Q] in an 
infinite-dimensional situation. A key tool in the proof of the local families 
index is the Levi-Civita superconnection of the libration M += B. The 
Levi-Civita superconnection should be thought of as being the Levi-Civita 
connection on TM for a singular metric which is infinite in the horizontal 
directions of M. 

A remarkable feature of Quillen’s superconnections [Q] as used in [Bl ] 
is that, for a given libration M+Z B, the deformation process involved in 
the proof is largely independent of the spectral theory of the Dirac 
operators in the fibers Z. In particular, the natural local geometric object 
for the local families index theorem which is the Levi-Civita superconnec- 
tion, ignores the spectral decomposition of the Dirac operators in the 
fibers. 

One is led naturally to try extending the methods of [Bl] to calculate 
the Chern character of a family of Dirac operators D + acting on the fibers 
Z of a Riemannian submersion M +z B, where the fibers Z are now even- 
dimensional manifolds with boundary aZ, with the global boundary condi- 
tions of Atiyah, Patodi, and Singer [APSl]. 

Here it is necessary to take into account the spectral flow of the family 
of Dirac operators DdZ on the boundaries Daz [APS3], which introduces 
jumps in f(O), and so jumps in formula (0.1) for Ind D + . In order for the 
index bundle to be defined, it is essential to assume that Ker Daz = (0) or, 
more generally, that Ker Daz is a vector bundle on B. In particular, the 
family of operators DaZ is trivial in K’(B). 

One can then try to adapt the superconnection formalism to obtain a 
formula for the Chern character of the index bundle associated with the 
family of Dirac operators of CAPS1 1. This seems to be very difficult. In fact 
the boundary conditions of Atiyah, Patodi, and Singer CAPS1 ] are of 
global nature and directly involve the spectrum of Daz. As we pointed out 
before, one of the strengths of the superconnection formalism is that one 
can disregard the way the spectrum of the considered family of operators 
varies from fiber to fiber. 

Our idea is then to replace the family of manifolds with boundary Z by 
the family of manifolds with conical singularity Z’ = Z uaz C(aZ). In 
particular, for s>O, we endow C(8Z) with the metric 

dr2 
y + r2gaz 

and we construct the family of Dirac operators De+ of [Cl, C2]. 
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FIGURE 1 

We then prove in Theorem 3.2 that, for E > 0 small enough, the index 
bundle Ind D"+ coincides with the Atiyah-Patodi-Singer index bundle. 
Also, bc,cause the Dirac operator D", on ZudZ C(aZ) incorporates the 
spectral boundary connections of Atiyah, Patodi, and Singer [APSl] in a 
very im,)licit way, we prove in Sections 3-6 that the superconnection for- 
malism 3f Quillen [Q] and also the Levi-Civita superconnection of [Bl ] 
can be llsed to study the family of Dirac operators De+ . The price we pay 
is that instead of using the functional calculus on cones of [Cl, C2], we 
must extend the classical theory of elliptic operators to manifolds with 
conical singularities in order to deal with deformations of such elliptic 
operatoi s. 

Thus, in Theorem 6.2, we obtain a formula for the Chern character of 
the AtiJah, Patodi, and Singer index bundle Ind D + . Apparently, this 
formula still depends on the parameter E >O defining the metric on the 
cones C:aZ) and the boundary term is not yet identified explicitly. 

Now the idea is to make E > 0 tend to 0 in the formula for the Chern 
character. Equivalently we take the “adiabatic” limit of the Chern character 
formula, as the length of the cones C(aZ) tends to infinity. The idea of 
taking tlte adiabatic limit of global quantities has already appeared in other 
contexts In [Bl], it was used to give a cohomological proof of the families 
index theorem. Witten [Wi] suggested that the holonomy of determinant 
bundles was related to adiabatic limits of &a invariants. This was proved 
rigorously in [BF2] and in [C3]. Also adiabatic limits of &a invariants 
have bec,n studied in a broader context in Bismut and Cheeger [BCl]. In 
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[MM] the adiabatic limit is related to the Leray spectral sequence of a 
libration (see also CD]). 

In our situation, we blow up the metric of the cones C(Z) in the one- 
dimensional radial direction, so that we can use the same techniques as in 
[BF2, C3]. We then obtain a formula for ch(Ind D,) 

ch(IndD+)=/ZA(g)Tr[exp( -$$I-rj. (0.4) 

In (0.4), a(Rz/27t) Tr[exp( -L5/2i7r)] is the differential form which was 
obtained in [Bl] in the local families index theorem for manifolds without 
boundary. 1 is a differential form associated with the family of Dirac 
operators Da* on the fibers 82. It satisfies 

(ii)]- (0.5) 

Formula (0.5) reflects the fact that the family Daz is trivial in K’(B), and 
that the corresponding odd Chern forms of [BF2, Section 21 are exact. 

The form 4 already appeared in our previous work [ BCl 1, where we 
calculated the adiabatic limit of the reduced eta invariant of Dirac operators 
on a manifold M’ libering over B’, where the metric of M’ is blown up in 
the horizontal directions. 

The techniques of this paper combine those of [Bl, BF2, Cl, C2, C33. 
In particular we develop a version of elliptic theory on cones which is more 
general than the functional calculus of [Cl, C2]. This is done by a 
probabilistic technique which gives us a generalized form of Kato’s 
comparison theorem for self-adjoint semi-groups. We also establish 
certain estimates on Bessel functions by probabilistic methods (see 
Proposition 1.15). As far as we can tell, these do not appear in the 
literature. 

Our work is divided into two parts. This paper contains Part I and 
consists of three sections. 

To make the reading of the paper easier, we devote Section 1 to establish 
the index theorem of Atiyah, Patodi, and Singer for one single manifold 
with boundary, by using the cone method of [Cl, C2]. The essential new 
ingredient of Section 1 with respect to [Cl, C2) is that we identify the &a 
invariant by taking an adiabatic limit rather than by using functional 
calculus on cones. Also, in Proposition 1.15, we establish an estimate on 
Bessel functions which plays a key role in Sections 1 and 6. 

In Section 2, we construct the LeviCivita superconnection on a family 
of manifolds with isolated conical singularities. In Section 3, we prove 
the existence of the index bundle associated with the family of 
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Atiyah-:‘atodi-Singer Dirac operators D, and also the existence of the 
index bundle associated with the family of Dirac operators De+ of 
[Cl, C2] constructed on our manifolds with conical singularities. Then we 
prove that these index bundles coincide in K’(B). 

The n:xt three Sections will appear as Part II in [BC2]. 
A con panion paper to this work is our article [BCl] on adiabatic limits 

of eta ir variants. In [BC3], we give the cohomological interpretation of 
the resu ts contained in this paper. In particular, we prove that the index 
of Dirac operators on manifolds with boundary is asymptotically multi- 
plicative We also extend our results to odd dimensional manifolds with 
boundary. We use notations of [Q, Bl 1. In particular, Tr, will be our nota- 
tion for supertraces. Also if K is a Zz graded algebra, we note [A, B] the 
supercor rmutator, 

[A, B] = AB- (1 )d=gAdegB BA. (0.6) 

The results obtained in this paper were announced in [BC4]. 

I. INDEX THEOREM FOR MANIFOLDS WITH BOUNDARY, 
CONES, AND ADIABATIC LIMITS 

In thi:; section, we establish the index theorem of Atiyah, Patodi, and 
Singer [ jPSl] for manifolds with boundary using the cone technique. This 
section is intended to be a simple introduction to the more complicated 
techniqu:s and results of Sections 4 and 6. As opposed to what is done in 
[Cl, C2, Ch], however, we identify the contribution from the singularity 
by passing to the adiabatic limit in the radial direction (compare also 
[BCl, S:ction 33). Remarkably enough, the methods of Section 1 will be 
used wit 1 little modification for families of Dirac operators on manifolds 
with boimdary, where the methods of [APSI] or [Cl, C2, Ch] do not 
obvious1 I apply. 

This s:ction is organized in the following way. In (a) we consider a 
manifold Z with boundary aZ, the cone C(aZ), and construct the manifold 
Z’ = Z uaZ C(aZ). In (b), we calculate the Levi-Civita connection on Z’ 
for a me:ric gZ’xE, which is given on C(aZ) by 

dr2 
T + r2gd? 

In (c), we construct the Dirac operator of [Cl, C2, Ch] on Z’. In (d), 
we briefly describe the main results on this Dirac operator which were 
establishc:d in [Cl, C2, Ch]. In (e), we calculate the asymptotics of the 
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heat equation formula for the index of the Dirac operator on 2’. In (f), we 
compute a similar asymptotics on an infinite cone. In (g), we obtain the 
formula of [Cl, C2, Ch] for the index of the Dirac operator on Z’ in terms 
of a local characteristic polynomial on Z and of the contribution of the 
conical singularity J”. 

In (h), by passing to the adiabatic limit, i.e., by making E + 0, we prove 
that J” coincides with the reduced eta invariant of [APSl]. For this we 
need to establish certain key estimates which we will also use in Section 6 
for families. We then obtain the index theorem of Atiyah, Patodi, and 
Singer [APSl] in the form given in [Cl, C2, Ch]. 

(a) A Manifold with Boundary Z and Its Associated Space Z’ with Conical 
Singularity 

Let Z denote a smooth connected compact manifold with smooth 
compact boundary 8Z. We assume that Z has even dimension n =2Z, is 
oriented and spin. Let C(aZ) be the cone constructed over dZ, i.e. C(aZ) 
is the compact set 

c(az)=(]o, l] x8Z)u (6) 

If r denotes the radial coordinate in IO, 11, then for any y E aZ, as r JO, 
(r, Y) + 6. 

Let % be a tubular neighborhood of aZ in Z, which we identify with 
[ 1,2[ x 8Z so that 8Z is identified with {l} x 8Z. If r still denotes the 
coordinate which varies in [ 1,2[, we piece together Z and C(aZ) along 
their common boundary 8Z so that the coordinate r patches smoothly. We 
thus obtain a new manifold 

Z’=Zuaz c(az). 

Z’ is a smooth manifold with a conical singularity at 6. 
Set f, = -a/&. If (e,, . . . . e, ~ I ) is an oriented base of T aZ, 

(fi, el, . . . . e,- 1) is an oriented base of TZ. 
Let gdZ be a smooth Riemannian metric on JZ. Let E be a positive 

parameter, which we fix for the moment. We equip the cone C(aZ) with 
the metric considered in [Cl, C2, Ch], 

dr2 
c + r2gdZ. 

Note here a slight difference of terminology with [Cl, C2, C3], where 
given a metric gaz on aZ, the cone C(aZ) is defined to be 10, + co [ x aZ 
equipped with the metric dr2 + r2gaz, and gaz is considered as the metric on 
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the cross section r = 1. In the formalism of [Cl, C2, C3], if r = & r’, the 
metric (1.1) sould be rewritten in the form dr’* + r’*sgaz. 

Let g ‘3’ be a Riemannian metric on Z which is such that on the tubular 
neighbo :hood @‘, gZsE is also given by (1.1). Clearly the metric gZsE patches 
smoothly with the metric (1.1) on the cone C(aZ). Therefore Z’ is 
equipped with a smooth metric which we note gz’,“. 

Let F = F, OF- be the Z, graded Hermitian vector bundle of spinors 
on Z as! ociated with the metric gZ9’. F, and F_ are the bundles of positive 
and neg: tive spinors on Z. TZ acts on F = F, 0 F _ by Clifford multiplication. 
If XE I’Z, we also denote the corresponding Clifford multiplication 
operatol by X. 

In pai titular on aZ, as a Clifford multiplication operator, f, interchanges 
F, and Fp. Therefore we can identify h E F, and fi h E Fp . 

Also OZ is an odd-dimensional manifold, which is oriented and spin. In 
order tc be consistent with classical orientation conventions, we identify 
the Herinitian bundle of spinors on 8Z with F, . 

On 8;: for the metric gzx’, f, acts on F= F, @ Fp as the matrix 

If YE ?Z and rE [l, 2[, we will identify F(,,, = F+,(,,,, OF-,,,,, with 
F, =f’+,, OF-,,. In particular, for the metric gZ,‘, the Clifford multi- 
plicatior operator associated with -a/& is now f,/&. Similarly, if 
e, , *.., e n _ i is an orthonormal base of TJaZ) with respect to gaz, 
e,, . . . . e, _, act by Clifford multiplication on F,,. Identifying Fcr,y, with Fy, 

for the r metric gZxE, the vectors e, , . . . . e, ~ I act by Clifford multiplication at 
(r,y) like re,, . . . . re,-,. 

We extend the vector bundle F= F, @ Fp on aZ to the cone C(aZ) in 
a trivial way. The whole manifold Z’ is now equipped with the smooth 
Hermiti: n vector bundle F= F, @ Fp . By extending the Clifford multi- 
plicatior operators from the tubular neighborhood Q into C(aZ) in the 
obvious way, F = F, 0 F_ can now be considered as the Hermitian vector 
bundle c f spinors on Z’ associated with the metric gZ’,‘. 

(b) The Levi-Civita Connection on TZ 

Let V Z,E (resp. Vz’~“) by the Levi-Civita connection on TZ (resp. TZ’) 
associatt d with the metric gzx” (resp. gzs”) and let RZ,& (resp. Rz’*“) be the 
corresponding curvature tensor. 
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We will briefly describe the connection F’s’ on the cone C(U). Let Vaz 
be the Levi-Civita connection on T t3Z with respect to the metric gaz. 

DEFINITION 1.1. V denotes the Euclidean connection on the restriction 
of TZ’ to C(aZ) uaz %! defined by the following relations: if X, Y are 
smooth vector fields on 8Z, then 

V,Y=q?Y; v+o 

vaiarx= “; v a 
r alar 5 =O. 

(1.2) 

Let T be the torsion tensor of V. Let 3’ be the tensor on C(aZ) uaz &: 

SC& = VZ’.” _ y (1.3) 

PROPOSITION 1.2. If X, YE T(aZ), then 

T(X, Y) = 0 

(1.4) 

Proof: The first four lines of (1.4) follow from straightforward computa- 
tions which are left to the reader. Also, 

VZ’.” x x x 
=- -=----= 

am r r2 r2 
0. 
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Similarl: I, 

= 0. 

The pro Josition is proved. 1 

Let 5 be a smooth complex vector bundle on Z. If p: G -+ 8Z is defined 
by p(r, J')= y, we have [=p*taz. 

We a! sume that t is equipped with a metric hr and with a unitary 
connecti m V5 which both split as products in !#, i.e., hr and V5 are the 
pull-bacl: by p* of the restrictions of h’ and V5 to 8Z. 

Let L’ be the curvature of V5. Clearly on %, if XE TdZ, 

L -$* =o. 
( > 

We now extend l from 8Z to C(aZ) in the obvious way. On C(aZ), 5 
inherits the corresponding metric and connection, and (1.5) still holds. 
Therefore r is a smooth Hermitian vector bundle with unitary connection 
V’ on Z . 

(c) The Dirac Operator on Z 

The L :vikCivita connection VZ’,E on TZ’ lifts into a unitary connection 
on F= E’, @ FP , which we still denote Vz,“. 

The F ermitian vector bundle FQ r is equipped with a unitary connec- 
tion Vz’, ’ @ 1 + 10 V5, which we still denote Vz’*“. 

Let Ha = H y @Hz be the vector space of smooth sections of F@ 5 = 
(F, @t)@ (F- 0 r) on Z’ which vanish at 6 together with their 
derivatives. D” denotes the Dirac operator acting on H” associated with 
the metr c gz,& and the connection V’. If e;, . . . . e; is an orthonormal basis 
of TZ’ for the metric gZ’,&, then D” is given by 

The o aerator D” interchanges H y and H “3 . Let D”+ be the restriction 
of D” to Hy . In particular, DE+ maps Hy into H 7. 



FAMILIES OF MANIFOLDS AND DIRAC OPERATORS 323 

The Levi-Civita connection VdZ on T dZ lifts to the restriction of F, to 
8Z. Therefore on 8Z, the Hermitian vector bundle F, @ 5 is endowed with 
the unitary connection Vaz @ 1 + 1 @V’, which we still denote VaZ. Also if 
XE T aZ, X acts by Clifford multiplication on F, 0 4. 

Let gaZ be the Dirac operator on aZ, which acts on the smooth sections 
of F, @ 5 on 8Z and is naturally associated with the metric gdZ and the 
connection V. If e,, . . . . e,-, is an orthonormal base of T aZ, then gaz is 
given by 

n-1 
Daz= 1 eiVf$. (1.7) 

i=l 

Of course, on C(aZ) uaz S!, we will use the description of F= F, @ F- 
which was given earlier. Recall that on C(8Z) uaz 4?, F, and F- are iden- 
tified. If XE T aZ, then X acts by Clifford multiplication on F= F, @ Fp 
as 

0 

[ “1 x 0’ 

So, on C(aZ) uaz 9, Daz acts on the set of smooth sections of F@< = 
(F, 635)O(F- 08 as 

[Sz “o”‘]. 

PROPOSITION 1.3. On C(dZ) uaz a’, D” is given by 

Equivalently, in matrix form, D” is given by 

0 

i - 

- & 
D”= J( 

-c+g+q= 

4 

a n-l 

> 

Da= 

I 

. (1.9) 

& ar+ 2r +r 
0 

Proof. We know that 

Clearly, the Euclidean connection V on T(C(dZ) uaz @.) lifts into a unitary 
connection on F= F, OF- . If e;, . . . . eh is an orthonormal base of TZ’ for 
g Z’,E, by [BF2, Eq. (1.2)], we find that 

Vz*‘=V.+$(SE(.)e[,e;)e:e~. 
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By Proposition 1.2, we see that for XE T(dZ), 

Let e,, . . . . e,- r be an orthonormal base of T 8Z for g,,. Using (1.6), we 
find tha, 

n-l 

D” = 1 %x3” +&f, V;‘,” 
1 r 

n--l e, 
= c -( 

A 

1 r 
vZF + 2 eif 1 

> 
+ &f 1 v,. 

The proposition is proved. 1 

We now calculate (D”)‘. 

PROP< SITION 1.4. On C(aZ) Uaz 9, ( DE)2 is given by the formula 

(D”)‘= --E $+el)--$(n-l)(n-3) 

+ &fi Da= + (Daz)2 
r2 r2 ’ 

(1.10) 

(1.11) 

Equivale qtly, on C(aZ) v az 92, (D”)’ is given in matrix form by 

q&;(y+g(y-g o 

a2 

ar2 1 “yp(y-g(y+g . 

(1.12) 

Proof: (1.11) and (1.12) are obvious consequences of (1.8) and (1.9). 1 

(d) The Dirac Operator on z’ and the Operator of Atiyah, Patodi, and 
Singer on Z 

To sintplify the exposition, we will assume in the sequel that 

Ker DaZ = (0 >. (1.13) 

Assumption (1.13) can be easily lifted by the method of [Cl, C2, Ch]. 
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However in the context of the families situation of Section 3, the analogous 
point has a significance which is not purely technical. 

Observe that by assumption (1.13) if E is small enough, for any 1 in the 
spectrum of DaZ, we have In]/&> $. 

We now recall the main results given in [Cl, C2, Ch]. Observe that H" 
is naturally equipped with a L2 Hermitian product. 

Then by [Ch, Theorem 3.21, for E > 0 small enough, D" is essentially self- 
adjoint on H", and the operator D"+ is Fredholm. In particular, the index 
of D"+ is given by the formula 

Ind De+ = dim Ker DE+ - dim Ker 0". (1.14) 

Also for E > 0 small enough, the operator (D")2 is essentially self-adjoint 
of H", the operator exp( - t(D”)‘) is trace class and, moreover, for any 
t > 0, 

Ind DE+ = Tr,[exp( - t(D”)2)]. (1.15) 

The properties of exp( - t(D”)‘) were established in [Cl, C2] using the 
functional calculus of cones. We will establish more general results on such 
operators in Section 4. 

On the other hand, Atiyah, Patodi, and Singer [APSl] defined a Dirac 
operator D on Z with global boundary conditions. 

Namely, let gz be a smooth metric on TZ which has the following two 
properties 

l gz coincides with gaZ on 8Z. 

l gz is product on %, i.e., on a!, gz is given 

gz = dr2 + gaz. (1.16) 

F= F, OF_ still denotes the Hermitian vector bundle of spinors on Z for 
the metric gz and the given spin structure on Z. (l, Vs) is taken as before. 
In [ APSl 1, a Dirac operator D is formally defined on Z as in (1.6). D still 
splits into 

D=[;+ “01. 

Also the Dirac operator DaZ on 8Z has a discrete spectrum. Let P, and 
P- be the orthogonal projection operators (with respect to the natural L, 
Hermitian product) on the direct sum of eigenspaces of DaZ corresponding 
to nonnegative or negative eigenvalues of DaZ. 
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Then Atiyah, Patodi, and Singer [APSl] restrict the operator D + to the 
Cm sect ions 4 of F, @ 5 such that 

P+qs=O. (1.17) 

They construct a natural family of Sobolev spaces on Z (which incor- 
porate the boundary condition (1.17)) such that the restriction of D + to 
such spxes is Fredholm. 

Similiuly, the operator D _ acts on the C” sections $ of F- @ r on Z 
such th;lt 

PpII/=O. (1.18) 

Then 

Ind D + = dim( Ker D + ) - dim( Ker D ~ ). (1.19) 

Giving an a priori identification of Ind D”+ and Ind D + , first as integers 
and later as virtual bundles, is of the utmost importance in the sequel. Here 
we prove the simple result. 

THEO LEM 1.5. For E > 0, small enough, 

IndD”+ =IndD+. (1.20) 

Proof We give two proofs of Theorem 1.5 which are essentially 
equivalent. 

Proof No. 1. Inspection of the arguments in [APSl] shows that we can 
define tlie Dirac operator b’+ of [APSl] on Z associated with the metric 
gz,” (WI ich is not a product on &) with the boundary conditions (1.17), 
(1.18), t lat DE+ is Fredholm and that Ind D&+ = Ind D + . 

We now will show that Ind BE+ = Ind DE+ . If h is a L, section of F, @ < 
on Z’ such that DC+ h = 0, then on C(aZ), we have 

(1.21) 

Let 

h(r)= c h,(r) 
A E Sp(L%) 

be the dxomposition of h(r,.) according to the eigenspaces of Daz. Clearly 
for any i E Sp(Daz), 

4 a n+l 
E 

- 
Z+ 2r > 

h, +/Ih,=O 
r 
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and so we find that 

h~(r)=r-(1/~+(n-1)i2)hn(1). (1.22) 

Also the contribution of the cone C(8Z) to the L, norm of h is given by 

s lh2(r, y)12 r”- l dr dy = c ji IhA( rn-’ dr. (1.23) 
[O,l]xJZ i. 

From (1.22) and (1.23) we find that, since (1.23) is finite, if h,(l) # 0, then 
A/&< i. Since 0 $ Sp(DJz), we find that for E >O small enough, if 
D”+ h = 0, then P + h = 0. Thus we have shown that for E > 0 small enough, 
if h E Ker DE+ , then the restriction h’ of h to Z is in Ker 8’+ . 

On the other hand, if h’ E Ker BE+ , then on aZ, h’ has the expansion 

h= c hi. 
i. E Sp(D”Z) 

A<0 

(1.24) 

We extend h to C(aZ) by the formula 

h= c r -(d/&+(4)/2,/, 2, * (1.25) 
1 E Sp(LG) 

I<0 

Clearly, for E > 0 small enough, h is square-integrable on Z’ and, moreover, 
DE+ h = 0. Therefore we have proved that for E > 0 small enough, Ker D”+ 
and Ker b’+ are isomorphic vector spaces. The same result can be proved 
for Ker 0” and Ker BE-. The proposition is proved. 1 

Proof No. 2. By modifying the metric gZ*’ on %, we can assume that 
g Z~E is given on % by 

dr2 
~+f(r)g”“, (1.26) 

where f(r) is a positive Cm-function such that 

f(r) = r2 for lsrs: 

f(r) = 1 for zsrs2. 

We now consider the new manifold with boundary 2 which is given by 

2=Z\{(r, y)E%!‘; It-1 <z} (1.27) 

whose boundary is {i} x 8Z. If c(&?) = (IO, 51 x 8Z) u {6}, then Z’= 
2 u JZ Z’(aZ). The metric on 2 is now a product near the boundary 82. 
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Also if ,i is the Dirac operator of CAPS1 ] on 2, one verifies immediately 
that Inc fi+ =IndD+. By proceeding as before, if is now easy to prove 
that Ind fi + = Ind DE+. 

(e) The Asymptotics of the Heat Kernel on Z 

Let dc be the Riemannian orientation form on Z’ for the metric gz’,‘. 
Given E >O small enough, for t > 0, let P:(x, x’) be the smooth kernel 
associatc:d with the operator exp( - t(D”)*). 

If hE Y”, x~Z’\{6}, then 

exp( - t(D”)‘) h(x) = Jz P:(x, x’) h(x’) dx’. (1.28) 

Let a bt: the Hirzebruch polynomial. a is an ad O(n) invariant polynomial 
defined on (n, n) antisymmetric matrices. If B is a (n, n) antisymmetric 
matrix vlith diagonal entries [ _9,, -21, then 

&B)=h xi’2 
, smh(xJ2)’ 

(1.29) 

THEOI .EM 1.6. For E > 0 small enough, for any x E Z’\ { 6 }, then 

lm Tr,Y[p:(x,x)]dx={A(s)Tr[exp( -$)]r”” (1.30) 
f -0 

and the convergence is uniform over compact subsets of Z’\(6). In par- 
ticular, 

lim Tr,[P;(x, x)] = 0 on C( aZ) udz a. (1.31) 
140 

Proof: (1.22) follows form the local index formula for Dirac operators 
[ABP, IieV, B4, Ge, Gi, P]. By Proposition 1.2, Rz’qa/ar, .) vanishes on 
C(aZ) L dZ %. Also by (1.5), L(a/ar,.) also vanishes. Therefore the right- 
hand sic e of (1.30) vanishes on C(aZ) uaz a. 1 

(f) The Heat Kernel on the Infinite Cone 

Let Cm(aZ) be the infinite cone with vertex 6: 

c~(az)=(lo,+~[Xaz)u{6}. 

If e ,, .., e,-, is an oriented base of T aZ, we orient Ca(aZ) by the base 
(-a/&, e,, . . . . e,- ,). For E >O, we still endow Cm(aZ) with the metric g&x” 
given by 

em-h2 g’ - 7 + r2gaZ. 
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We extend F = F + 0 F- and 5 from aZ to Coo(aZ) in the obvious way. 
Let D”,” be the Dirac operator acting on the smooth sections of F@ 5 on 
the cone Coo(aZ). D E, O” is exactly given by the right-hand side of Eq. (1.8). 

By [Cl, C2, Ch], for E > 0 small enough, (DE)* is essentially self-adjoint 
on the set of Cm sections of F@ 5 on Coo(aZ)\ { S } with compact support. 

Let dy denote the Riemannian orientation form of aZ for the metric gaz 
and let dx be the Riemannian orientation form of Coc(aZ) for the metric 
g ‘3 m. Clearly, 

dx=r”-‘dydr. 

Given E > 0 sufficiently small, for t > 0, let P; O” be the smooth kernel on 
Cm(aZ) associated with the operator exp( - t(D”,” )‘). P; Oc is, of course, 
calculated with respect to the volume form dx. Then by [Cl, C2, Ch] for 
any t>O, M>O, 

I ‘WP~“((r, Y), (r, ~111 dx < + ~0. [O,M] x az 
(1.33) 

The following simple observation is the crucial first step of [Cl, C2]. 

PROPOSITION 1.7. For any t > 0, (r, y) E 10, + co [ x aZ, then 

P:‘“((r, Y), (r, y)) = f PF;3(1, y), (1, y)). 

Also as t JO, 

TrsCYV1, Y), (1, YM = WI 

and O(t) is ,un$orm on aZ. 

Proof For s > 0, let h, be the dilation of the cone Cm(aZ), 

(r, Y) -, Mr, Y) = (sr, Y). 

One verifies that 

h,,, D”,“h, = SD&,=‘= 

(1.34) 

(1.35) 

(1.36) 

(1.37) 

and so 

h1,,(DE~m)2 h, = s~(D~~~)~, (1.38) 

(1.34) immediately follows from (1.37). The proof of (1.35) is similar to the 
proof of (1.31) in Theorem 1.6. H 
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(g) A Formula for Ind D”+ 

We h :re establish the formula of [Cl, C2, Ch] for Ind D”+ 

DEFI~ ITION 1.8. For E > 0 small enough, set 

Tr,CP>“((l, Y), (1, Y))I 4. (1.39) 

The i itegral which defines J” converges. In fact, 

l As ~10, Proposition 1.7 takes care of the convergence. 

. By (1.34), we know that 

Due o (1.33), it is clear that the integral in (1.39) also converges as 
ST +CO. 

THEO: (EM 1.9. For E > 0 small enough, then 

Ind DE+ =s,” (g) Tr [erp (g )1--J’. (1.41) 

Proof By ( 1.15), we know that for E > 0 small enough, for any t > 0, 

Ind DE+ = 
s 

Tr,[P;(x, x)] dx. (1.42) 
Z’ 

Take /? such that 0 < p < 1. Let CD(U) be the cone 

cqaq = (10, /I] x az) u (6}. 

Set 

Z “0 = z’\c”2(az). 

By Theorem 1.6, we find that 

lim s r10 z.l!Z Tr,CP:(x, x)1 dx 

(1.43) 
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On the other hand, by (1.31), 

lim s t10 C’4l3Z)\C’4dZ) 
Tr,[P:(x, x)] dx = 0. (1.44) 

By standard estimates on heat kernels, we know that there is o! > 0 such 
that for any x E C ““(az), 

(Pf(x, x) - P:O”(x, x)1 S C exp( -a/t). (1.45) 

Therefore, 

Tr,[PT(x, x)] dx - 
s 

Tr,[P:“(x, x)] dx 
C’qdz) 

ZCexp y . 
( > 

Using (1.34), we find that 

i Tr,CP;“((r, Y), (r, y))lr”-’ dr rs l/4 

= I I.5 1/4,/T 
‘WPT$W~ Y), (1, Nl$ 

1 =- 
2 I s> 161 

Tr,CC”((l, Y), (1, Y))I $. 

(1.46) 

(1.47) 

By (1.47), we find that as tJ0, the integral in the r.h.s. of (1.47) converges 
to J”. Theorem 1.9 follows from (1.43), (1.44), (1.46), (1.47). # 

Remark 1.10. For aE C, Re (a) >O, set 

By [Cl, C2, Ch], we know that for any j3> 0, for E small enough, 
PT”((r, y), (r, JJ)) decays faster than rB as r JO. 

Take A4 > n/2. For E >O small enough, for any a such that n/2 < 
Re (a) S M, using (1.40), the integral defining J’(a) converges. Of course, 
by (1.35) we know that this is also the case for - 1 < Re (a) 5 M. 
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For v 2 0, let I, be the modified Bessel function of order v. By [Cl, C2, 
CaJ, P!‘: Eqs. (2.h), (2.i), So] we know that for any b E R, the kernel on 
R + asscrciated with the operator exp s{ d2/dr2 + (n - 1 )/r d/dr - b2/r2) has 
a density qt(r, r’) with respect to the measure rfnp’ dr’ which is given by 

q%l r, r’) = $ (rr’)(n ~ 2)‘2 exp { -7) I((n~2),2)2+@11/2 (;). (1.49) 

Let :,I> be the discrete family of real eigenvalues of Daz. Since 
O#Spec D , az for E>O small enoug h, for any A, IA/&] > $. Using (1.12) 
and (1.~,9), we find that for E > 0 small enough, 

s Tr,[P”;“((L Y), (1, ~))ldy 
az 

There fore, for Re (a) large enough, 

/“(a)=.\ c jb’= upa exp(-uK~liI~+t1/21 -~Ii,~pi,211(~)du. (1.51) 

Using the recursion relations on Bessel functions [Wa, p. 791 

v+l ~\!(u)=--v+, +c+,, u 
(1.52) 

we find that for v large enough, 

1 
s 

+* 
-- 

2 0 
u-“exp( -u)(l,+, -Z,)(u) du 

=~(~+a+l)~~+~ u-‘“+“exp(-u)Z,+,(u)du. (1.53) 

By a ‘ormula of Henkel and Gegenbauer [Wa, p. 3841, we know that 

~(~+o+l)~~+~ u-‘“+“exp(-u)I,+,(u)du 

=2a-1 ua+ lP)T(v-a+ 1) 
T(1/2) z-(v+a+ 1)’ 

(1.54) 

bismut
Note
There should be a - sign.
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So we find that if n/2 < Re (a) s M, for E > 0 small enough, 

2” qu + l/2) 
J6(a)=T r(1/2) 1 (w 4 

r(/JI/&+ W-a) 
r(lnl/ E + 1/2+a)’ 

(1.55) 

Equation (1.35) then shows that J’(a) extends into a meromorphic 
function of a for Re (a) 5 M, which is holomorphic at u = 0. 

A closely related formula for J”(u) was obtained in [C2, Eq. (6.10)], to 
show that J”(0) coincides with q(O). 

(h) Bessel Functions, Adiabatic Limit of J’ and the Atiyuh-Putodi-Singer 
Index Theorem 

We now will make E JO in Theorem 1.9 to reobtain the index theorem in 
the form given by Atiyah, Patodi, and Singer [APSl]. 

Let gz be a smooth metric on Z taken as in Section l(d). In particular, 
on %!, gz is given by (1.16). Let RZ be the curvature of the Levi-Civita 
connection Vz on (TZ, g”). 

PROPOSITION 1.11. For any E > 0, the folfowing equality hoZds: 

fzA(~)Tr[exp(~)]=jz~($)Tr[exp(~)]. (1.56) 

Prooj We use the same argument as in [C2, Section 61. The metric 
dr2/E + r2gaZ is conformally equivalent to the metric dr*/&r* + gaz. If 
u = (log r)/&, the metric dr2/Er2 + gJZ is exactly the metric du2 + gaz. 

It follows that the Riemannian manifold with boundary (Z, gzs”) is 
conformally equivalent to the manifold Z endowed with a metric grz which 
coincides with du2 +gaz on a tubular neighborhood of aZ. 

On the other hand, we know that the Pontryagin forms of TZ are 
conformally invariant. (1.56) follows. 1 

Remark 1.12. By Theorem 1.5, we know that for E > 0 small enough, 
Ind DE+ does not depend on E. It thus follows from Theorem 1.9 and 
Proposition 1.11 that for E > 0 small enough, J” is independent of E. 

Let $0) be the reduced eta invariant of Atiyah, Patodi, and Singer 
[APSl] associated with the self-adjoint operator DaZ. Recall that by 
[APS2, p. 84; BF2, Theorem 2.41 as s JO then 

Tr[DJZ exp( -s(D’~)~)] = O(A). (1.57) 

Using (1.57), we find the classical expression for q(O), 

1 
$0) =- s +O” Tr[D”=exp( -s(D”“)‘)] *. 

2J;; 0 A 
(1.58) 
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We novr will identify J” and $0) by an adiabatic limit procedure. This 
techniqt e is quite different from the one which is used in [Cl, C2, Ch] and 
will be c,xtended in Section 5 to the families index theorem. 

THEOI:EM 1.13. The following identity holds: 

FE J” = $0). (1.59) 

Proofl The proof of Theorem 1.13 is divided into two main steps. By 
(1.57), /A Tr[DaZ exp --s(D”~)~] can be extended by continuity at 
s = 0. 

The first step in the proof of Theorem 1.13 is the following. 

PROPC SITION 1.14. For any s 2 0, 

lim A E1O s i;, Tr,[P:“((f, Y), (1, Y))] dY 

= -ITr[D”” exp( -.s(D”z)2)] 
6 

(1.60) 

and the convergence is uniform over the compact subsets of R,. 

Proof: Let Q,( y, y’) be the C” kernel associated with the operator 
DdZexp8 -s(D’~)~). We will prove that 

with the required uniformity. By Proposition 1.3, we know that 

DE=,,&, ($q)+;Daz 

and so vre get 

(De)*= -,(l+!$)‘+q+d$l~d~. (1.62) 

It sho .rld now be clear that the proof of (1.61) is closely related to the 
second f roof of the families index theorem given in [Bl, Theorems 5.31 
and to [BF2, Theorem 3.12; C3], where a similar adiabatic limit problem 
was con> idered (compare especially [BCl, Section 31). 

There are, however, two differences. The first is substantial. While in 
[BF2, C3] the variable r was assumed to vary in S, and no singular terms 
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like l/r or l/r2 appeared, here, because we work on a cone, such singular 
terms are present. Still, we claim that, to study the limit of 
Tr,[P:“(( 1, y), (1, y))] as E JO, we can localize the problem in the region 
]t,~[xaZ.SowecanreplacetheconeC”(aZ)by]-co,+co[xaZand 
assume that for Irl large enough, (0”)’ is simply the operator 

-$+ (DJZy. 

This is essentially because on the diagonal, away from the tip (6}, P;co 
behaves like a standard heat kernel on a nonsingular space. 

Once localization is proved, we must now interest ourselves in the 
algebra which determines the existence of the limit. 

With respect to [BF2, Theorem 3.121, a minor difference is that while in 
[BF2], the dimension of the total manifold was odd, the dimension of 
Cm(aZ) is even. However, this is compensated by the fact that in [BF2], 
only traces where considered, while here we consider supertraces. As 
explained at length in [BF2, Sections 1 (b) and 2(f); BCl, Section 33, as 
far as adiabatic limits are concerned, these two situations are essentially 
equivalent. 

In particular remember that if e,, . . . . e, _ i is an oriented orthonormal 
base of TaZ, if f,e, . ..e.-, EL?‘~~ (TZ) is considered as acting on F= 
F, OF-, and e,...e,-, ccodd (T aZ) is considered as acting on F, , then 
by [BF2, Eqs. (1.6), (1.7)]: 

(1.63) 

Finally observe the critical fact that in formula (1.62) for (D”)2, the 
Clifford variablef, appears with the weight ,,&. 

It is then possible to reproduce exactly the steps of the proof of [BF2, 
Theorems 3.121 in a much simpler situation and to obtain (1.61). To prove 
uniformity as s + 0 in (1.61), we can also exactly proceed as in [BF2, 
Theorem 3.12; see also BCl, Section 41. 

In view of (1.391, (1.58), and (1.60), to prove Theorem 1.13, we need to 
show that the dominated convergence theorem can be used in the integral 
(1.39) defining J”. We thus establish an estimate on ratios of modified 
Bessel functions, which will also be used in Section 6. 

Recall that by [Wa, p. 543, 

Z,,,(z) = & sinh(z). (1.64) 
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PROPXITION 1.15. For any v 2 10, and z such that 1 5 z 5 3~~132, 

(1.65) 

Prooj: Let r be the generic element in V(R + ; R*,). Let Q be the 
probability law on V(R + ; R*, ) of the Bes(i) bridge such that rO = 1, 
r 1,Z = 1. Bessel bridges are extensively discussed in Pitman and Yor 
[PY, Section 23. 

If s + w, is a standard Brownian motion in R3 such that ) wr, ) = 1, which 
is conditioned to be on the unit where at time l/z, the probability law of 
lw . ) is :xactly Q. 

Let EQ be the expectation operator with respect to Q. By [PY, Eq. (2.i)], 
we knolv that 

$(z)=EQexp -? { l (v+) /ol’z;]. 

Since v 2 2, we find that 

$(z)5EO[exP{-4 supo 
V2 

z SI5l/Z lrr12 11 

(1.66) 

(1.67) 

Take V, n’ in R3. Let P,,, be the probability law of the Brownian bridge 
G in R3 such that G0 = n, G,,, = n’. Then under P,,.,, the probability law 
of the p ‘ocess G,-- (1 -sz)n -.szn’ is exactly P0.0 [Si, p. 401. 

If XE R3 is such that its Euclidean norm 1x1 is larger than 1, at least one 
compon:nt of X has an absolute value which is larger than l/J?. By 
[IMK, 1). 271, we find that for any I > 0, 

P,,,[ sup Ifi31Z1]16exp(-$Z2z). 
O$sj I/r 

(1.68) 

Therefore, if n, n’ are unit vectors in R3, we find that for l> 1, 

P,,nf[ sup 1G,(ZZ]56exp(-f(l-1)2z) 
osss l/z 

and so, if ZL2, 

(1.69) 
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Let do be the uniform probability measure on the sphere S,. If 
n = (LO, 0), under the probability law on %(Z? + ; R3), 

s P,,,, exp -qz} do(n’)/jsz exp {-v;} &(n’), (1.70) 
3 

the probability law of the process 161 is exactly Q. Therefore from (1.69), 
we find that for any 12 2, 

Q[ sup r,zZ]s6exp (1.71) 
O~SSl/Z 

From (1.67) and (1.71), we find that for 12 2, 

$(z)dexp( --&)+hexp( -$). (1.72) 

If z 5 3v2/32 we can choose I= [3v2/2z] 1’4 in (1.72). We obtain 

k(z)Sexp( -$+)+6exp( -&). (1.73) 

If 1 S z 5 3v2/32, from (1.73), we obtain (1.65). 1 

We now complete the proof of Theorem 1.13. We need to dominate the 
function 

1 - 
s TrUY((L ~1, (1, ~41 4 (1.74) 

as s t + cc by an integrable function which does not depend on E. Note 
that by an initial scaling of the metric gaz, we may and we will assume that 
the eigenvalues A of Daz are such that [A[ 2 4. By (1.50), we know that 

s Tr,CP:“((L ~1, (1, ~1114 
az 

1 
=j&exp 

( > 
-& C(h,J+1,2, -hJ-l,d(&). (1.75) 

i. 

Clearly for A> 0, and E small enough, since Z, decreases as v 2 0 
increases, we get 

O 5 ‘2./J ~ l/2 - ‘2./J f l/2 5 zj./Ji - 1 - z%/Ji + 1 . (1.76) 
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Also IIY the recursion formula on Bessel functions [Wa, p. 791, we know 
that 

(zl.~Ji-l-zA~JX+l)(z)=~ ;z Z,,&b 1. (1.77) 

Using (1.75t( 1.77), we find that for E > 0 small enough, for any s > 0, 

Tr,CP:“((L Y),(L ~111 & 

< 2 exp( - 1/2&s) 

= J 
; I4 hJ:, & 

( > 
. (1.78) 

In the sequel, we assume that s 2 1. 

. f 2.~5 1, using formula (1.64) for I,,,, we write (1.78) in the form 

(1.79) 

Note at this stage that the potentially diverging term l/& has 
disappeared, at least formally. 

For E > 0 small enough, any 3, in the spectrum of DaZ satisfies 
Ill/& 2 10. Moreover, l/&s 2 1.. Also, since s 2.1 and 

15 1/2&s s 112s 5 3L2/32a So we can use Proposition 
v = In//,;, and we obtain from (1.79) 

IA/ 2 4, we find that 
1.15 with z= 1/2&s, 

(1.80) 

So we fir d that for E > 0 small enough, if 2~s 5 1, then 

1 - 
S 

Tr,C~~“((L YL (1, Y))I 4 

(1.81) 

Clearly tlie r.h.s. of (1.81) is integrable as s t + co. 
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l We now consider the case where 2.55 2 1. By Poisson’s integral 
formula [ Wa, p. 791, we know that for v > 0, 

I,(z) = J;; ;;I 1,2) I’,’ ch(zs)( 1 - s2)“- “* ds. (1.82) 

Clearly T(v + 4) 2 T(v) = f (v + 1 )/v, and v/2’ is uniformly bounded. From 
(1.82), we find that there is C > 0 such that for any z with 0 5 z =< 1 and any 
v > 0, 

So using (1.78) (1.82), (1.83), we find that if 2.5~ 2 1, then 

(1.83) 

(1.84) 

If 2~s 2 1, we have 

(zES)- VI/& 5 (zES) - lj.lPJ - (1.85) 

Also by Stirling’s formula, since L is bounded away from 0, we know that 
for any E > 0, 

From (1.84)-( 1.86) we get 

(1.86) 

(1.87) 

If E > 0 is small enough, for any 1 in the spectrum of Daz, 1 Al/& >= n + 4. 
Since DdZ is an elliptic operator of order 1 and aZ has dimension n - 1, we 
know that 

c l nc3<+aJ. 
14 
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Therebre, for E > 0 small enough and s such that 2~s 2 1 and also 
e/&s 1, then 

(1.88) 

The r h.s. of (1.88) is integrable as s 7 + co. 
From (1.81) and (1.88) we find that we can use the dominated 

convergr :nce theorem in the integral defining J” and we obtain 
Theorenl 1.13. 1 

Remark 1.16. Let us make at this stage several observations. The first 
observaiion is that the final argument in the proof of Proposition 1.14 also 
shows tl Iat as s 10 

‘WQhs r)l = W&L (1.89) 

from WI ich the fact that f(a) is holomorphic at a = 0 follows. In other 
words, l~al index theory on the even-dimensional cone Cm(aZ) implies 
that tj(a is holomorphic at a = 0. This argument is also discussed in [BC 1, 
Section I;]. Note that in [BF2, Remark 2.51, the local holomorphy of #a) 
at a = 0 tvas shown to be a consequence of the local families index theorem 
[Bl] for the family E + &DaZ. 

These two arguments are very directly connected. They express a version 
of the multiplicativity of the local index. 

Anothm important observation concerns the fact that dominated con- 
vergence can be used in the proof of Theorem 1.13. The situation is essen- 
tially dif ‘erent from [BFZ, Theorem 3.141 since (l/r*) (Daz)* is no longer 
uniformlq~ elliptic because r can take arbitrarily large values. Still note that 
the estin ate in (1.78) explicitly takes into account the fact that we calculate 
the difference of two traces. What the proof after Eq. (1.78) does is to make 
explicit an argument of Getzler [Ge] which is used in [BF2, 
Theorerr 3.141. 

This lescaling argument will be used explicitly in our proof of the 
families Index theorem for manifolds with boundary. 

From Theorem 1.5, Theorem 1.9, Proposition 1.11, and Theorem 1.13, 
we deduc:e the index theorem of Atiyah, Patodi, and Singer [APSl] in the 
form obtained by Cheeger [Cl, C2] and Chou [Ch]. 

THEOR EM 1.17. For E > 0 small enough, 

J” = q(0) 

hdD+=IndD&+==/z~($)Tr[exp( -g)]-$0). (1.90) 
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II. THE GEOMETRY OF FAMILIES OF MANIFOLDS WITH 

CONICAL SINGULARITIES 

In this section, we consider a family of manifolds with boundary. As in 
Section 1, we replace each manifold with boundary by a manifold with a 
conical singularity. We then extend the constructions of [Bl] to this new 
family of manifolds with conical singularities. In particular, by extending 
[Bl, Section 31, we construct the Levi-Civita superconnection of the 
family. 

This section is organized in the following way. In (a), we consider a 
family of manifolds with boundary 2 and we construct the associated 
family of manifolds with conical singularities Z’. In (b), we construct 
connections on the vector bundles TZ’ and TaZ. In (c) we define a family 
of Dirac operators on the fibers Z’. In (d), we construct the Levi-Civita 
superconnections of [Bl] associated with the families of manifolds Z’ and 
az. 

(a) A Family of Manifolds with Boundary and the Associated Spaces with 
Conical Singularities 

Let B denote a compact connected manifold of dimension m. Let X be 
a compact connected manifold with smooth boundary 8X. Set n = dim X. 
We assume that X is orientable and has spin. 

Let M be a compact connected manifold with smooth boundary aM. 
Assume that the dimension of M is n + m. 

Let rc: M+ B be a submersion of M on B, which defines a libration, 
whose fibers are diffeomorphic to X. Namely we assume that there is an 
open covering 9’” of B such that if VE Y, there is a smooth diffeomorphism 
4 ,,:c’(V)+ VxX, and moreover if P’, Y’EV are such that Vn I”#++, 
l$“yl$‘: Vn V’xX+ Vn V’xX is given by a map (b, x)+ 
(b, f",-(b, x)), where fY,vp(b, .) is a smooth diffeomorphism of the 
manifold with boundary X which depends smoothly on b E V n V’. 

For b E B, set 
Z,=n-‘{b}. (2.1) 

Z, is a manifold with boundary aZ,, which is such that 

Z,cM az,caM,, (2.2) 

both inclusions in (2.2) being embeddings. 
In particular rc: aM+ B is a fibration of the compact manifold aM on 

B with compact fiber aZ. Note that in general, dM and dZ may be non- 
connected. 

Let TZ (resp. T aZ) be the subbundle of TM (resp. T aM) whose fiber 
at x E M (resp. x E aM) is the tangent space at x to the fiber Z (resp. aZ). 
We assume that TZ is an oriented spin vector bundle on M. 
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Let n be a nonzero vector field defined on aM with values in TZ which 
points illward to M. By equipping TZ with a metric and by exponentiating 
the vect jr field n by geodesics in the fibers Z, we may and we will assume 
that there is a tubular neighborhood 43 of aM in M, which has the 
following two properties: 

l The set & is diffeomorphic to [ 1,2[ x aM and aM is identified 
with {l)xaM. 

l Under the previous identifications, for any b E B, U n Zb is 
identified with [l, 2[ x aZ,. 

Y will denote the coordinate varying in [ 1,2]. Clearly, a/& E TZ. Then 
T aZ is an oriented spin vector bundle on aM. Set 

f, = -a/& 

If e I,..., e,_, is an oriented base of T aZ, TZ is oriented by 
(f,, el, .., en-,). 

Assurle that gdM is a metric on TaM, that gM is a metric on TM which 
is of th: form dr* + gaM on % and define THM to be the orthogonal 
complerrent of TZ in TM. Then THM has the following three properties: 

(a) For any xEM, 

T,M= T,ZQ TfM. (2.3) 

(b) For any x E aM, TFM c T, aM and so 

T,$M = T,$Z@ T’M. (2.4) 

(c) If (r, Y)E CL 2C x aM then Tt?,,v, M= T.fM. 

For every x E M, the linear map n, : T,M + T,(,) B induces a linear 
isomorp hism from TZM into T,(.,) B. 

We now use the cone construction of Section 1 for each individual 
fiber Z. Vamely, if b E B, let C(aZb) be the cone 

cwd=m iixaz,)~{s,), 

where 6, compactities C(aZ,) as r E 10, l] tends to 0. Set 

z;=zb 0 qaz,). 

M’= ” ‘;;, (6,). 
beLi 

M’ clearly fibers on B and the iibration map is still denoted 7~. 
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Remark 2.1. Note that lJb C(aZ,) is not identified with C(aM), since 
the tips Bb have not been identified. Of course, since it is the metric on a 
cone which determines its topology, the distinction is somewhat irrelevant. 

If (r, y) s C(aZ), r > 0, set 

Clearly THM’ on C(aZ) patches smoothly with T”M on %. So the total 
manifold M’ is now equipped with a vector bundle THM’ such that 

TM’ = TZ’Q THM’. (2.5) 

Let g dZ be any metric on T 3Z. Let E denote a positive real number 
which we fix for the moment. 

We equip TC(8Z) with the metric 

dr2 
7 + r ‘gdZ. (2.6) 

Let gZsE be any metric on TZ which coincides with (2.6) on the tubular 
neighborhood %. Again the metric on TZ patches smoothly with the metric 
(2.6) on TC(aZ). We note gz’,” this metric on TZ’. 

Let gB be a smooth metric on TB. gB lifts naturally into a smooth metric 
on THM’. Let g”‘,’ = gB @ gZ’,’ be the metric on M’ which coincides with 
gB on THM’, with gZ’,’ on TZ’ and is such that THM’ and TZ’ are 
orthogonal. Let (, ) be the corresponding scalar product. 

As in [Bl], it turns out that the objects in which we are ultimately 
interested will not depend on g? Note that in [BCl, Section 4a)] only the 
splitting TM = THM 0 TZ is used and not any metric on the base B. 

(b) Euclidean Connections on TZ’ and T 8Z 

By [Bl, Theorem 1.93, to the triples (TZ’, gZ’,‘, THAI’) and (TaZ, 

g 3 aZ THM) we can associate Euclidean connections Vz’,” on TZ’ and 
Vaz on T 8Z. These connections generalize the Levi-Civita connection on 
individual fibers Z’ or 8Z. Let us briefly recall the construction of [Bl, 
Section 11. 

Let V”‘,” be the Levi-Civita connection or TM’ for the metric g”‘,‘. Let 
Pz’ be the orthogonal projection operator TM’ + TZ’. 

By [Bl, Theorem 1.91, we know that 

VT.” = pZ’ VM~.E. 
(2.7) 

580:89.X3 
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Let 17Z3E be the restriction of VZ’,’ to TZ. Let RZ’*“, RZ,’ be the 
curvatu .es of the connections VZ’sE, VZsE. 

The ( onstruction of the connection Vaz on the vector bundle T LJZ is 
very sirlilar. Namely, if the manifold 8M is endowed with the metric 
gB@ g’.‘, let VaM be the Levi-Civita connection on TaM. Then by [Bl, 
Theorer I 1.91, if Paz is the projection T aA = THM@ T aZ + T aZ, we 
have thl: identity 

Vaz=paz Vah4 
(2.8) 

Let ,Xaz be the curvature of the connection Vaz. Let VB be the 
Levi-Civita connection on TB. VB lifts into an Euclidean connection on 
THM vrhich we still note VB. Let V” be the Euclidean connection on 
TM’ = I-Z’ @ THM’ given by v” = Vz’,” @ VB. 

Let F” be the torsion tensor of v”, and let S” be the tensor 
SE=VME -V”. Let us briefly recall the main properties of S’ and T” listed 
in [Bl, Theorem 1.9; BF2, Section 1 d)]: 

l T” takes values in TZ’. 
l If U, I’E TZ’, TE( U, I’) = 0. 
l T” and the (3,O) tensor (SE(. )., . ) do not depend on gB. 
l For any U in TM, SE(U) maps TZ’ into THAI’. 
l For any U, VE THM’, SE( U) VE TZ’. 
. If UETHM, F(U)U=O. 

Simih.rly let Taz and SaZ be the corresponding objects on dM canoni- 
cally associated with the triple (T JZ, gdZ, THAI). Let Paz be the 
orthogonal projection operator from TZ onto T aZ. 

THEOI:EM 2.2. On the manifold aM, we have the equality of connections 
on the vxtor bundle T dZ 

vaz = paz vz’,~ 
(2.9) 

On 4? UBM M’\M, T” takes values in aZ. On a&f, when restricted to vectors 
in TaA4: T” and (SE(.).,.)g~,,E coincide with TdZ and with (Saz(.).,.>p. 

On 42 UdM M’\M, if YE THM’, UE TaZ, 

v, ir - 0; Z,E-- vy u=vazu Y 

T” 
a 

( > 

(2.10) 

.’ ar 
= 0; S” ; =o; 

0 
SE( ) g = 0. 
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Finally on % UaM M’\M, ij- Y, Y’E THM’, UE TaZ, 

RZ’,E =o 

a Z’,& Rz’“(Y, Y’)s-Vre(rY.jdy= a 0 (2.11) 

R;;;“,,( Y, Y’) U= Ry( Y, Y’) U. 

Proof. Let P aM be the orthogonal projection operator TM -+ T aA4. 
The connection PaMVM’,’ on T aA is exactly the Levi-Civita connection 
VaM of the manifold aM. It follows from (2.7) that the connection Paz VZ’sE 
coincides with Vaz. 

We now define a new connection V’ on TZ restricted to the tubular 
neighborhood &. Namely if U’ is a smooth section of T aZ, and Y a 
smooth section of THAI, set 

v;v =VdyZU’ 

v&o. 
(2.12) 

Similarly if YE TZ, we assume that V’,, is the Levi-Civita covariant 
differentiation operator of the fiber Z n 42. 

Remember that on Q, THMc T aM, and that THM is the pull back of 
its restriction to aA4. This implies in particular that the coordinate Y is 
preserved along integral curves of THM. It immediately follows that the 
connection V’ preserves the metric of TZ. 

Let T’” be the torsion of the Euclidean connection V’ @VB on TM. We 
claim that 

(a) T’” vanishes on TZ x TZ. This is clear since V’ restricts on a fiber 
Z to the Levi-Civita connection of Z. 

(b) We have the equality 

T’” 
a 

( > 5’ * = 0. (2.13) 

To prove (2.13), we only need to check that if V’ E TB, if VH denotes the 
horizontal lift of V in THM, then 



346 BISMUT AND CHEEGER 

Now observe that 

v;,, v H = 0; v&+0. (2.15) 

Also sine :e on ai, Tc yJ M= T-fM, we find that 

a [ 1 VH =o ay’ . (2.16) 

(2.14) irrmediately follows from (2.15), (2.16). 

(c) T’” takes its values in TaZ. In fact, if V, V’ are smooth sections 
of TB, FZ[VH, VIH] E TaZ, since TF,,,M= T,“M and T$‘Mc T, aM. 

Since ‘JB is torsion-free, 

T”( VH, VIH) = -I’“‘[ VH, VIH] (2.17) 

and so l”‘( VH, VH) E T dZ. Also if U is a smooth section of T aZ, 

T”(VH, U)=V’$U- [V”, U-J. (2.18) 

By tht: same properties on THM as before, [ VH, U] E T aZ and so 
T’&( VH, !J) E T aZ. Using (b), it is now clear that T’” takes its values in 
T az. 

We cls im that if U, U’ E TZ, YE THM, then 

(T”( Y, U), U’) - (T”( Y, U’), U) =O. (2.19) 

If U or U’ are equal to alar, (2.19) is a consequence of properties (b) 
and (c) lvhich we proved before. To prove (2.19), we assume that U and 
U’ lie in T aZ. Then T”( Y, U) = TdZ( Y, U), T”( Y, U’) = TdZ( Y, U’). 

By [Bl, Eq. (1.28)], we know that, since TdZ(U, U’) =O, then 

2t:SdZ( Y) U, U’) + (T”=( Y, U), U’) + ( TdZ( U’, Y), U) = 0. (2.20) 

On th: other hand, the properties of S” listed after (2.8) also hold 
for SdZ In particular, we find that since U, U’ E T aZ, then 
(Saz( Y) U, U’) = 0. It is now clear that (2.19) holds. 

Theref Ire, the connection V’ on TZ is Euclidean, T’” has properties (a), 
(c), and also is such that (2.19) holds. It is then elementary to verify that 
V’ = pZ’. VW,” and so Vz’x” = V’. Therefore, we have proved the first two 
equalitie! in (2.10). 
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Also using [B 1, Eq. (1.28)] again, we find that if U, FE TM, then 

The second and the third term in the 1.h.s. of (2.21) clearly vanish. Also 
since TE( U, V) E T dZ, the fourth term also vanishes. Therefore we find 
from (2.21) that s&(8/&) = 0. The proof that SE( .)(a/&-) = 0 is strictly 
similar. 

To complete the proof of the theorem, we only need to prove (2.11). 
Remember that VZ’sE restricted to one given fiber Z’ is the Levi-Civita 
connection of this fiber. It follows from Proposition 1.2 that if U E TZ, then 

Rz’,E (2.22) 

Let now V, U’ be smooth sections of TB and TZ, respectively, and let 
VH be the horizontal lift of V in THh4. Then using (2.161, we get 

R Z’, E u~~v,“,~,Ev”,X”u~-v”,X”v~~~u~. (2.23) 

By Definition 1.1 and Proposition 1.2, we know that V$$ 
(2.12) we know that V”,ip(a/ar) = 0. So we obtain 

; = 0. Also by 

We now assume that U’ is a smooth section of T aZ on aM, so that U’ 
does not depend on the variable r. We then know that Vr,’ U’ E T aZ, and 
more precisely that 

V”,;;“&V”,“,Uf. (2.25) 

From (2.25), we find that V’$ U’ does not depend either on the variable 
r. Using Definition 1.1 and Proposition 1.2, we find that 

(2.26) 

Also we know that 

W’ VZ’.” U’ =- 
alar r ’ 
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Since T”A4 does not vary with r, it follows that 

From (2.26) and (2.27), we get 

RZ’J a 
( > 5’ 

VH U’=O. 

(2.27) 

(2.28) 

The firs1 equality in (2.11) follows from (2.22), (2.24), and (2.28). 
If Y, Y’E THA4, by (2.17), T&( Y, Y’)= -P”[Y, Y’]. Using (2.10), we 

obtain 

,z’d( y, y’) $ -vz’A 2, 
C K r’l ar (2.29) 

The second line in (2.11) is proved. The third line in (2.11) is a 
consequence of the equality VZ’xE =V’. The proof of the theorem is 
complet :d. fl 

Remc(rk 2.3. The boundary a2 is not totally geodesic in 2 for the 
metric i Zqe. However, Vz,” preserve T dZ for horizontal displacements. This 
simple lact will enable us to define the Levi-Civita superconnections on Z 
and on dZ in a compatible way. This will be of utmost importance in our 
proof o’ the families index theorem. 

(c) The Case where dim Z Is Even: A Family of Dirac Operators 

Recall that TZ is an oriented spin vector bundle, which is equipped with 
a metril: gz,“. We now assume that the dimension n of the fibers Z is even, 
so that n = 212 2. We fix once for all a spin structure on TZ. 

Let 1:= F, 0 F- be the Z2 graded Hermitian vector bundle of spinors 
over Tic’. F, and F- are, of course, the bundles of positive and negative 
spinors over TZ’ for the metric gZ’vE. The Euclidean connection Vz’,e 
immediately extends into a unitary connection on F, and F_ . 

For c:very fiber Zg, we can use the results of Section 1. In particular, the 
restrict on of F, to dM is the bundle of spinors over T aZ. The restriction 
of F, to aM is therefore equipped with the unitary connection VaZ. 
Moreo ler, if (r, y) E 10, l[ x aM, we identify F(,,, = F+(,,,, 0 F_(,,,, with 
FY=F..,vOF-,, 

Let t be a complex vector bundle on M. If p is the map 
(r, y) E u% -+ p(r, y) = y E aA4, we have the identification 5 = p*taM. So we 
may ar d we will assume that < is equipped with a Hermitian metric hr and 
a unitary connection V5 which are product on et, i.e., are the pull-back by 
p of a metric and a connection on caM. Let L’ be the curvature of V’. 
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Clearly, 

Lr $. 
( ) 

=o on %. (2.30) 

In the same way as in Section 1, we extend r and V5 to the whole 
manifold M’. Of course, (2.30) still holds on M’\M. 

On M’, the Hermitian vector bundles F, @ 5 are equipped with the 
connection VZ’,‘@ 1 + 1 @V5, which we still denote Vz’,“. Similarly, on 8M, 
the Hermitian vector bundle F, @ 5 is equipped with the unitary connec- 
tion VaZQ 1 + 1 @V5, which we denote by Vaz. 

Remember that fi = -a/&. We identify fi with the corresponding 
Clifford multiplication operator. 

DEFINITION 2.4. For b E B, let Hr = Hy b@ HCO,b be the vector space 
of smooth sections of I;@ 5 = (F, 0 00 (F;’ @ 5) over the fiber Zb which 
vanish at 6, together with their derivatives. 

0; denotes the Dirac operator acting on Hr associated with the metric 
g Z’,E and the connection V(. 0: interchanges Hy b and HT,b. We write Dfb 
in the form 

(2.31) 

For b E B, let HL” be vector space of smooth sections of F, @ < over the 
fiber aZ,. Let 0:” be the Dirac operator acting on HF, naturally 
associated with the metric gaz and the connection V’. 

Of course, for every b E B, formulas (1.6)-( 1.9) for 0: and 0;” remain 
valid. 

Let dx be the volume element in the fiber Z’ with respect to the metric 
gz’,‘. Let dy be the volume element in the fiber aZ with respect to the 
metric gaZ. If/z,, h,~Hp (resp. ifh;,h;EHLm) set 

(W,)=~ (h,,h,)(x)dx 
=iJ 

(2.32) 

(resp. 

<h;,h;) =laz C&,4) (y) &). (2.33) 
h 

Remark 2.5. It is here appropriate to observe that Ker 0; is not 
included in H; , since, as we saw in (1.22), for E > 0 small enough, elements 
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of Ker I$, vanish at (6,) with arbitrary large, but still finite, order. Hr will 
only here play the role of a minimal domain for D;. Still, we will have to 
be caref 11 when constructing connections on Ker D”,-in the case where it 
is a vect x bundle-from a connection or HF, since Ker 0: is not included 
in HT. 

(d) The Levi-Civita Superconnections 

We nciw will define the Levi-Civita superconnection associated with our 
two families of operators D” and D az At this stage our discussion does not . 
involve ury sophisticated analytic arguments. It is closely related to [Bl, 
Sections 2 and 33. 

If VE TB, let V” be the horizontal lift of Vin THM’ so that V”E T”M’, 
71, V”’ v. 

DEFINLTION 2.6. 0 (resp. 6’) denotes the connection on the vector 
bundle 11” (resp. Him) over B which is such that if h (resp. h’) is a smooth 
section of H” (resp. HICO) then 

v’,h = VZ,;;“h (2.34) 

(resp. 

v;h’ = Vd,“,h’). (2.35) 

As prl )ved in [B 1, Proposition 1.111 the curvature tensors of 0 and V’ 
take their values in the set of first-order differential operators (which act 
fiberwisc on Z’ or 8Z). 

Follolving [BFl, BF2], we briefly show how to construct unitary 
connections on H” and on H’” with respect to the Hermitian products 
(2.32) and (2.33). 

DEFIN TION 2.7. Let e;, . . . . ei be an orthonormal base of TZ’. Let k” 
denote t re vector in THM’. 

k” = - iSE(e: (2.36) 

If e, , . . . . e, ~, is an orthonormal base of 8Z, since by Theorem 2.2, 
SE(8/&) = 0, we find that 

k” = - iSE(ei)ei on ahf. (2.37) 

We nc w define the connections VU and oJU on H” and H’” as in [BFl, 
Definition 1.31. 
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DEFINITION 2.8. VU (resp. vrU) denotes the connection on the vector 
bundle H” (resp. HI*) such that if VE TB, 

6“=P+ (k, V”) (2.38) 

(resp. 

6”=6’+ (k, V”)). (2.39) 

Then by [BFl, Proposition 1.4; BF2, Proposition 1.41 6’ (resp. vl’) is 
a unitary connection with respect to the Hermitian product (2.32) on H” 
(resp. the Hermitian product (2.33) on H’,). 

A final ingredient in the definition of the Levi-Civita superconnections is 
the torsion tensor T”. In fact, the Clifford algebra c(TZ) acts by Clifford 
multiplication on F@ 5 = (F, @ 5) @ (F;- 0 5). Similarly, the Clifford 
algebra c( Tc?JZ) acts by Clifford multiplication on the restriction of F, 0 t 
to akt. 

We now use Quillen’s superconnection formalism [Q] as in [B 11. 
Namely, on M’, our computations will be done in the Z, graded algebra 
(AJT*B) 6 c,(TZ’))O End, [ (when x varies in the fiber Zb). Similarly, 
on aZ, our computations are done in the Z, graded algebra 
(A,( T*B) & cY( T aZ)) 0 End, t (where y E aZ,). 

The vector bundle H” = Hy 0 H? is Z2 graded. Let r be the involution 
defining the grading i.e. r = ?l or Hy . End H” is a Z2 graded algebra, the 
even (resp. odd) elements commuting (resp. anticommuting) with r. 

As explained in [Bl, Section 2b)], our rules of computation on Z’ 
require that we work in the graded tensor product .4(T*B) 6 End H”. 

Our computations on aZ are slightly subtler. As explained in [BF2, 
Section 2f)], our conventions are compatible with the conventions of 
Quillen [Q, Section 51. 

Let fi, . . . . f, be a base of TB, db’, . . . . db” the corresponding dual base in 
T*B. We identify fi, . . . . f,,, with their horizontal lifts fy, . . . . f,". As in 
Section 1, we identify XE TZ’ with the corresponding element in the 
Clifford algebra c( TZ’). 

DEFINITION 2.9. For XE M, c,(T’) denotes the odd element of 
hr,x,(T*B) 6 cx(TZ) 

c,( T’) = 1 db” dbB T:(f,, fs). (2.40) 
a<B 

For y E aA4, cY( Taz) denotes the odd element in /i,,,,( T*B) @ cy( TaZ) 

cy( TdZ) = c db” dbjT,““(f,, fJ. 
*tS 

(2.41) 
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Note that by Theorem 2.2, on %, T” takes its values in T(82). In 
particuls r, on aM, c( T’) restricts to the corresponding element c( TdZ) in 
A(T*B) 6 c(Tc?Z). 

In the sense of Quillen [Q], for any t > 0, 0’ + fi D” is a superconnec- 
tion on 1 he Z, graded vector bundle H”, and PIU + fi Daz ’ is a supercon- 
nection on the vector bundle H’“. Following [Bl, Section 31, [BF2, 
Proposition 1.181 we now define the Levi-Civita superconnection of 
paramen :r t > 0. 

DEFIN TION 2.10. For t > 0, A; denotes the superconnection on the Z, 
graded vector bundle H”, 

c(TE) A;=@+&D”-- 
4fi’ 

(2.42) 

Similarly, Ai denotes the superconnection on the vector bundle H’“, 

c( T”=) A;=~“+&DaZ-- 
4JT’ 

(2.43) 

Note that A; is exactly the superconnection considered in [BF2, 
Section 2 f)]. Also A; is the obvious extension of the superconnection 
construc:ed in [Bl, Section 31 to the manifold with conical singularities 
M’. It is a remarkable fact that, in the same way as D” “restricts” on aZ 
to DdZ, he Levi-Civita superconnection A; “restricts” on aM to A:. 

We nclw briefly describe the superconnection A: on the manifold M’\M. 
Rememter that for (r, y)~ 10, l] x aM, we identified (F@c)(,,V, with 
(FO 8, 

If h is a smooth section of Hy on B, one verifies easily that if VE TB, 
for rE](I, l] 

(vd)(r, y) =v’;O, . l(y) 
(V’“,h)(r, Y) =Ol”h(r,. MY). 

(2.44) 

The meaning of (2.44) is that the value of the coordinate r is irrelevant in 
the comlnrtation of (~,h)(r, y) or v’“,h(r, y), i.e., that the calculation can 
be done at r = 1. 

If 2 1, ..,d,-1 is an orthonormal base of T aZ at (r, y) for the metric 
g Z’,E, then 
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Let e, , . . . . e,- r be an orthonormal base of T&Z for the metric gaz. The 
restriction of g’Z,E to TaZ at (r, y) is r2gaz. 

Identifying (J’O <I(,, .“) with (I;@ t)y, we thus find that 

4 T7 cr. Y) = r 1 (T,dz(f,, fph ei >gaz db” db’ ei (2.45) 
a<D iE [i.n- I] 

or, equivalently, 

c( TE)r, I.J = rc( Taz),>. (2.46) 

Using (1.8), (2.41), (2.46), we find that on M’\M, A; is given by the 
formula 

A:=P"+J;[~f,(-~-~)+~]-~. (2.47) 

Note that Daz and c(T) scale by the factors l/r and r, respectively. The 
fact that these two scales differ will play a key role in Section 6. 

III. FREDHOLM PROPERTIES, EXISTENCE, AND EQUALITY OF THE 

INDEX BUNDLES 

In this section, we will establish that under natural assumptions, for E > 0 
small enough, the family of operators D”, defines an index bundle 
Ker D”+ - Ker 0” in K’(B), which coincides with the corresponding index 
bundle of Atiyah, Patodi, and Singer [APSl]. 

Our assumptions and notations are the same as in Section 2(c). 
Let gz be a smooth metric on the vector bundle TZ which has the 

following two properties: 

l gz restricts to gaz on T az. 
l gz is product near the boundary aM, i.e., on the tubular 

neighborhood %‘, gz is given by 

gz = dr’ + gdZ. (3.1) 

For simplicity, we still denote by F the Hermitian vector bundle of TZ 
spinors for the metric gz (for the fixed spin structure of TZ). 

For every b E B, we can define the Dirac operator D, of Atiyah, Patodi, 
and Singer [APSl], acting on the smooth section of F@t over the fiber 
Z,, associated with the metric gz on Z, and the connection Vt on rzb. Let 
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p p-,b t,b, be the orthogonal projection operators on the direct sum of 
eigenspz ces of 0:” corresponding to nonnegative and negative eigenvalues. 

By [tiPSI, Section21, P+,b and P , b are pseudo-differential operators 
of order 0, and so act on the various Sobolev spaces. 

D, splits into CD”,,, “/I, where D+,b acts on the smooth sections 4 of 
F, @ C: on Z, such that P +,bd = 0, and D p,b acts on the smooth sections 
$ of F_ Qc on Zb such that P-,b$=O. As shown in [APSl], D+,b is a 
Fredhol n operator, and its index Ind D +,b is given by 

IndD+,, =dimKerD+,,-dimKerD-,,. (3.2) 

IndD+,b is given by the Atiyah-Patodi-Singer formula of Theorem 1.17. 
Let f (0) be the reduced eta invariant for the operator 0:“. In general, 

b + jjb(C ) is not continuous and has integer jumps. qb(O) has a jump of + 1 
if a negittive eigenvalue of 0:” reaches 0, and a jump of - 1 if a 0 eigen- 
value bc comes negative. Since the index, Ind D +,b, can jump, D +,b does 
not delilie a continuous family of Fredholm operators and there is no well- 
defined ndex bundle Ker D + - Ker Dp in the sense of Atiyah and Singer 
[AS2]. Therefore, a necessary condition for the existence of an index 
bundle I;er D + - Ker Dp in K’(B) is that Ker 0:” is itself a vector bundle 
on B. 

On tie other hand, b -+ 0:” is a family of Fredholm self-adjoint 
operatoi s. By [APS3, Section 33, it defines an element of K’(B). If 
Ker DdZ is a vector bundle, the map b -+ 0:” is homotopically trivial, i.e., 
the corn:sponding element in K’(B) is trivial. 

In the sequel we make the fundamental assumption Hl: 

(Hl) For any bg B, Ker Dg”= (0). 

We now precisely describe the families of Dirac operators which we will 
consider Recall that we identify F, 05 and F- @< on (M’\M)u 8M. 

DEFINTION 3.1. For /IO, bEB, A’+ b denote the Ith Sobolev space of 
sections of F, 05 on the manifold Zi: H; is the fth Sobolev space of 
sections of F, @ 5 on dZ,. 

For I;2 1, !?I *,b( P) is the subspace of sections of F, 0 5 in fi’,,b such 
that if jr; E H, “- ‘I* is the restriction of h to aZ,, then P*( j/z) = 0. 

For l;;O, bE B, H’,,b denotes the lth Sobolev space of section of F, @ 4 
on Zb. 

It is o’ utmost importance to observe that while fi”,,b does not depend 
on the rretric gzsc, Hi+ b depends in an essential way on the metric (2.6) on 
C(aZ), t cecause Zb\ {8b} is an open manifold. Still H’+,b does not depend 
on gZ*’ c,r on gzz. 
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We now prove the essential result of this section, part of which is already 
in Atiyah, Patodi, and Singer [APSl, Section 21. 

THEOREM 3.2. For any I2 0 (resp. 12 1). A: (resp. 8 L (P)) is a con- 
tinuous Hilbert bundle on 3. Moreover, for any-1 2 1, D + is a continuous 
family of Fredholm operators in Horn (fi ‘+ (P), fi”I- ’ ). The corresponding 
index bundle Ker D + - Ker D _ E K’(B) does not depend on 12 1. 

For any 120, H’, is continuous Hilbert bundle on B. For E > 0 small 
enough, D”, is a continuous family of Fredholm operators in 
Hom(H \, HO ), and the corresponding index bundle Ker D”+ - Ker 0” E 
K*(B) does not depend on E > 0. More precisely, for E > 0 small enough 

KerD”,-KerDY=KerD+-KerD- in K’(B). (3.3) 

ProoJ: The proof of Theorem 3.2 is divided into several steps. 

(a) A’+, R:(P) are continuous Hilbert bundles on B. Let b, E B and 
let V be a small open ball in B centered at 6, such that C’(V) is dif- 
feomorphic to Vx Zbo. If p is the projection Vx Zb,, -+ ZbO, using parallel 
transport along the horizontal lines in Vx Z,, which lift the radial lines 
starting at bo, we can smoothly identify (F@ <)yxz. with p*(F@<),,. For 
be V, we can thus identify fi: b with a’+ bO; i.e., we have found a tri- -3 
vialization of the vector bundle-h’+ on V. One then easily verifies that the 
transition maps associated with two such trivializations are continuous 
(and in general are not smooth). We have thus proved that fil, is a 
continuous Hilbert bundle on B. The same argument shows that H” is a 
continuous Hilbert bundle on B. 

Since Ker Daz = {0}, we find that 

P, = f(Daz)-’ (DaZ+ lDaZl). (3.4) 

Using the results of Seeley [Se], we know that P, is a continuous 
family of zero order pseudodifferential operators on the fibers BZ. Then H” 
splits into 

where Hy = P, [H’+], H? = (I- P+)(H”). 
We claim that Hz is a continuous Hilbert subbundle of H”. In fact, Da2 

is a continuous section of Hom(H”, H”-I) (this last bundle being 
endowed with the norm topology). By Seeley [Se J, b + IDazJ has the same 
property. Since DaZ is invertible, b + P+,b is a continuous section of 
Hom( H”, H”). 

Take b,, V as before, so that if be V, Hb’ is identified with H’L,. For 
bc K P+,b now acts on H$, and so HI:,, is a subspace of Hg. Since P, b 
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is the ic lentity on H’:,b, we then find that for b close to bO, P+,,,P,,, 
(resp. P+,hP+,bo) is invertible in End(H;,,,) (resp. End(H;,,)). Therefore 
for b close to b,, P, b is a one to one map from H’: b0 into H’: b. So 
hEH;,,,,+P+,hhtzH’;,b is an explicit continuous triviaiization of ti’: on 
a small neighborhood of b0 in B. It is now clear that H’: and H’f are 
continuous Hilbert subbundles of H”. 

Let b, E B, and let I/ be an open ball in B centered at b, which is small 
enough so that the vector bundles A’, , H”, H’i are identified with pi,,,, 
ff;‘o, H :,hy 

For 12 1, recall that the restriction map j: R’-+ H”- ‘I2 is surjective. Let 
Qbo be the orthogonal projection operator from A’+,bo on A’+,,JP). For 
6 E V, l(,t E, be the linear map 

&I WC,,, + U’+ ,dQj, Qb,4) E H’i:i/* 0 fi’+ ,,(P). (3.5) 

Now Ebo is clearly a one-to-one map. Therefore, for b close enough to 
b,, EE is one to one. Since tf’+,,(P)=Ker(P+,,j), we find that 
4 E A’+,,(P) -+ E; ‘(4) provides an explicit trivialization of R’+ (P) on a 
small nzighborhood of b, in B. It is now clear that B’+ (P) and 8’ (P) are 
contimous Hilbert bundles on B. 

As iI1 the proof of T$eorem 1.5, for every b E B, we consider the Dirac 
operator BE, = [$ ;J] of Atiyah, 
associated with thi’*metric gz9” 

Patodi, and Singer [APSl] 
on TZb, the connection Vs and also the 

bound;.ry conditions of [APSl]. The only difference with [APSl] is that 
gZTE is :lot a product near the boundary 8Z. However, inspection of [APSl, 
Sectior s 2 and 31 shows that the results of [APSl] are still valid in this 
case, b ote that as in the proof of Theorem 1.5, we can give another proof 
which lees not necessitate the introduction of the family 8’+ . 

(b) For any E > 0, I>= 1, D + and d’, are continuous families of 
Fredhorm operators in Hom(A’+ (P), I??- ) which define the same index 
bundle. By [APSl, Section 31, for I2 1, for every bE B, D+,b and 8’+,, are 
Fredhcllm operators in Hom(i??‘+ (P), fi’: ‘). Since D + b and fi’+ b have 
smootll coefficients, it is clear that D + and d’+ are continuous se&ions of 
the bu Idle Hom(A’+ (P), A’: ‘). 

By IA, p. 158; AS2], the families D, and B’+ define virtual index 
bundles Ker D + - Ker D _ and Ker d’+ - Ker 6’- in K’(B), which do not 
depentl on 1. 

For 05,~s 1, if g?“= (1 -s)gz+sgz,“, we find that the corresponding 
family of Fredholm operators BE;’ depends continuously on s and has the 
same 1 jroperties as D + and BE+ Therefore, the families D + and &+ define 
the sane index bundle in K’(B). 

(c ) For E > 0 small enough, the family DE+ is a continuous family of 
Fredhcjlm operators in Hom(H ‘+ , HO ). It follows from Chou [Ch] that 
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for E > 0 small enough, for any b E B, 0: is a self-adjoint operator defined 
on its natural domain, which is not explicitly determined in terms of the 
Sobolev spaces we are considering. We here need a more precise statement, 
in order to prove that the family D”+ is a continuous family of Fredholm 
operators in Hom(H i+ , H” ). To do this, we will establish several 
estimates in which the constants C may vary from line to line. 

We first prove that for any bE B, De+,b map H:,b into H!,b. In fact, 
from formula (1.8) for D”+ ,b on the cone C(aZ,), we find that if h E H ; lb, 
then 

s =b ,De+,,h,2 (,,dxS[ lihll~~,, + jc,iz,I qdx]. (3.6) 

Since 0:” is invertible, we get 

jaz IfI* (~9 Y) 4 I C’ jaz lP~=f12 (r, Y) & h h (3.7) 

and so 

s c(m) 
q(r,y)dx~C j lD?,=f I* 

c(a=b) 
7 (r, Y) h? 

S C llhll $+b. 

From (3.6), (3.8), we find that 

ID”+,,hl*5C llhll&+ h 

(3.8) 

(3.9) 

and the constant C in (3.9) can be chosen independently of b (which varies 
in the compact manifold B). 

To prove that D”+,b is Fredholm from H : b into HO ,b, we will con- 
struct a parametrix for De+ ,b. To do this, we will patch a parametrix for 
O”+ b near 6, with a “classical” parametrix for D”+,b far from Bb. Let 
Cm(aZb) be the infinite cone 

which we still endow with the metric 

dr* 
T + r2gdz. 

Recall that F, and Fp are identified on aZb and so F, and Fp are 
identified on C “(az,). Let H’;“Pb denote the Ith Sobolev space of sections 
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of F, @ 5 over C “(8Z) and let H’p; O” be the set of sections h of F + @ 5 
on CoD(oZ6) such that iff(r) is a Cm function of r which vanishes for r 
large enough, then fh E H’;aPb. 

We now use a technique closely related to Atiyah et al. [APSl, 
Section 2 1. For r, r’ > 0, let Ki(r, r’) be the operator 

Since 0:” is elliptic, for r’# r, Ki(r, r’) is given by a C” kernel 
Ki( (r, y , (r’, y’)) on i3Z,, which depends smoothly on r, r’ (when r # r’). 
Also for any y > 0, m EN, for E > 0 small enough, when r (resp. r’) stays 
away fro n 0, the kernel K;((r, y), (r’, y’)) and its derivatives in r, y (resp. 
its derive tives of order 5 m) tend to 0 as r’ JO (resp. r 10) faster than r’? 
(resp. ry) 

Let C T ,b (resp. C y:ymp) be the set of C” sections of F, Q < on 
10, + co[ x aZ, (resp. which have compact support). Let K; be the 
operator, 

K”,:hdT:ymP+ 
s 

+ao K”,(r,r’)h(r’, y)dr’dyECy,,. (3.11) 
0 

We churn that Kf, extends into a continuous operator from H’$: into 
Hy;“. Set u=logr. When O<r< +co, then -co<v< +co. Let ~2’;:~ 
be the ol~erator, 

,,-a 0:” 1 9. --+- 
+,h a0 fi’ii~ 

If we I tse the new coordinate u, D:y, is given by 

D,=,/;-e-‘($+~+~). 

We find that 

Let L;(u) be the operator 

L:(u) = e -e=r+~) (P+,hl”>O-P-,hl”<O). 

(3.12) 

(3.13) 

(3.14) 

(3.15) 



FAMILIES OF MANlFOLDS AND DIRAC OPERATORS 359 

Note that L;(u) appears in [APSl] in a related context. For IzOo, 
let H’;“,b be the Ith Sobolev space of sections of F, 0 5 on 
] - co, + co [ x aZ6 (which is now endowed with the metric dv2 + gaz). We 
claim that for E > 0 small enough, for any b E B, 110, 

h-rL”,h:L~h(u,~)=~+mL~(o-u’)h(u’)du’ 
-‘x 

(3.16) 

is a well-defined continuous map from H’c,, into H’z+k”. 
If D is a variable dual to u, by taking the Fourier transforms R and LTh 

of h and L;h in the variable u, we find that 

Since Ker Of”= {0}, we find that for E>O small enough, Li has the 
required continuity property. Observe that 

K; = L e -((n - 2)/2)uL+w2)v. 

& 

(3.17) 

The map heH$“, -+envi2hcHO;Vb is an isometry of Hilbert spaces. We 
claim that h + e-(i”-2)‘2)” h defines a continuous map from H ‘;“,b into 
Hr;“. In fact if hEH’;q,, for any A >O, 

5 ]--co,A[xaZ~ [em2u(l(~-~)hl’flVhj2)+[h[2] 

+ eZA lhl’dydu . 1 (3.18) 

From (3.17), (3.18), we find that Ki is indeed continuous from H:; 
into H ez co. Finally, using obvious notations, we find that 

D ;TbK; = K; D”;“pb = Identity. (3.19) 

We now will use Ki as a parametrix for D”+ ,b near 6,. 
For 0 s a < b c 1, let p(a, b) denote a function of r which is C”, non- 

negative, increasing, equal to 0 for r 5 a and to 1 for r 2 6. p(a, b) is well 
defined on C(aZb). We extend p(a, b) to Z, by assuming that p(a, 6) = 1 on 
Z,. p(a, 6) is now defined on Zb. 

580;89’2-9 
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Let (Y8(8Z,) be the cone (IO, /I[ xdZ,)u (6,). Let Ai be any 
paramet ix for 0”;” on the open manifold Zb\C “*(aZb). We proceed as in 
[APSl, Section 31. Set 

Q~,,=(i-p(~,1))K”,f1-p(f,~)t+p(b,~)A”,p(4,~). (3.20) 

Clearly for E > 0 small enough, Q&- ,b maps continuously HO ,b into 
H:,b. ‘Ye claim that for E > 0 small enough, D”+,bQep ,b - Id9 is a 
compacl operator from H”,b into itself. 

-,h 

Here, we essentially need to prove that for E >O small enough, the 
operatoi 

P’($ 1 VW1 -&, f,, (3.21) 

is compact from HO ,b into itself. If p’(t, l)(r) # 0, then r 2 $, and if 
1 -p($, z)(r’)#O, then r’s i. Also we know that given y>O, .s>O small 
enough, and r 2 :, the kernel Ki((r, v), (r’, y’)) and its derivatives in (r, y) 
tend to 11 as r’ tends to 0 faster than r’y. Using Schwarz’s inequality and an 
equicontinuity argument, it is now clear that the operator in (3.21) is 
compact in End( H “_ ,J. 

Simils rly, set 

@,b =u -&, ~))K”,(i-& l))+&y $$,d$, ;). t3.22) 

Again, for E > 0 small enough, Q’- ,b maps continuously H” ,b into H : ,b. 
Recall that if r’ 2 4, for E > 0 small enough, Kt((r, y), (r’, y’)) and its 
derivatil’es of order 52 decay as r + 0 faster than r4. The same arguments 
as befor: shows that Q’-,, D”,,b - Id,: b is a compact operator. We thus 
find tha. QE,b - Q’-,, is a compact operator from HO ,b into H : ,b, and 
so Q&- ,t DC+ ,b - Id,: b is also compact. 

We h;tve thus proved that for E > 0 small enough, for any h E B, D”+ ,b is 
a Fredholm operator from H : ,b into Hop ,b. 

It is also obvious that b E B + D”,,b is a continuous section of 
Hom( H :, H” ). The family of operators D”- ,b has similar properties. The 
existeno: of a parametrix for DE-,b also shows that for E > 0 small enough, 
for any b E B, 0: is a self-adjoint operator whose domain is Hi. In par- 
ticular, zoker DE+ ,b is isomorphic to Ker DC- ,b. 

(d) Equality of the index bundles for D”+ and 8; : We assume that 
E > 0 is imall enough so that for any b E B, if i is in the spectrum of Diz, 
then IV41 > 4. 

Suppose first that Ker b’- = (0). Then Ker a’+ is a continuous vector 
bundle 4 )n B. Now by the proof of Theorem 1 S, we find that for any b E B, 
Ker D’-,b = (0). Moreover, the proof of Theorem 1.5 shows that if 
hEKer.3E+,b and if U,h denotes the restriction of h to Z, then U,h E 
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Ker BE+,b. It is also elementary to verify that Ub depends continuously on 
b E B. Therefore, Ker De+ and Ker d’+ are equal in K’(B). 

Assume now that Ker & is not (0). Using the elliptic regularity of the 
index problem of [ APSl ] and by proceeding as in [AS2, Proposition 2.21, 
we find that there exist C” sections, si, . . . . sq, of F- 0 l over M, which 
have the property: 

If bE+,, denotes the operator 

(3.23) 

and if be-,, denotes its formal adjoint (when C4 is endowed with its 
canonical Hermitian inner product) 

h’&:,#=) +&,h’ 

then for any bE B, Ker BE-,, = (0). 
Now 8’+ is a family of Fredholm operators and Ker BE+ is a vector 

bundle on B. We claim that we can take sl, ,,., sg so that si, . . . . sq vanish on 
an open neighborhood of 844 in M. In fact s,, . . . . sq can be approximated 
uniformly in all the Hilbert spaces BY,, by smooth sections of F- @ 5 
which vanish on a neighborhood of 8M. Since the condition Ker 8’- = (0) 
is an open condition, we find that s,, . . . . sq can be assumed to vanish on 
a neighborhood of 8M. By definition [AS21 the index bundle 
Ker d’+ - Ker 8” is represented in K’(B) by Ker BE+ - Cq. 

We extend s1 “.sq to M’\M by assuming they vanish on M’\M. Then 
Sl “.sy are smooth on M’\M. We now define the operators DE+,b, D”+,b by 
the formulas 

4 

(h,il)eHy bOCq+dE+,b(h,A)=DE+ ,~+~I’s~EH”C,~ 

h’EH:,b ‘Ii-,, (h’J)=(D”,,h’, (h’,s,) ,..., (h’,s,))eH~,,OC? 

(3.24) 

For E > 0 small enough, one verities that BE, is still a family of Fredholm 
operators. Also, by proceeding as in the proof of Theorem 1.5, we find that 
the restriction maps from Hy 0 Cq into fiy 0 Cq or from H’l O” into 
-1 H-” permit us to identify Ker iY+ ,* with Ker 4: b for every b E B. Also 

for every b E B, Ker 6”,, = (0). Thus Ker a’+ ’ is a vector bundle. 
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Moreowr, one verifies easily that the identification of Ker DE+ with 
Ker 8’+ is a continuous identification of vector bundles. 

Since the index bundle Ker D”+ - Ker 0” is equal in K’(B) to 
Ker D”+ - Cq, we find that for E > 0 small enough, 

Ker D”+ - Ker D’? = Ker DE+ - Ker DE in K’(B). (3.25) 

(e) End of the proof of Theorem 3.2: By (a), we know that 
Ker DE+ - Ker DE- = Ker D + - Ker D _ in K’(B). Using (3.25) we obtain 
(3.3). Oljserve that as in the proof no. 2 of Theorem 1.5, by shrinking the 
fiber Z i Ito the fibers 2 defined in (1.27) (or equivalently by “bending” the 
cones C(aZ) near 8A4), we may avoid the introduction of the family 
-& 
D I +’ 

Rema k 3.3. Inspection of part (c) in the proof of Theorem 3.2 shows 
that if Ii I/J > 4 for every A in Sp(D”=), then DC+ is a Fredholm operator 
from H’- into HO. 
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