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314 BISMUT AND CHEEGER
0. INTRODUCTION

The purpose of this work is to establish a formula for the Chern charac-
ter associated with a family of Dirac operators on manifolds with boundary
and the corresponding global boundary conditions of Atiyah, Patodi, and
Singer [ APS1].

We fi st recall the results of [APS1]. Let Z be an even-dimensional com-
pact oriented spin manifold with boundary éZ endowed with a metric g
which i a product near the boundary. Let D be the Dirac operator on Z,
and let D% be the Dirac operator on 0Z. Atiyah, Patodi, and Singer
[APSI1_ introduced global pseudo-differential conditions on the boundary
associat:d with the spectral decomposition of D°” and so defined a
Fredholm differential operator D, . They gave a formula for the index
Ind D, of the form

IndD, =f w —7i(0). (0.1)

In (0.1), w is the local Atiyah-Singer characteristic polynomial
[AS1,AS2, ABP], and #(0) is a spectral invariant of D%, called the
reduced éta invariant of D°?. Formula (0.1) was used in [APS1] to
calculat: the signature of the manifold Z.

In [C1, C2], Cheeger gave a different approach to the calculation of the
signature of a manifold with boundary. In [C1,C2] a cone C(0Z) is
attachec to the boundary 0Z, so that Z'=Z u,, C(0Z) is a manifold with
conical singularity. If r is the radial coordinate on C(8Z), if g° is the
metric ¢n 0Z, the cone C(6Z) is equipped with the metric

ar* + rig®Z. (0.2)

A Dirac operator is then defined on the manifold Z’ which is proved to
be Fredholm. Its L, is equal to the index of Atiyah, Patodi, and Singer
[APS1]. More precisely, the kernel and cokernel of this new Dirac operator
are shovn to be canonically isomorphic to the kernel and cokernel of the
Dirac operator of [APS1], while for nonzero eigenvalues, the eigenspaces
are unre'ated. By using the classical heat equation method in index theory
[ABP], together with the functional calculus on cones [C1, C2]—which
involves the Bessel functions—Cheeger provides an alternative proof of the
result of Atiyah, Patodi, and Singer [APS1] for the signature of a manifold
with boundary. In particular, the contribution of the conical singularity to
the inde <« was shown to be equal to the reduced éta invariant of [APS1]
by using the functional calculus. The results of [C1, C2] were extended by
Chou [Ch] to general Dirac operators.



FAMILIES OF MANIFOLDS AND DIRAC OPERATORS 315

In [B1], Bismut gave a local heat equation version of the index theorem
of Atiyah and Singer for families [AS2]. If M —, B is a submersion with
fiber Z, a canonical closed differential form representing the Chern charac-
ter of the considered family of Dirac operators was exhibited in [B1]. The
proof of [B1] uses the superconnection formalism of Quillen [Q] in an
infinite-dimensional situation. A key tool in the proof of the local families
index is the Levi-Civita superconnection of the fibration M —, B. The
Levi—Civita superconnection should be thought of as being the Levi-Civita
connection on TM for a singular metric which is infinite in the horizontal
directions of M.

A remarkable feature of Quillen’s superconnections [Q17 as used in [B1]
is that, for a given fibration M — , B, the deformation process involved in
the proof is largely independent of the spectral theory of the Dirac
operators in the fibers Z. In particular, the natural local geometric object
for the local families index theorem which is the Levi-Civita superconnec-
tion, ignores the spectral decomposition of the Dirac operators in the
fibers.

One is led naturally to try extending the methods of [B1] to calculate
the Chern character of a family of Dirac operators D , acting on the fibers
Z of a Riemannian submersion M -», B, where the fibers Z are now even-
dimensional manifolds with boundary 0Z, with the global boundary condi-
tions of Atiyah, Patodi, and Singer [APS1].

Here it is necessary to take into account the spectral flow of the family
of Dirac operators D’“ on the boundaries D°? [APS3], which introduces
jumps in #(0), and so jumps in formula (0.1) for Ind D, . In order for the
index bundle to be defined, it is essential to assume that Ker D% = {0} or,
more generally, that Ker D?* is a vector bundle on B. In particular, the
family of operators D% is trivial in K'(B).

One can then try to adapt the superconnection formalism to obtain a
formula for the Chern character of the index bundle associated with the
family of Dirac operators of [APS1]. This seems to be very difficult. In fact
the boundary conditions of Atiyah, Patodi, and Singer [APS1] are of
global nature and directly involve the spectrum of D%, As we pointed out
before, one of the strengths of the superconnection formalism is that one
can disregard the way the spectrum of the considered family of operators
varies from fiber to fiber.

Our idea is then to replace the family of manifolds with boundary Z by
the family of manifolds with conical singularity Z'=Zu,, C(6Z). In
particular, for ¢ >0, we endow C(0Z) with the metric

d 2
T g (03)

and we construct the family of Dirac operators D°, of [Cl, C2].
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FIGURE 1

We then prove in Theorem 3.2 that, for ¢>0 small enough, the index
bundle Ind D°_ coincides with the Atiyah-Patodi-Singer index bundle.
Also, because the Dirac operator D°, on Zu,, C(0Z) incorporates the
spectral boundary connections of Atiyah, Patodi, and Singer [APS1] in a
very im)licit way, we prove in Sections 3—6 that the superconnection for-
malism >f Quillen [QT] and also the Levi-Civita superconnection of [B1]
can be used to study the family of Dirac operators D . The price we pay
is that instead of using the functional calculus on cones of [Cl1, C2], we
must extend the classical theory of elliptic operators to manifolds with
conical singularities in order to deal with deformations of such elliptic
operators.

Thus, in Theorem 6.2, we obtain a formula for the Chern character of
the Atiyah, Patodi, and Singer index bundle Ind D, . Apparently, this
formula still depends on the parameter ¢>0 defining the metric on the
cones C 0Z) and the boundary term is not yet identified explicitly.

Now the idea is to make ¢ >0 tend to O in the formula for the Chern
character. Equivalently we take the “adiabatic” limit of the Chern character
formula, as the length of the cones C(6Z) tends to infinity. The idea of
taking the adiabatic limit of global quantities has already appeared in other
contexts In [B1], it was used to give a cohomological proof of the families
index thzorem. Witten [Wi] suggested that the holonomy of determinant
bundles was related to adiabatic limits of éta invariants. This was proved
rigorously in [BF2] and in [C3]. Also adiabatic limits of &ta invariants
have be¢n studied in a broader context in Bismut and Cheeger [BC1]. In
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[MM] the adiabatic limit is related to the Leray spectral sequence of a
fibration (see also [D]).

In our situation, we blow up the metric of the cones C(8Z) in the one-
dimensional radial direction, so that we can use the same techniques as in
[BF2, C37]. We then obtain a formula for ch(Ind D , )

ch(Ind D, )= L A (g—) Tr l:exp ( —%)] — (0.4)

In (0.4), A(R?/2n) Tr{exp(— L¢/2in)] is the differential form which was
obtained in [B1] in the local families index theorem for manifolds without
boundary. # is a differential form associated with the family of Dirac
operators D%Z on the fibers §Z. It satisfies

dij = LZ A (%j;) Tr l:exp— (%)] (0.5)

Formula (0.5) reflects the fact that the family D7 is trivial in K!(B), and
that the corresponding odd Chern forms of [BF2, Section 2] are exact.

The form # already appeared in our previous work [BCl], where we
calculated the adiabatic limit of the reduced &ta invariant of Dirac operators
on a manifold M’ fibering over B’, where the metric of M’ is blown up in
the horizontal directions.

The techniques of this paper combine those of [B1, BF2, Cl, C2, C3].
In particular we develop a version of elliptic theory on cones which is more
general than the functional calculus of [C1, C2]. This is done by a
probabilistic technique which gives us a generalized form of Kato’s
comparison theorem for self-adjoint semi-groups. We also establish
certain estimates on Bessel functions by probabilistic methods (see
Proposition 1.15). As far as we can tell, these do not appear in the
literature.

Our work is divided into two parts. This paper contains Part] and
consists of three sections.

To make the reading of the paper easier, we devote Section 1 to establish
the index theorem of Atiyah, Patodi, and Singer for one single manifold
with boundary, by using the cone method of [C1, C2]. The essential new
ingredient of Section 1 with respect to [C1, C2] is that we identify the &ta
invariant by taking an adiabatic limit rather than by using functional
calculus on cones. Also, in Proposition 1.15, we establish an estimate on
Bessel functions which plays a key role in Sections 1 and 6.

In Section 2, we construct the Levi—Civita superconnection on a family
of manifolds with isolated conical singularities. In Section 3, we prove
the existence of the index bundle associated with the family of
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Atiyah— *atodi-Singer Dirac operators D, and also the existence of the
index bundle associated with the family of Dirac operators D° of
[Cl1, C2] constructed on our manifolds with conical singularities. Then we
prove that these index bundles coincide in K°(B).

The n:xt three Sections will appear as Part II in [BC2].

A con panion paper to this work is our article [BC1] on adiabatic limits
of éta irvariants. In [BC3], we give the cohomological interpretation of
the resu ts contained in this paper. In particular, we prove that the index
of Dirac operators on manifolds with boundary is asymptotically multi-
plicative We also extend our results to odd dimensional manifolds with
boundary. We use notations of [Q, B1]. In particular, Tr, will be our nota-
tion for supertraces. Also if K is a Z, graded algebra, we note [ A4, B] the
supercor imutator,

[A4, B]=AB— (1)de4dss gy (0.6)

The restlts obtained in this paper were announced in [BC4].

I. INDEX THEOREM FOR MANIFOLDS WITH BOUNDARY,
CONES, AND ADIABATIC LIMITS

In this section, we establish the index theorem of Atiyah, Patodi, and
Singer [ APS1] for manifolds with boundary using the cone technique. This
section is intended to be a simple introduction to the more complicated
techniquzs and results of Sections 4 and 6. As opposed to what is done in
[C1, C2, Ch], however, we identify the contribution from the singularity
by passing to the adiabatic limit in the radial direction (compare also
[BCI, S:ction 3]). Remarkably enough, the methods of Section 1 will be
used wit1 little modification for families of Dirac operators on manifolds
with boundary, where the methods of [APS1] or [C1, C2, Ch] do not
obviousl/ apply.

This szction is organized in the following way. In (a) we consider a
manifold Z with boundary 0Z, the cone C(6Z), and construct the manifold
Z =Z0U;, C(6Z). In (b), we calculate the Levi-Civita connection on Z’
for a me:ric gZ+¢, which is given on C(3Z) by

In (c), we construct the Dirac operator of [Cl, C2,Ch] on Z'. In (d),
we briefly describe the main results on this Dirac operator which were
established in [C1, C2, Ch]. In (e), we calculate the asymptotics of the
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heat equation formula for the index of the Dirac operator on Z'. In (f), we
compute a similar asymptotics on an infinite cone. In (g), we obtain the
formula of [Cl, C2, Ch] for the index of the Dirac operator on Z’ in terms
of a local characteristic polynomial on Z and of the contribution of the
conical singularity J*.

In (h), by passing to the adiabatic limit, i.e., by making ¢ —» 0, we prove
that J* coincides with the reduced €ta invariant of [APS1]. For this we
need to establish certain key estimates which we will also use in Section 6
for families. We then obtain the index theorem of Atiyah, Patodi, and
Singer [APS1] in the form given in [Cl1, C2, Ch].

(a) A Manifold with Boundary Z and Its Associated Space Z' with Conical
Singularity

Let Z denote a smooth connected compact manifold with smooth
compact boundary ¢Z. We assume that Z has even dimension n=2/, is
oriented and spin. Let C(6éZ) be the cone constructed over dZ, i.e. C(0Z)
is the compact set

C(0Z)=(10,11x0Z)u {s}

If r denotes the radial coordinate in ]0, 1], then for any ye dZ, as r |0,
(r, y)—o.

Let % be a tubular neighborhood of 4Z in Z, which we identify with
[1,2[ x0Z so that dZ is identified with {1} xdZ. If r still denotes the
coordinate which varies in [1, 2[, we piece together Z and C(0Z) along
their common boundary 0Z so that the coordinate r patches smoothly. We
thus obtain a new manifold

Z'=Z0U,, CZ).

Z' is a smooth manifold with a conical singularity at 4.

Set fi=-—0o/or. If (e,..,e,_,) is an oriented base of T JZ,
{fi,e(, . €,_) is an oriented base of TZ.

Let g°% be a smooth Riemannian metric on dZ. Let ¢ be a positive
parameter, which we fix for the moment. We equip the cone C(6Z) with
the metric considered in [C1, C2, Ch],

2
d%+r2gaz. (1.1)

Note here a slight difference of terminology with [C1, C2, C3], where
given a metric g’ on 0Z, the cone C(8Z) is defined to be ]0, + o[ x 0Z
equipped with the metric dr? + r’g%%, and g is considered as the metric on
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the cross section r = 1. In the formalism of [C1, C2, C3}, if r=\/z r', the
metric (1.1) sould be rewritten in the form dr'> + r'%eg®?.

Let g »* be a Riemannian metric on Z which is such that on the tubular
neighborhood %, g#* is also given by (1.1). Clearly the metric g%* patches
smoothly with the metric (1.1) on the cone C(0Z). Therefore Z' is
equippe 1 with a smooth metric which we note g“-°

Let F=F, @F_ be the Z, graded Hermitian vector bundle of spinors
on Z as:ociated with the metric g%*. F, and F _ are the bundles of positive
and negutive spinorson Z. TZ actson F=F , @ F _ by Clifford multiplication.
If Xe7Z, we also denote the corresponding Clifford multiplication
operator by X.

In paiticular on 0Z, as a Clifford multiplication operator, f, interchanges
F, and F_. Therefore we can identify he F, and fihe F_.

Also ¢Z is an odd-dimensional manifold, which is oriented and spin. In
order tc be consistent with classical orientation conventions, we identify
the Hermitian bundle of spinors on dZ with F .

On 4.7 for the metric g%!, f, acts on F=F, @ F_ as the matrix

Al o)

If ye 3Z and re[1,2[, we will identify F, ,,=F, . ,®F_ ., with
F,=F, ,®F__,. In particular, for the metric g%, the Clifford multi-
plicatior operator associated with —J/0r is now f /\/E. Similarly, if
e/, ..e,_; is an orthonormal base of T,(0Z) with respect to g%
ey, .., €, _ act by Clifford multiplication on F,. Identifying F, ,, with F,,
for the 11etric g%, the vectors e, ..., e, ; act by Clifford multiplication at
(r, y) like rey, .., re, _ .

We extend the vector bundle F=F_, @ F_ on 0Z to the cone C(0Z) in
a trivial way. The whole manifold Z’ is now equipped with the smooth
Hermiticn vector bundle F=F, @ F . By extending the Clifford multi-
plicatior operators from the tubular neighborhood # into C(6Z) in the
obvious way, F=F_. @ F_ can now be considered as the Hermitian vector
bundle «f spinors on Z' associated with the metric gZ"*.

(b) The Levi-Civita Connection on TZ'

Let V*¢ (resp. VZ°) by the Levi-Civita connection on 7Z (resp. TZ')
associated with the metric g2¢ (resp. gZ°¢) and let R%*® (resp. R“"¢) be the
corresponding curvature tensor.
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We will briefly describe the connection VZ*¢ on the cone C(8Z). Let V%2
be the Levi-Civita connection on T 0Z with respect to the metric goZ.

DerFiINITION 1.1. 'V denotes the Euclidean connection on the restriction
of TZ' to C(6Z)v,, % defined by the following relations: if X, Y are
smooth vector fields on 0Z, then

r
. ) (1.2)
a/or pE afer 3.

Let T be the torsion tensor of V. Let §¢ be the tensor on C(0Z)u,, %:

Se=vyZ:=:_V, (1.3)

ProPOSITION 1.2. If X, Ye T(0Z), then

T(X, Y)=0
(;r’X>=§

§6(§;>%=o; §’"’<%>X=O (1.4)
SE(X)aﬁ:-r){; Se(X)Y = —erdX, Y>gaza—

(1 2) =0

Proof. The first four lines of (1.4) follow from straightforward computa-
tions which are left to the reader. Also,

‘& a 6 ‘€ i a '€ ‘e a
RZ" (X,5;>5=Vf" Vg/érg*véérvjzr' a
Z'e Je J
= _Vﬁ/érS (X)E
X X X
=—Vis—=%—==0

4 ¥ 4
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Similarl,

W _ —
R (X5 ) Y=V VI Y- VEE VY

(Y e 0
=VZe <7>—V§/za, (VXY—sr<X, Y>gﬂzg>

1 J 1 0
=;VXY—8<X, Y>gaz E—;VXY-FE(X, Y>gaz E

=0.

The proosition is proved. ||

Let ¢ be a smooth complex vector bundle on Z. If p: % — 0Z is defined
by p(r, y} =y, we have {=p*C,;.

We a'sume that ¢ is equipped with a metric A° and with a unitary
connecti>n V¢ which both split as products in %, i.e., h* and V¢ are the
pull-bacl: by p* of the restrictions of 4¢ and V¢ to 0Z.

Let L' be the curvature of V¢, Clearly on %, if Xe T,

é
L<5, X):O. (1.5)

We now extend ¢ from 0Z to C(6Z) in the obvious way. On C(0Z), &
inherits the corresponding metric and connection, and (1.5) still holds.
Therefor: & is a smooth Hermitian vector bundle with unitary connection
Véon Z.

(c) The Dirac Operator on Z’

The Lavi-Civita connection V"¢ on TZ' lifts into a unitary connection
on F=F, @F , which we still denote V"%

The F ermitian vector bundle F® £ is equipped with a unitary connec-
tion VZ-*® 1+ 1 ®@ V¢, which we still denote VZ-°,

Let H*=H% ® H” be the vector space of smooth sections of F& ¢ =
(F, ®@®(F_ ®¢%) on Z' which vanish at & together with their
derivativzs. D° denotes the Dirac operator acting on H* associated with
the metr ¢ gZ"* and the connection V<. If ¢}, .., e, is an orthonormal basis
of TZ' for the metric gZ-°, then D® is given by

D=y ] VZ", (1.6)
1

The o»erator D° interchanges H% and H ™. Let D°, be the restriction
of D° to H? . In particular, D°, maps H? into H™.
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The Levi-Civita connection V?Z on T 0Z lifts to the restriction of F, to
0Z. Therefore on 0Z, the Hermitian vector bundle F, ® ¢ is endowed with
the unitary connection V2 ® 1 + 1 ® V¢, which we still denote V2. Also if
XeTdZ, X acts by Clifford multiplication on F, ® .

Let D% be the Dirac operator on 6Z, which acts on the smooth sections
of F, ® ¢ on 0Z and is naturally associated with the metric g°4 and the
connection V¢. If e,, .., e, , is an orthonormal base of 7 0Z, then D?Z is
given by

n—1

DZ=Y ¢, V?Z (1.7)

i=1

Of course, on C(0Z) v, U, we will use the description of F=F, @ F _
which was given earlier. Recall that on C(0Z)u,, %, F, and F_ are iden-
tified. If Xe T 0Z, then X acts by Clifford multiplication on F=F, ® F _

) L

So, on C(6Z)u,; %, D% acts on the set of smooth sections of F® & =
(F, ®HD(F_®¢&) as
0 D@Z
I:DBZ 0 :|

ProposITION 1.3. On C(8Z) v, ¥, D is given by

-0 n—1\ D%
DF= _— —_— 1.
\/Efi ( or 2r >+ r (1.8)
Equivalently, in matrix form, D° is given by
0 -1, D
0 Ve (5500
Dt = (1.9)

\/E i + n—1 + b 0
or 2r r
Proof. We know that
VZe=V 4+ 5.

Clearly, the Euclidean connection V on T(C(3Z) v, %) lifts into a unitary
connection on F=F_ @ F_. If ¢}, .., e, is an orthonormal base of TZ’ for
g%°¢, by [BF2, Eq. (1.2)], we find that

VZe=V,+4(8%.) e}, ¢ eje;.
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By Pioposition 1.2, we see that for X e T(0Z),
V@/Or Va/ﬁr

VZeov, +\/T;Xf1.

Let e, .., e, ; be an orthonormal base of T 0Z for g,,. Using (1.6), we
find tha:

n—1

€; e e
D=y VI eV

= z (Vaz+£ef1)+\/;f,Vﬁ. (1.10)

The proposition is proved. |

We now calculate (D°)2

PROPCSITION 1.4. On C(8Z) v, U, (D%)? is given by the formula

0> n—124 €
(D)2=_8<é_§+ p 5)—;5(1’1—1)(71—3)

D&Z D@Z
ff‘ e (111)

Equivaletly, on C(0Z) ., U, (D°)* is given in matrix form by

0> n—126 l(n—l Daz><n—3 Daz
2

(D)= or? roor r*\ 2 + ﬁ
0 & n-10 1/(n—1 Daz - D"Z
or*  r or r*\ 2 \/Z

2

Proof. (1.11) and (1.12) are obvious consequences of (1.8) and (1.9). |

(d) The Dirac Operator on Z' and the Operator of Atiyah, Patodi, and
Singer on Z

To simplify the exposition, we will assume in the sequel that
Ker D% = {0}. (1.13)

Assumption (1.13) can be easily lifted by the method of [C1, C2, Ch].
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However in the context of the families situation of Section 3, the analogous
point has a significance which is not purely technical.

Observe that by assumption (1.13), if £ is small enough, for any 4 in the
spectrum of D%, we have |,l|/\/5> L

We now recall the main results given in [C1, C2, Ch]. Observe that H*
is naturally equipped with a L, Hermitian product.

Then by [Ch, Theorem 3.2], for ¢ >0 small enough, D* is essentially self-
adjoint on H*, and the operator D°, is Fredholm. In particular, the index
of D°, is given by the formula

Ind D°, =dim Ker D°, —dim Ker D°_. (1.14)

Also for £ >0 small enough, the operator (D?)? is essentially self-adjoint
of H*, the operator exp(—t#(D?)?) is trace class and, moreover, for any
t>0,

Ind D¢, =Tr,[exp(—t(D?)*)]. (1.15)

The properties of exp(—t(D®)?) were established in [C1, C2] using the
functional calculus of cones. We will establish more general results on such
operators in Section 4.

On the other hand, Atiyah, Patodi, and Singer [APS1] defined a Dirac
operator D on Z with global boundary conditions.

Namely, let gZ be a smooth metric on TZ which has the following two
properties

« g7 coincides with g% on 0Z.

+ g% is product on %, i.c., on %, g* is given

gZ=dr’ + g% (1.16)

F=F, ®F_ still denotes the Hermitian vector bundle of spinors on Z for
the metric gZ and the given spin structure on Z. (¢, V¢) is taken as before.
In [APS1], a Dirac operator D is formally defined on Z as in (1.6). D still

splits into
0 D
D= S
[D+ 0 ]

Also the Dirac operator D°? on 0Z has a discrete spectrum. Let P, and
P _ be the orthogonal projection operators (with respect to the natural L,
Hermitian product) on the direct sum of eigenspaces of D°% corresponding
to nonnegative or negative eigenvalues of D%Z.
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Then Atiyah, Patodi, and Singer [ APS1] restrict the operator D , to the
C* sections ¢ of F, ® & such that

P _¢=0. (1.17)

They construct a natural family of Sobolev spaces on Z (which incor-
porate the boundary condition (1.17)) such that the restriction of D, to
such spiices is Fredholm.

Similiurly, the operator D _ acts on the C*® sections ¢ of F_ ® ¢ on Z
such thit

P _y=0 (1.18)
Then
Ind D, =dim{(Ker D, )—dim(Ker D _). (1.19)
Giving an a priori identification of Ind D°, and Ind D , , first as integers
and later as virtual bundles, is of the utmost importance in the sequel. Here
we proive the simple result.
THEOREM 1.5. For ¢>0, small enough,
IndD°, =Ind D, . (1.20)
Proof We give two proofs of Theorem 1.5 which are essentially
equivalent.

Proof No. 1. Inspection of the arguments in [ APS1] shows that we can
define tlie Dirac operator 1'35+ of [APS1] on Z associated with the metric
g%¢ (wtich is not a product on %) with the boundary conditions (1.17),
(1.18), taat D*, is Fredholm and that Ind D°, =Ind D, .

We now will show that Ind D?, =Ind D°, . If his a L, section of F, ®¢
on Z' such that D°, h=0, then on C(0Z), we have

-1 DGZ
¢G<3+" >h+——h=0. (1.21)
or  2r r

Let
ary= Y hir)

i€ Sp(D9Z)

be the d :composition of 4(r,-) according to the eigenspaces of D??. Clearly
for any e Sp(D%),

o n+l Ik,
SR S L
ﬁ(@r‘*’ 2r ) At r
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and so we find that
hy(r)=r= G/t =ty (1) (1.22)

Also the contribution of the cone C(0Z) to the L, norm of 4 is given by

1
j | (r, P)IPr" " drdy=Y J lhy(r))? r" = dr. (1.23)
[0,1]xéZ B 0

From (1.22) and (1.23), we find that, since (1.23) is finite, if /,(1) #0, then
l/\/; <1, Since 0¢Sp(D?%), we find that for £>0 small enough, if
D®, h=0, then P, h=0. Thus we have shown that for ¢ >0 small enough,
if he Ker D*,_, then the restriction A’ of h to Z is in Ker D*, .

On the other hand, if #’' e Ker 55+, then on 6Z, I’ has the expansion

h= Yk, (1.24)

4 e Sp(D¥Z)
A<O

We extend 4 to C(0Z) by the formula

h= Y poGE =y (1.25)

A e Sp(DZ)
A<O

Clearly, for ¢ > 0 small enough, 4 is square-integrable on Z’ and, moreover,
D*, h=0. Therefore we have proved that for ¢ >0 small enough, Ker D?,

and Ker D6 are 1somorph1c vector spaces. The same result can be proved
for Ker Di and Ker D* . The proposition is proved. [

Proof No. 2. By modifying the metric g%° on %, we can assume that
g%*° is given on % by

ar?

LTS (1.26)

where f(r) is a positive C *-function such that
f(ry=r*  for
f(n=1 for

A
A

IIA
[Se ST

r

B2
A

,
We now consider the new manifold with boundary Z which is given by
Z=2\{(r, y)et;|r|<}} (1.27)

whose boundary is {}} x0Z. If C(0Z)=(]0, }]1x8Z)u {8}, then Z'=
Z U3 C(0Z). The metric on Z is now a product near the boundary 9Z.

580/89/2-7
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Also if ,) is the Dirac operator of [APS1] on Z, one verifies immediately
that Inc D, =Ind D . By proceeding as before, if is now easy to prove
that Ind D | =1Ind D®, .

(e) The Asymptotics of the Heat Kernel on Z'

Let d¢ be the Riemannian orientation form on Z' for the metric gZ"!
Given ¢>0 small enough, for >0, let P(x, x') be the smooth kernel
associated with the operator exp(—t(D*")?).

If he H*, xe Z'\{d}, then

exp(—1(D%)*) h(x) = L' Pi(x, x") h(x") dx'. (1.28)

Let A be the Hirzebruch polynomial. 4 is an ad O(n) invariant polynomial
defined on (n, n) antisymmetric matrices. If B is a (n, n) antisymmetric
matrix vith diagonal entries [ °, §], then

! X; /2

(B)= H sinh(x,/2) (1.29)

THEOLEM 1.6. For ¢ >0 small enough, for any xe Z'\ {6}, then

VAN & max
Im Tr [P(x, x)] a'xz{/i (R >Tr [exp(—L—>]} (1.30)
r>0 2n 2in

and the convergence is uniform over compact subsets of Z'\{d}. In par-
ticular,

lim Tr [Pi(x, x)}]=0 on C(0Z)v,,%. (1.31)
t—0

Proof.  (1.22) follows form the local index formula for Dirac operators
[ABP, BeV, B4, Ge, Gi, P]. By Proposition 1.2, R%%(9/0r,-) vanishes on
C(0Z) 5 %. Also by (1.5), L(d/0r,-) also vanishes. Therefore the right-
hand sice of (1.30) vanishes on C(6Z)u,, %. |
(f) The Heat Kernel on the Infinite Cone

Let C*(0Z) be the infinite cone with vertex J:

C*(0Z)=(]0, + o[ xdZ)u {}.
If e,, ., e,_, is an oriented base of T 0Z, we orient C*(0Z) by the base

(—=8/or, ey, ..., e,_). For ¢ >0, we still endow C*(8Z) with the metric g>*
given by

dr’
g " = +rg”. (1.32)
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We extend F=F, @ F_ and ¢ from 6Z to C*(0Z) in the obvious way.
Let D** be the Dirac operator acting on the smooth sections of F® £ on
the cone C*(8Z). D> = is exactly given by the right-hand side of Eq. (1.8).

By [CI, C2, Ch], for £>0 small enough, (D°)” is essentially self-adjoint
on the set of C™ sections of F® & on C*(0Z)\{J} with compact support.

Let dy denote the Riemannian orientation form of 0Z for the metric g°%
and let dx be the Riemannian orientation form of C*(0Z) for the metric
gh*. Clearly,

dx=r""'dydr.
Given ¢> 0 sufficiently small, for >0, let P> be the smooth kernel on
C*(0Z) associated with the operator exp(—#(D>*)?). P>> is, of course,

calculated with respect to the volume form dx. Then by [Cl1, C2, Ch] for
any t>0, M>0,

L oy TP ), (D) < oo (1.33)

The following simple observation is the crucial first step of [C1, C2].

ProrosiTiON 1.7. For any t>0, (r, y)€ 10, + o[ X 0Z, then

1

Pe=((r, ), (r y) =~

PuE((1, ), (1, ). (1.34)

Also as t |0,

Tr,[P7=((1, »), (1, ))1=0() (1.35)
and O(t) is uniform on 0Z.
Proof. For s>0, let A, be the dilation of the cone C*(9Z),

(r, )= hy(r, y) = (s1, p). (1.36)
One verifies that
h,,, D*®h, =sD"* (1.37)
and so
hy(D%)? by = s*(D"%)2 (1.38)

(1.34) immediately follows from (1.37). The proof of (1.35) is similar to the
proof of (1.31) in Theorem 1.6. |}
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(g) A Formula for Ind D°,

We h:re establish the formula of [C1, C2, Ch] for Ind D?, .

DeriniTiON 1.8, For ¢ > 0 small enough, set

+oo ¢
sr= =] S TRIPEE( ) (1 )] dy. (1.39)
0 S Yoz

The i1tegral which defines J° converges. In fact,

As 50, Proposition 1.7 takes care of the convergence.
By (1.34), we know that

b () o

Due 0 (1.33), it is clear that the integral in (1.39) also converges as
sT + 0.

Pe=((, »), (1, )

THEOREM 1.9. For ¢ >0 small enough, then

. RZ,c _Lé
¢ = - J 1.41
Ind D°, LA( o >Tr|:exp< i >] J (1.41)

Proof By (1.15), we know that for ¢ >0 small enough, for any >0,

Ind D*, = j Tr,[ P5(x, x)] dx. (1.42)
,

Take f such that 0 < < 1. Let C#(6Z) be the cone

CH0Z)= (10, B1x0Z)u {4}
Set

Z''"*=7\C"(0Z).
By Theorem 1.6, we find that

lim Tr,[Pi(x, x)] dx
110 Jzi2

. [R% L
- IZ“ Y ( - )Tr I:exp< S >] (1.43)
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On the other hand, by (1.31),

lim Tr,[ P5(x, x)] dx =0. (1.44)

tL0 fCW(BZ)\Cl/“(aZ)

By standard estimates on heat kernels, we know that there is & > 0 such
that for any xe CY4(8Z),

|Pi(x, x) ~ P>®(x, x)| £ Cexp(—a/t). (1.45)

Therefore,

Tr,[P¥(x, x)] dx— j Tr,[P**(x, x)] dx

jc'/‘*(az> Cl4z)

< Cexp (th) (1.46)
Using (1.34), we find that

f e TP ). (o)) dr

d)
=[  TelPs(L ). (1S
r<1/4 ¥

-

dr
Trs PE’C:O 1$ > 1’ -
o TRLPEA(L ), ()

1 d
5 Tr,LPE=((1L, »), (1, y))] ;S (1.47)

2 s 161

By (1.47), we find that as ¢ 0, the integral in the r.h.s. of (1.47) converges
to J°. Theorem 1.9 follows from (1.43), (1.44), (1.46), (1.47). 1|

Remark 1.10. For ae C, Re (a)>0, set
€ te a ds £, 00
Fay==[ @ T TrIPIR((1, p), (L vy, (148)
0 S oz

By [Cl, C2, Ch], we know that for any B>0, for ¢ small enough,
P3=((r, y), (r, y)) decays faster than r# as r | 0.

Take M > n/2. For £¢>0 small enough, for any a such that n/2 <
Re (a) = M, using (1.40), the integral defining J°(a) converges. Of course,
by (1.35) we know that this is also the case for —1 <Re (¢) < M.
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For v =0, let 7, be the modified Bessel function of order v. By [C1, C2,
Cal, PY: Egs. (2h), (2i), So] we know that for any b€ R, the kernel on
R, associated with the operator exp s{d*/dr’ + (n— 1)/r d/dr — b*/r’} has
a density g®(r, r’) with respect to the measure r'”~' dr’ which is given by

L1 ,@ r+r? re'
qflr,r):—z—;(rr V"exp{— }1{(,,2)/2)2+b2}1/2(z>. (149)

4s

Let A} be the discrete family of real eigenvalues of D% Since
0 ¢ Spec D%%, for ¢>0 small enough, for any 4, M/\/El > 1. Using (1.12)
and (1.¢9), we find that for ¢ >0 small enough,

) TrIPEE(L ), (L ) dy

1 —1 1 1
=g P 2y > NS 2es Ly in 2%/ | (1.50)

Therefore, for Re (a) large enough,

| +oc
Ja(a)=‘; Z L u—exp(—u)ldyy /s —I;;./\/Efn/zl](u) du. (1.51)

Using the recursion relations on Bessel functions [Wa, p. 79]
v+1
Lw)=—o ver T 40 (1.52)
we find that for v large enough,

1 pto
3 u”“exp(—u)l,, —1,)(u) du
0

(v+a+1)f+w u= @t Dexp(—u) I, (u)du. (1.53)
0

SRR

By a ormula of Henkel and Gegenbauer [Wa, p. 3847, we know that
1 + oo
5(v+a+1)j w e Vexp(—u) 1, () du
0

_ye1 Mla+t 12)I(v—a+1)
h r(12) rv+a+1)

(1.54)


bismut
Note
There should be a - sign.
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So we find that if n/2 <Re (a) £ M, for ¢ >0 small enough,

_gr(a+1/2)z(s r(Al//e+1/2—a)
=27 ap) B e 124 a)

J¥(a) n4) (1.55)

Equation (1.35) then shows that J°(a) extends into a meromorphic
function of a for Re (a) < M, which is holomorphic at a=0.

A closely related formula for J¢(a) was obtained in [C2, Eq. (6.10)], to
show that J*(0) coincides with 7(0).

(h) Bessel Functions, Adiabatic Limit of J* and the Atiyah—Patodi-Singer
Index Theorem

We now will make ¢ |0 in Theorem 1.9 to reobtain the index theorem in
the form given by Atiyah, Patodi, and Singer [APS1].

Let g“ be a smooth metric on Z taken as in Section 1(d). In particular,
on %, g” is given by (1.16). Let R” be the curvature of the Levi-Civita
connection VZ on (TZ, g%).

ProrosiTioN 1.11.  For any ¢> 0, the following equality holds:

A5 o (Z2)]L, 4(X) e ew (32)] 150

Proof. We use the same argument as in [C2, Section 6]. The metric
dri/e + r’g°* is conformally equivalent to the metric dr’/er®+ g% If
v=(log r)/\/¢, the metric dr*/er® + g°Z is exactly the metric dv?+ g?Z.

It follows that the Riemannian manifold with boundary (Z, g%*) is
conformally equivalent to the manifold Z endowed with a metric g’# which
coincides with dv? + g% on a tubular neighborhood of 4Z.

On the other hand, we know that the Pontryagin forms of TZ are
conformally invariant. (1.56) follows. ||

Remark 1.12. By Theorem 1.5, we know that for ¢>0 small enough,
Ind D°, does not depend on & It thus follows from Theorem 1.9 and
Proposition 1.11 that for £> 0 small enough, J* is independent of ¢.

Let #(0) be the reduced &ta invariant of Atiyah, Patodi, and Singer
[APS1] associated with the self-adjoint operator D°%. Recall that by
[APS2, p. 84; BF2, Theorem 2.47 as s} 0 then

Tr[ D exp(—s(D%?)?)] = O(\/s). (1.57)
Using (1.57), we find the classical expression for 7(0),
1 ds

ii(0) = j0+°° Tr[ D°Z exp(— s(D7?)?)] (1.58)

2/

7
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We nov’ will identify J® and #(0) by an adiabatic limit procedure. This
techniqu e is quite different from the one which is used in [C1, C2, Ch] and
will be ¢xtended in Section 5 to the families index theorem.

THEOREM 1.13.  The following identity holds:
lim J®=#(0). (1.59)
el0

Proof. The proof of Theorem 1.13 is divided into two main steps. By
(1.57), /\/E Tr[D% exp —s(D°?)’] can be extended by continuity at
s=0.

The first step in the proof of Theorem 1.13 is the following,

ProrosiTION 1.14.  For any 520,

1
lim = | Tr[P:*((1, y), (1, y))1dy

el0 § Yoz

= —LTr[DaZ exp(—s(D%%)?*)] (1.60)

N

and the -onvergence is uniform over the compact subsets of R, .

Proof. Let Q.(y, y') be the C* kernel associated with the operator
D% exp —s(D%%)*). We will prove that

—1
lm < Tr,[PE=((1, y), (1, y))] = ﬁ Tr(Q(y, ¥)] (1.61)

el0 8

with the required uniformity. By Proposition 1.3, we know that

-0 n—1 1
N e e

r

and so vie get

8 n—1\? (D%)? g
(D€)2=—8(5;+ > ) 4 rz) +\/;f‘ D%, (1.62)

It sho ild now be clear that the proof of (1.61) is closely related to the
second proof of the families index theorem given in [B1, Theorems 5.3]
and to [BF2, Theorem 3.12; C3], where a similar adiabatic limit problem
was considered (compare especially [BC1, Section 3]).

There are, however, two differences. The first is substantial. While in
[BF2, C3] the vaniable r was assumed to vary in S, and no singular terms
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like 1/r or 1/r* appeared, here, because we work on a cone, such singular
terms are present. Still, we claim that, to study the limit of
Tr,[PS*((1, y), (1, )] as ¢ ] 0, we can localize the problem in the region

1, 3[ x 0Z. So we can replace the cone C*(dZ) by ]1—c0, + [ x4Z and
assume that for |r| large enough, (D¢)? is simply the operator

d2
—-F + (D62)2‘

This is essentially because on the diagonal, away from the tip {6}, P>
behaves like a standard heat kernel on a nonsingular space.

Once localization is proved, we must now interest ourselves in the
algebra which determines the existence of the limit.

With respect to [BF2, Theorem 3.127, a minor difference is that while in
{BF2], the dimension of the total manifold was odd, the dimension of
C™(0Z) is even. However, this is compensated by the fact that in [BF2],
only traces where considered, while here we consider supertraces. As
explained at length in [BF2, Sections 1(b) and 2(f); BC1, Section 3], as
far as adiabatic limits are concerned, these two situations are essentially
equivalent.

In particular remember that if e, .., e,_, is an oriented orthonormal
base of T0Z, if fie,---e,_, €c™™(TZ) is considered as acting on F=
F,®F_,ande, ---e,_, €c®(TaZ) is considered as acting on F, , then
by [BF2, Egs. (1.6), (1.7)]:

Tr,[fie ”'en~l]=(_2i)l

(1.63)
Trle,---e,_,]=(—i) 2"~ L

Finally observe the critical fact that in formula (1.62) for (D°)?% the
Clifford variable f; appears with the weight \/;

It is then possible to reproduce exactly the steps of the proof of [BF2,
Theorems 3.12] in a much simpler situation and to obtain (1.61). To prove
uniformity as s —» 0 in (1.61), we can also exactly proceed as in [BF2,
Theorem 3.12; see also BC1, Section 4].

In view of (1.39), (1.58), and (1.60), to prove Theorem 1.13, we need to
show that the dominated convergence theorem can be used in the integral
(1.39) defining J°. We thus establish an estimate on ratios of modified
Bessel functions, which will also be used in Section 6.

Recall that by [Wa, p. 54],

I,5(z) = ./2/nz sinh(z). (1.64)
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PROPISITION 1.15. For any v2 10, and z such that 1 <z £3v¥/32,

I(z) oy
" (6 (16)

Prooj. Let r be the generic element in 4(R,; R* ). Let Q be the
probability law on €(R,; R*) of the Bes(3) bridge such that r,=1,
ry.=1. Bessel bridges are extensively discussed in Pitman and Yor
[PY, Se¢ction 2].

If s —» w, is a standard Brownian motion in R® such that |w,| =1, which
is conditioned to be on the unit where at time 1/z, the probability law of
[w-] is :xactly Q.

Let E2 be the expectation operator with respect to Q. By [PY, Eq. (21)],
we know that

1 1 1\ V= dt
= (z)=E® ——(v-—-) [ Sh 1.66
I, @ CXP{ 2< 4) fO rf} ( )
Since v = 2, we find that
I v?
* (z)Z E?C ,:ex {— }] 1.67
11/2( ) p 4zsupo, <y, i’ (1.67)

Take 1, n’ in R*. Let P, be the probability law of the Brownian bridge
w in R* such that w,=n, w,,. =n". Then under P, ,, the probability law
of the process w,— (1 —sz)n—szn' is exactly Py, [Si, p. 40].

If X e R® is such that its Buclidean norm |X| is larger than /, at least one
compon:nt of X has an absolute value which is larger than l/\/g. By
[IMK, p. 27], we find that for any />0,

Pool sup |w,|21]<6exp(—3/%). (1.68)

0=s=gl/z
Therefore, if n, n’ are unit vectors in R*, we find that for /> 1,

P,n[ sup [W,|zl]1<6exp(—3(/—1)"z)

0s<g1/2

and so, if {>2,

12
P, [ sup lwsl;l]§6exp<——gz>. (1.69)

0s<1/z
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Let do be the uniform probability measure on the sphere S,. If
n=1(1,0,0), under the probability law on €(R, ; R®),

' a2 ' a2
J P,,,,,,exp{—m 2n| z}da(n’)/f exp{—ln 2n| z}da(n’), (1.70)

the probability law of the process |W| is exactly Q. Therefore from (1.69),
we find that for any /=2,

O sup rsgl]§6exp(—512>. (1.71)
0<s=<1/z 6
From (1.67) and (1.71), we find that for /= 2,
I v2 zI?
_v < e _
Ton (z)=exp< 4le>+6exp< ; ) (1.72)

If z £ 3v?/32 we can choose /= [3v?/2z]"* in (1.72). We obtain

I,
> (z)éexp(—m>+6exp<—z—gzv)—m>. (1.73)

If 1 £2<3v?%/32, from (1.73), we obtain (1.65). ||

We now complete the proof of Theorem 1.13. We need to dominate the
function

1
S|, TP ) dy‘ (1.74)
oz

as sT + oo by an integrable function which does not depend on & Note
that by an initial scaling of the metric g°4, we may and we will assume that
the eigenvalues A of D?Z are such that |1| = 4. By (1.50), we know that

[, TrIPE(L 9 (L )] dy

1 1 1
=g exp ( _Z,;) ; s vva =gz ) <—> (1.75)

2es

Clearly for A>0, and ¢ small enough, since I, decreases as v=0
increases, we get

0§11/\/‘71/2"‘l;./\/€+1/2 21 541_1)./\/Z+1- (1.76)
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Also by the recursion formula on Bessel functions [Wa, p. 79], we know
that

24
(1 e—1 1/1/,/'+1)() ﬁzla/\/?(z)‘ (L.77)

Using (1.75)—(1.77), we find that for ¢ > 0 small enough, for any s >0,

' [ Terpe(( mu o) dy’

2 exp(— 1/2¢s)

1
§———\7—8—*§: MI IW\/;, (E) (178)

In the sequel, we assume that s> 1.

» f2es<1, using formula (1.64) for I,,,, we write (1.78) in the form

' [ Tnipen, 0, () dy’

1 1 ; 1
. —_— M i
< rﬁsmh( )e p( )ZI I > (28s>. (1.79)

v 2

Note at this stage that the potentially diverging term 1/\/5 has
disappeared, at least formally.

For ¢>0 small enough, any A in the spectrum of D% satisfies
Ill/\/EE 10. Moreover, 1/2es > 1. Also, since s = 1 and || = 4, we find that
1<1/2es<1/26 £34%/32e. So we can use Proposition 1.15 with z=1/2es,
y=14l/\/ &, and we obtain from (1.79),

L (L, p) (1, ¥))] dyl

gc\/EZ 1] exp<—|;|\/\/§g>. (1.80)

So we fird that for ¢ >0 small enough, if 2es < 1, then

LPE=((L, 3), (1, )] dy]

<7Tr[|D|"Zexp<—5§%[DlaZ>]. (1.81)

Clearly the r.h.s. of (1.81) is integrable as s1 + oo.
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* We now consider the case where 2¢s > 1. By Poisson’s integral
formula [Wa, p. 79], we know that for v>0,

(Z/Z)V ! 2\v—1/2
[ b A A h 1— ds. 1.82
IV(Z \/_F(v 1/2)j 1 C (zs)( s ) A} ( )

Clearly I'(v+3)2 I'(v)=1I(v+ 1)/v, and /2" is uniformly bounded. From
(1.82}), we find that there is C> 0 such that for any z with 0 <z <! and any
v>0,

v

z
rv+1y

I(z)£C (1.83)

So using (1.78), (1.82), (1.83), we find that if 2es > 1, then

‘ LZ Te,[P==((1, y), (1, y))] dy
2es) AN

(
<C A - (1.84)
\/E§ r(al/e+1)

If 2es > 1, we have

(265) " HVE < (2e5) 142V, (1.85)

Also by Stirling’s formula, since 1 is bounded away from 0, we know that

for any £>0,
NS
r(ﬂH)g( 121 ) . (1.86)

Ve Jee

From (1.84)-(1.86), we get

‘ [ TP, p), (1,90 dy}

éCﬁZw(i;Z

If >0 is small enough, for any 4 in the spectrum of D%Z, Ml/\/; =n+4.
Since D% is an elliptic operator of order 1 and 8Z has dimension n — 1, we
know that

1417/
) (1.87)

1
Y ——<+w
[4]
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There'ore, for ¢>0 small enough and s such that 2es=>1 and also
e/\/ﬁg 1, then

i

1 C
;Uaz Tr,[Ps=((1, y), (1, ¥))1dy ém (1.88)

The rh.s. of (1.88) is integrable as s T + oo.

From (1.81) and (1.88) we find that we can use the dominated
convergince theorem in the integral defining J° and we obtain
Theoreni 1.13. |

Remak 1.16. Let us make at this stage several observations. The first
observation is that the final argument in the proof of Proposition 1.14 also
shows that as s |0

Tr[Q.(», ¥)1=0(/5), (1.89)

from wlich the fact that #(a) is holomorphic at a=0 follows. In other
words, 1ocal index theory on the even-dimensional cone C*(8Z) implies
that #(a  is holomorphic at @ =0. This argument is also discussed in [BC1,
Section :i]. Note that in [BF2, Remark 2.5], the local holomorphy of #(a)
at a =0 was shown to be a consequence of the local families index theorem
[B1] for the family ¢ » e D%Z.

These two arguments are very directly connected. They express a version
of the multiplicativity of the local index.

Another important observation concerns the fact that dominated con-
vergence can be used in the proof of Theorem 1.13. The situation is essen-
tially dif erent from [BF2, Theorem 3.14] since (1/r?) (D°%)* is no longer
uniforml elliptic because r can take arbitrarily large values. Still note that
the estimr ate in (1.78) explicitly takes into account the fact that we calculate
the difference of two traces. What the proof after Eq. (1.78) does is to make
explicit an argument of Getzler [Ge] which is used in [BF2,
Theoren 3.14].

This 1escaling argument will be used explicitly in our proof of the
families index theorem for manifolds with boundary.

From Theorem 1.5, Theorem 1.9, Proposition 1.11, and Theorem 1.13,
we deduce the index theorem of Atiyah, Patodi, and Singer [APS1] in the
form obtained by Cheeger [C1, C2] and Chou [Ch].

THEOREM 1.17.  For &£ >0 small enough,

J*=7(0)

nd D, =Ind D°, =j i <§Z> Tr [exp ( —%ﬂ —7(0).  (1.90)

14
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II. THE GEOMETRY OF FAMILIES OF MANIFOLDS WITH
CONICAL SINGULARITIES

In this section, we consider a family of manifolds with boundary. As in
Section 1, we replace each manifold with boundary by a manifold with a
conical singularity. We then extend the constructions of [B1] to this new
family of manifolds with conical singularities. In particular, by extending
[B1, Section3], we construct the Levi-Civita superconnection of the
family.

This section is organized in the following way. In (a), we consider a
family of manifolds with boundary Z and we construct the associated
family of manifolds with conical singularities Z'. In (b), we construct
connections on the vector bundles TZ' and T0Z. In (c) we define a family
of Dirac operators on the fibers Z’. In (d), we construct the Levi—Civita
superconnections of [B1] associated with the families of manifolds Z’ and
0Z.

(a) A Family of Manifolds with Boundary and the Associated Spaces with
Conical Singularities

Let B denote a compact connected manifold of dimension m. Let X be
a compact connected manifold with smooth boundary X. Set n=dim X.
We assume that X is orientable and has spin.

Let M be a compact connected manifold with smooth boundary M.
Assume that the dimension of M is n+ m.

Let 7: M — B be a submersion of M on B, which defines a fibration,
whose fibers are diffeomorphic to X. Namely we assume that there is an
open covering ¥~ of B such that if Ve ¥, there is a smooth diffeomorphism
¢, (V) VxX, and moreover if V, V' e¥ are such that Vn V' #£4¢,
dpody': VAV XX>VAV'xX is given by a map (b x)—
(b, fv v (b, x)), where f, ,(b,.) is a smooth difftomorphism of the
manifold with boundary X which depends smoothly on be Vn V',

For be B, set

Z,=n""'{b}. (2.1)
Z, is a manifold with boundary 6Z,, which is such that
Z,c M, 0Z, = IM,, (2.2)

both inclusions in (2.2) being embeddings.

In particular n: OM — B is a fibration of the compact manifold dM on
B with compact fiber Z. Note that in general, dM and 0Z may be non-
connected.

Let TZ (resp. T 8Z) be the subbundle of TM (resp. T dM) whose fiber
at xe M (resp. xe 0M) is the tangent space at x to the fiber Z (resp. 02).
We assume that TZ is an oriented spin vector bundle on M.
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Let n be a nonzero vector field defined on dM with values in 7Z which
points inward to M. By equipping TZ with a metric and by exponentiating
the vectr field n by geodesics in the fibers Z, we may and we will assume
that there is a tubular neighborhood # of dM in M, which has the
following two properties:

* The set % is diffeomorphic to [1,2[ x M and 0M is identified
with {1} xJM.

* Under the previous identifications, for any beB, UnZ, is
identified with [1, 2{ x 8Z,.

r will denote the coordinate varying in [1, 2]. Clearly, ¢/ore TZ. Then
T 0Z is an oriented spin vector bundle on dM. Set

fi= —djor.

If e...,e,_; is an oriented base of TdZ, TZ is oriented by
(fi,ey, e,_y)

Assurie that g is a metric on T°M, that g™ is a metric on TM which
is of th: form dr* + g on % and define T#M to be the orthogonal
complerient of TZ in TM. Then T M has the following three properties:

(a) For any xe M,
T M=T.Z®OT"M. (23)
(b) Forany xedM, T'McT, oM and so
T.0M=T,0Z®T"M. (2.4)
(c) If(r,y)e[1,2[x oM, then T M=T7M.

(r,y)

For every x€ M, the linear map n,: T .M — T, B induces a linear
isomorphism from 77 M into T,,,B.

We now use the cone construction of Section 1 for each individual
fiber Z. Namely, if b€ B, let C(¢Z,) be the cone

C(0Z,)=(10,11x0Z,) v {3, },
where 6, compactifies C(6Z,) as re J0, 1] tends to 0. Set

Z’b:Zb U C(azb).

aZy

M=) Z,\{d,}.

be B

M’ clearly fibers on B and the fibration map is still denoted =.
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Remark 2.1. Note that |J, C(0Z,) is not identified with C(dM), since
the tips 8, have not been identified. Of course, since it is the metric on a
cone which determines its topology, the distinction is somewhat irrelevant.

If (r, y)e C(6Z), r>0, set

TH

oM =TM
Clearly T”’M' on C(6Z) patches smoothly with T#M on %. So the total
manifold M’ is now equipped with a vector bundle T”M’ such that

TM'=TZ’®T"M'. (2.5)

Let g°2 be any metric on T 0Z. Let ¢ denote a positive real number
which we fix for the moment.
We equip TC(0Z) with the metric

2
é{:—+ r’g??, (2.6)

Let g% be any metric on TZ which coincides with (2.6) on the tubular
neighborhood %. Again the metric on TZ patches smoothly with the metric
(2.6) on TC(0Z). We note gZ"¢ this metric on TZ'.

Let g2 be a smooth metric on TB. g2 lifts naturally into a smooth metric
on TPM’'. Let gM"*= g®@® g#"° be the metric on M’ which coincides with
g® on THM', with gZ"¢ on TZ' and is such that T¥M' and TZ' are
orthogonal. Let {, > be the corresponding scalar product.

As in [B1], it turns out that the objects in which we are ultimately
interested will not depend on g?. Note that in [BC1, Section 4a)] only the
splitting TM = T”M @ TZ is used and not any metric on the base B.

(b) Euclidean Connections on TZ' and T 6Z

By [B1, Theorem 1.9], to the triples (7Z’, g%, T"M’) and (T0Z,
g%, T"M) we can associate Euclidean connections VZ** on TZ' and
V% on T 0Z. These connections generalize the Levi-Civita connection on
individual fibers Z’ or 6Z. Let us briefly recall the construction of [B1,
Section 1].

Let VM be the Levi-Civita connection or TM’ for the metric g*"*. Let
PZ’ be the orthogonal projection operator TM' — TZ'.

By [B1, Theorem 1.97], we know that

VZiio pZyMie (2.7)

580/89/2-8
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Let V7% be the restriction of VZ"¢ to TZ. Let R%"*, R%* be the
curvatu es of the connections V<%, V%2,

The construction of the connection V°4 on the vector bundle T0Z is
very sirailar. Namely, if the manifold dM is endowed with the metric
2% ® g%, let V?™ be the Levi-Civita connection on T M. Then by [BI,
Theorera 1.97, if P%Z is the projection TOM=T"M @ T 0Z - T 0Z, we
have the identity

V9% = poZyoM, (2.8)

Let .29 be the curvature of the connection V2. Let V% be the
Levi-Civita connection on TB. V2 lifts into an Euclidean connection on
THM vhich we still note V& Let V¢ be the Euclidean connection on
TM' ="Z'® T*M’ given by V:=VZ-* V5

Let ' be the torsion tensor of V% and let S° be the tensor
S¢=V*Mc_V¢ Let us briefly recall the main properties of S° and T listed
in [B1, Theorem 1.9; BF2, Section 1 d)]:

e TF takes values in TZ'.

. U VeTZ, TU,V)=0.

» T°and the (3, 0) tensor {S°(.).,.)> do not depend on g”.
o For any Uin TM, Sé(U) maps TZ' into T/M'.

» Forany U, VeT*M', S5(U)VeTZ'.

« IfUeT"M, SYU)U=0.

Simile rly let 7°% and S% be the corresponding objects on dM canoni-
cally associated with the triple (T9Z, g%, T"M). Let P°% be the
orthogonal projection operator from TZ onto T 0Z.

THEOREM 2.2. On the manifold 6M, we have the equality of connections
on the vzctor bundle T 0Z

VZ = pizyZie, (2.9)

On U\ oy M'\ M, T® takes values in 0Z. On M, when restricted to vectors
in TOM, T* and {S°(.).,.) gu.: coincide with T°? and with {S%(.).,.} gou.
On U sy M\M, if YeTHM', Ue TeZ,

.0 ,
Vie==0;,  VErU=VEU

TE - —~0 Se( 0 Se( ) 0
" 51 ’ 8! ’ ' a’ '
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Finally on U oy M\M, if Y, Y eT¥M', Ue T 0Z,

[0
Z’E —_— =
R <6r"> 0

, L
RZHY, Y') 2= Vil vy 5 =0 (2.11)
RZ:(Y, Y)U=RI*(Y, Y')U.

Proof. Let P?™ be the orthogonal projection operator TM — T oM.
The connection P VM¢ on T 0M is exactly the Levi-Civita connection
VoM of the manifold M. It follows from (2.7) that the connection P?Z VZ"*
coincides with V%,

We now define a new connection V' on TZ restricted to the tubular
neighborhood #. Namely if U’ is a smooth section of T79Z, and Y a
smooth section of T7M, set

VIYUI =V(';’Z UI

0
V,—=0.
Y or

(2.12)

Similarly if Ye TZ, we assume that V', is the Levi-Civita covariant
differentiation operator of the fiber Z N %.

Remember that on %, T"M < T dM, and that T#M is the pull back of
its restriction to dM. This implies in particular that the coordinate r is
preserved along integral curves of T%M. It immediately follows that the
connection V' preserves the metric of TZ.

Let T'° be the torsion of the Euclidean connection V'@®V? on TM. We
claim that

(a) T'¢ vanishes on TZ x TZ. This is clear since V' restricts on a fiber
Z to the Levi-Civita connection of Z.

(b) We have the equality
7 (3,.)=0. (2.13)
or

To prove (2.13), we only need to check that if ¥’ e TB, if V' denotes the
horizontal lift of V in T¥M, then

T (i, V”> =0. (2.14)
or
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Now observe that

I3}
VEVI=0; Vi =0, (2.15)
Also since on %, T \M=T!M, we find that
i)
I:-'—, VH] =0. (2.16)
or

(2.14) i mediately follows from (2.15), (2.16).

(¢c) T’ takes its values in T 0Z. In fact, if V, V' are smooth sections
of TB, F?[V*,V'#1eTdZ, since T \M=T}M and T/Mc T, M.

(r,»)

Since '7% is torsion-free,

T (VH V'Hy= _pZ[VH y'H] (2.17)

and so 1"%(V*, V'"")e T 0Z. Also if U is a smooth section of T 8Z,
T(VH Uy=VZU-[VH U] (2.18)

By th: same properties on T7M as before, [V?, Ule T0Z and so
T'*(VH, U)ye T0Z. Using (b), it is now clear that T’ takes its values in
ToZ.

We clzim that if U, U'e TZ, Ye T¥M, then

(T™(Y,U), U'>S—(T"%(Y, U"), U =0. (2.19)

If U or U’ are equal to d/0r, (2.19) is a consequence of properties (b)
and (c) 'vhich we proved before. To prove (2.19), we assume that U and
U’ lie in TOZ. Then T'%(Y, U)=T%(Y, U), T'*(Y, U")=T%(Y, U’).

By [BI, Eq. (1.28)], we know that, since T°4(U, U’')=0, then

2CS(YYU, U Y +<{T%(Y,U), U Y+ <(T*%U", Y), Uy =0. (2.20)

On th: other hand, the properties of S° listed after (2.8) also hold
for S In particular, we find that since U, U'eT0Z, then
(S%(Y)U, U'y=0. It is now clear that (2.19) holds.

Theref >re, the connection V' on TZ is Euclidean, 7'° has properties (a),
(c), and also is such that (2.19) holds. It is then elementary to verify that
V' = P% V™ and so V#*=V". Therefore, we have proved the first two
equalities in (2.10).
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Also using [B1, Eq. (1.28)] again, we find that if U, Ve TM, then

(s (5)ur)+ (r(m o)} r)+(r(r5)v)
- <T5(U, V), ;%> =0. (2.21)

The second and the third term in the Lh.s. of (2.21) clearly vanish. Also
since TY(U, V)e T 0Z, the fourth term also vanishes. Therefore we find
from (2.21) that S°(8/0r)=0. The proof that S*(.)(6/dr)=0 is strictly
similar.

To complete the proof of the theorem, we only need to prove (2.11).
Remember that VZ"¢ restricted to one given fiber Z’ is the Levi~Civita
connection of this fiber. It follows from Proposition 1.2 that if Ue TZ, then

RZ“(i, U)=O. (2.22)
or

Let now ¥V, U’ be smooth sections of T8 and TZ, respectively, and let
V# be the horizontal lift of ¥ in T#M. Then using (2.16), we get

. (0 : . . )
RZ (5;, V”) U'=ViiViiU -V ViU, (2.23)
By Definition 1.1 and Proposition 1.2, we know that V3 aﬁ:O. Also by
(2.12), we know that VZ;%(3/r)=0. So we obtain r
/0 d
RZ" <E’ V”) ==0. (2.24)

We now assume that U’ is a smooth section of 70Z on éM, so that U’
does not depend on the variable ». We then know that V2,;°U’e T 4Z, and
more precisely that

ViU =V4U'. (2.25)
From (2.25), we find that V'%° U’ does not depend either on the variable
r. Using Definition 1.1 and Proposition 1.2, we find that
, , 1 ,
ViaViiU = - VZiU. (2.26)
Also we know that

, U’
Zeyprr
ViU ==
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Since T*'M does not vary with r, it follows that
Vi Vg/ng'% U (2.27)
From (2.26) and (2.27), we get

R%"¢ (ﬁ, V”) U =0. (2.28)
or
The first equality in (2.11) follows from (2.22), (2.24), and (2.28).
IfY YeTHM, by (217), T(Y, Y')= ~P7[Y, Y']. Using (2.10), we
obtain

. d
~V&iy v P (2.29)

SRS

_ AN
- —V[Y» Y’}

Pl

R¥YY, Y

The iecond line in (2.11) is proved. The third line in (2.11) is a
consequence of the equality VZ"¢=V'. The proof of the theorem is
completzd. |

Remark 2.3. The boundary dZ is not totally geodesic in Z for the
metric ¢ “¢. However, V% preserve T 0Z for horizontal displacements. This
simple {act will enable us to define the Levi—Civita superconnections on Z
and on 0Z in a compatible way. This will be of utmost importance in our
proof o’ the families index theorem.

(c) The Case where dim Z Is Even: A Family of Dirac Operators

Recal that TZ is an oriented spin vector bundle, which is equipped with
a metri: g©°. We now assume that the dimension n of the fibers Z is even,
so that n=2/>2. We fix once for all a spin structure on TZ.

Let i'=F, @ F_ be the Z, graded Hermitian vector bundle of spinors
over T.7". F, and F_ are, of course, the bundles of positive and negative
spinors over TZ' for the metric g2, The Euclidean connection V#"*
immediately extends into a unitary connection on F, and F_.

For cvery fiber Z;, we can use the results of Section 1. In particular, the
restrict on of F,_ to 0M is the bundle of spinors over T 0Z. The restriction
of F, to oM is therefore equipped with the unitary connection V%%,
Moreo er, if (r, y)€ 10, 1[ x OM, we identify F, ,,=F, . ,®F_ ,, with
F,=F_ ,@®F_,

Let £ be a complex vector bundle on M. If p is the map
(r, y)e¥ — p(r, y)=ye M, we have the identification & =p*&;,,. So we
may ard we will assume that ¢ is equipped with a Hermitian metric 4° and
a unitary connection V¢ which are product on %, i.., are the pull-back by
p of a metric and a connection on &,,,. Let L¢ be the curvature of V°.
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Clearly,

L¢ (62’ .>=0 on %. (2.30)
r

In the same way as in Section 1, we extend ¢ and V¢ to the whole
manifold M’. Of course, (2.30) still holds on M’'\ M.

On M’, the Hermitian vector bundles F, ® ¢ are equipped with the
connection VZ-*® 1 + 1 ® V<, which we still denote VZ"¢. Similarly, on oM,
the Hermitian vector bundle F, ® ¢ is equipped with the unitary connec-
tion V??® 1 + 1 ® V¢, which we denote by V7.

Remember that f;= —d/0r. We identify f, with the corresponding
Clifford multiplication operator.

+

of smooth sections of FR® ¢ = (F, ® &)@ (F_ ® &) over the fiber Z; which
vanish at 4, together with their derivatives.

D7} denotes the Dirac operator acting on H;” associated with the metric
g7 and the connection V. D¢ interchanges H Y »and H” . We write D}
in the form

0 D
D= o, 3
o, ] @3

DEerFINITION 24. For be B, let HyY =H?% ,® H* , be the vector space

For be B, let H;™ be vector space of smooth sections of F, ® & over the
fiber 0Z,. Let DJ* be the Dirac operator acting on H;°, naturally
associated with the metric g°% and the connection V.

Of course, for every be B, formulas (1.6)-(1.9) for D} and DZ* remain
valid.

Let dx be the volume element in the fiber Z’ with respect to the metric
g“"'. Let dy be the volume element in the fiber 0Z with respect to the
metric g°Z. If b, hye H® (resp. if b}, hye H,™) set

Chishay={ (oo (x) d (232)
(resp.
i by = <k hs) (9)dy). (2.33)

Remark 2.5. 1t is here appropriate to observe that Ker D% is not
included in H?, since, as we saw in (1.22), for £ > 0 small enough, elements
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of Ker I'; vanish at {J,} with arbitrary large, but still finite, order. H}> will
only here play the role of a minimal domain for Dj. Still, we will have to
be carefil when constructing connections on Ker D} —in the case where it
is a vect>r bundle—from a connection or H;°, since Ker D} is not included
in HY.

(d) The Levi-Civita Superconnections

We now will define the Levi-Civita superconnection associated with our
two families of operators D® and D%. At this stage our discussion does not
involve iny sophisticated analytic arguments. It is closely related to [B1,
Sections 2 and 3).

If Ve TB, let V¥ be the horizontal lift of ¥V in THM’ so that V¥ e T"M’,
V=V

DerINmION 2.6,V (resp. V') denotes the connection on the vector
bundle i7* (resp. H'*®) over B which is such that if 4 (resp. 4’} is a smooth
section of H® (resp. H'*) then

Voh=VZih (2.34)

(resp.
Vil =VGn). (2.35)

As proved in [B1, Proposition 1.11] the curvature tensors of ¥ and V’
take their values in the set of first-order differential operators (which act
fiberwisc on Z' or 0Z).

Following [BF1, BF2], we briefly show how to construct unitary
connections on H* and on H'*® with respect to the Hermitian products
(2.32) and (2.33).

DEerIN TION 2.7. Let €}, .., e, be an orthonormal base of TZ'. Let k°
denote t1ie vector in THM',

k= —1S%e))e!. (2.36)

If ey, .,e,_, is an orthonormal base of 0Z, since by Theorem 2.2,
S¢(0/or) =0, we find that

k*= —1S%(e,)e; on oM. (2.37)

We ncw define the connections V* and V’“ on H® and H'*® as in [BF1,
Definition 1.3].
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DeriNiTioN 2.8, V' (resp. V%) denotes the connection on the vector
bundle H* (resp. H'*®) such that if Ve TB,

Ve=V+ k, vHY (2.38)

(resp.
VeV + <k, VEY) (2.39)

Then by [BF 1, Proposition 1.4; BF2, Proposition 1.4] V* (resp. ¥'*) is
a unitary connection with respect to the Hermitian product (2.32) on H*
(resp. the Hermitian product (2.33) on H'™).

A final ingredient in the definition of the Levi-Civita superconnections is
the torsion tensor 7°. In fact, the Clifford algebra ¢(TZ) acts by Clifford
multiplication on F®¢&¢=(F, Q&)@ (F_®¢E). Similarly, the Clifford
algebra ¢(T0Z) acts by Clifford multiplication on the restriction of F, ® &
to oM.

We now use Quillen’s superconnection formalism [Q] as in [B1].
Namely, on M’, our computations will be done in the Z, graded algebra
(A(T*B) ® ¢ (TZ'))®End, ¢ (when x varies in the fiber Z,). Similarly,
on 0Z, our computations are done in the Z, graded algebra
(A(T*B) ® ¢,(T 8Z))®End, ¢ (where y e 0Z,).

The vector bundle H* =H% ® H* is Z, graded. Let t be the involution
defining the grading i.e. 1= +1 or HY. End H* is a Z, graded algebra, the
even (resp. odd) elements commuting (resp. anticommuting) with z.

As explained in [B1, Section 2b)], our rules of computation on Z’
require that we work in the graded tensor product A(T*B) ® End H*.

Our computations on 0Z are slightly subtler. As explained in [BF2,
Section 2f}], our conventions are compatible with the conventions of
Quillen [Q, Section 57.

Let f1, ..., f,, be a base of TB, db, ..., db™ the corresponding dual base in
T*B. We identify f}, .., f,, with their horizontal lifts /7, .., /7. As in
Section 1, we identify Xe TZ' with the corresponding element in the
Clifford algebra ¢(TZ’).

DEFINITIOIE 29. For xeM, ¢ (T°) denotes the odd element of
An(x)(T*B) ® cx(TZ)

cT)=3 db*dbPT:(f.,, f3). (2.40)

a<f

For ye oM, cy(T"Z) denotes the odd element in A,,(7T*B) ® c,(T0Z)

cAT?)=Y db* db’T?2(f,, f,). (2.41)

a<fB
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Note that by Theorem 2.2, on %, T° takes its values in T(6Z). In
particuler, on @M, ¢(T*) restricts to the corresponding element ¢(7%%) in
A(T*B) ® (T 32).

In the sense of Quillen [Q], for any >0, V*+ ./t D*is a superconnec-
tion on the Z, graded vector bundle H*, and V'* + \/; D%% is a supercon-
nection on the vector bundle H'*. Following [B1, Section 3], [BF2,
Proposition 1.18] we now define the Levi—Civita superconnection of
parameter > 0.

DerinTION 2.10. For >0, A; denotes the superconnection on the Z,
graded vector bundle H”,

c(T®)
4/t

Similarly, A, denotes the superconnection on the vector bundle H'*,

As=Vy J1 DF

(2.42)

C( Tc?Z)
4./t

Note that A is exactly the superconnection considered in [BF2,
Section f)]. Also A? is the obvious extension of the superconnection
construc:ed in [B1, Section 3] to the manifold with conical singularities
M’ 1t is a remarkable fact that, in the same way as D® “restricts” on 0Z
to D%, he Levi-Civita superconnection A¢ “restricts” on oM to 4.

We ncw briefly describe the superconnection 4¢ on the manifold M\ M.
Rememter that for (r, y)e10,1]x0M, we identified (F®Z¢),, ,, with
(FRE),

If # is a smooth section of HY on B, one verifies easily that if Ve TB,
forre]0, 1]

A=Yy J1 D7~ (2.43)

(Voh)(r, ) =Vh(r, )(y)

- N (2.44)
(Vih)(r, y)=V/h(r, )(»).
The meaning of (2.44) is that the value of the coordinate r is irrelevant in
the computation of (V. h)(r, y) or V~7‘;,h(r, y), i.e., that the calculation can
be done at r=1.
If é,, ..,&,_, is an orthonormal base of T9Z at (r, y) for the metric
g7%"¢, then

ol T= 2 LT, fas fp) & db* dbE,.

a<f
ie[ln—1]
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Let ey, .., e, ; be an orthonormal base of T9Z for the metric g°%. The
restriction of g'Z* to ToZ at (r, y) is r’g%Z.
Identifying (F® &), ,, with (F®¢£),, we thus find that

(Tn=r 8 (T(f fyhe e dbdbPe,  (245)
a<f
ie(iin—1]

or, equivalently,

o(T) re(T%),. (2.46)

ny) T

Using (1.8), (2.41), (2.46), we find that on M'\ M, A¢ is given by the
formula

. a -1 0z T@Z
oo (455 e

Note that D% and ¢(7) scale by the factors 1/r and r, respectively. The
fact that these two scales differ will play a key role in Section 6.

III. FREDHOLM PROPERTIES, EXISTENCE, AND EQUALITY OF THE
INDEX BUNDLES

In this section, we will establish that under natural assumptions, for ¢ >0
small enough, the family of operators D° defines an index bundle
Ker D*, —Ker D°_ in K°(B), which coincides with the corresponding index
bundle of Atiyah, Patodi, and Singer [APS1].

Our assumptions and notations are the same as in Section 2(c).

Let g“ be a smooth metric on the vector bundle TZ which has the
following two properties:

» g7 restricts to g°% on T 9Z.

+ g% is product near the boundary M, ie., on the tubular

neighborhood %, g“ is given by
geé=dr’ + g°%. (3.1)

For simplicity, we still denote by F the Hermitian vector bundle of TZ
spinors for the metric g“ (for the fixed spin structure of 7Z).

For every be B, we can define the Dirac operator D, of Atiyah, Patodi,
and Singer [APS1], acting on the smooth section of F® & over the fiber
Z,, associated with the metric g“ on Z, and the connection V¢ on &_,. Let
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P, ,, P_, be the orthogonal projection operators on the direct sum of
eigenspe ces of D? corresponding to nonnegative and negative eigenvalues.

By [4PS1, Section2], P, , and P_ , are pseudo-differential operators
of order 0, and so act on the various Sobolev spaces.

D, sglits into [ D‘ih Ps+], where D , acts on the smooth sections ¢ of
F, ® ¢ on Z, such that P +.5¢=0,and D_ , acts on the smooth sections
Y of F_. ®¢ on Z, such that P_ ,i =0. As shown in [APS1], D, ,is a
Fredholn operator, and its index Ind D, is given by

IndD, ,=dimKerD, ,—dimKerD_,. (3.2)

Ind D, , is given by the Atiyah-Patodi-Singer formula of Theorem 1.17.

Let 77,(0) be the reduced éta invariant for the operator D%, In general,
b — 1,(C) is not continuous and has integer jumps. #,(0) has a jump of +1
if a negutive eigenvalue of D% reaches 0, and a jump of —1 if a O eigen-
value becomes negative. Since the index, Ind D, ,, can jump, D, , does
not define a continuous family of Fredholm operators and there is no well-
defined ndex bundle Ker D, — Ker D_ in the sense of Atiyah and Singer
[AS2]. Therefore, a necessary condition for the existence of an index
bundle Iler D, —Ker D_ in K°(B) is that Ker D% is itself a vector bundle
on B.

On tie other hand, b— D}* is a family of Fredholm self-adjoint
operators. By [APS3, Section 3], it defines an element of K'(B). If
Ker D% is a vector bundle, the map b — D% is homotopically trivial, i.e.,
the corresponding element in K'(B) is trivial.

In the sequel we make the fundamental assumption H1:

(Ht) For any be B, Ker D{”={0}.

We now precisely describe the families of Dirac operators which we will
consider Recall that we identify F, ® ¢ and F_ ® £ on (M"\M)uL M.

DerINTION 3.1. For /20, be B, Ai’, , denote the /th Sobolev space of
sections of F, ® ¢ on the manifold Z,, H) is the /th Sobolev space of
sections of F, ® ¢ on 0Z,.

For /:z1, A', ,(P) is the subspace of sections of F, ® ¢ in H', , such
that if jk € H}/ =7 is the restriction of 4 to 8Z,, then P (jh)=0.

For /:20, be B, H' ., denotes the /th Sobolev space of section of F, ® ¢
on Z;.

It is o’ utmost importance to observe that while A*, , does not depend
on the metric g*¢, H', , depends in an essential way on the metric (2.6) on
C(3Z), tecause Z,\ {J,} is an open manifold. Still H', , does not depend
on g%¢ ¢r on g%%.
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We now prove the essential result of this section, part of which is already
in Atiyah, Patodi, and Singer [ APS1, Section 2].

THEOREM 3.2. For any 120 (resp. 12 1), H', (resp. H',(P)) is a con-
tinuous Hilbert bundle on B. Moreover, for any 121, D, is a continuous
family of Fredholm operators in Hom (H' (P), H'="). The corresponding
index bundle Ker D, —Ker D_ € K°(B) does not depend on 12 1.

For any 120, H ’i is continuous Hilbert bundle on B. For £¢>0 small
enough, D° is a continuous family of Fredholm operators in
Hom(H ' , H®), and the corresponding index bundle Ker D°, —Ker D* €
K°(B) does not depend on &> 0. More precisely, for ¢ >0 small enough

Ker D°, —Ker D° =Ker D, —Ker D_ in K°(B). (3.3)
Proof. 'The proof of Theorem 3.2 is divided into several steps.

(a) H' ,H + (P) are continuous Hilbert bundles on B. Let b, € B and
let V be a small open ball in B centered at b, such that =~ '(V) is dif-
feomorphic to V'x Z, . If p is the projection V' x Z, — Z,, using parallel
transport along the horizontal lines in ¥ x Z, which lift the radial lines
starting at b,, we can smoothly identify (F ® &)y« z, With p*(F® é) . For
beV, we can thus identify A‘, , with A’ + b5 1€, We have found a tri-
vialization of the vector bundle & !_on V. One then easily verifies that the
transition maps associated with two such trivializations are continuous
(and in general are not smooth). We have thus proved that H', is a
continuous Hilbert bundle on B. The same argument shows that H' is a
continuous Hilbert bundle on B.

Since Ker D% = {0}, we find that

P, =3(D%)" (D% + D). (34)

Using the results of Seeley [Se], we know that P, is a continuous
family of zero order pseudodifferential operators on the fibers ¢Z. Then H'’
splits into

H/[=Hr+1- @H’_I_,

where H'. =P _[H', ], H' =(I— P, )(H").

We claim that H'. is a continuous Hilbert subbundle of H"’. In fact, D?Z
is a continuous section of Hom(H'\, H'~') (this last bundle being
endowed with the norm topology). By Seeley [Se], » — | D] has the same
property. Since D% is invertible, b - P, » I8 a continuous section of
Hom(H'"', H").

Take b,, V' as before, so that if be V, H} is identified with H” For
beV, P, ,now acts on H, and so H', , is a subspace of H” Smce P,



356 BISMUT AND CHEEGER

is the identity on H’+ »» we then find that for b close to by, P, , P, ,
(resp. P, , P, ) is invertible in End(H", , ) (resp. End(H’, ,)). Therefore
for b close to by, P, , is a one to one map from H', , into H/,. So
heH'|  —P,,heH'] ,is an explicit continuous trivialization of H " on
a small neighborhood of b, in B. It is now clear that H'! and H'' are
continu us Hilbert subbundles of H".

Let b, € B, and let ¥ be an open ball in B centered at b, which is small
enough so that the vector bundles A',, H', H'. are identified with A’ '+ b
) HL,,

For [ 1, recall that the restriction map j: H'— H''~'?is surjectlve Let
Q,, be the orthogonal projection operator from H +.5, ON H 5(P). For
beV, let E, be the linear map

Eyigpel', , ~ (P, ,jb Qud)e H' )P @A, ,(P). (3.5)

Now E,,o is clearly a one-to-one map Therefore, for b close enough to
by, Eb is one to ome. Since H' ,(P)=Ker(P, ,j), we find that
peH’ e nP)>Ey '(¢) provides an explicit trivialization of A’ .(P)on a
small nzighborhood of b, in B. It is now clear that ', (P) and A’ (P) are
contint ous Hilbert bundles on B.

As in the proof of Theorem 1.5, for every be B, we consider the Dirac
operator D¢ = [ 5, b o] of Atiyah, Patodi, and Singer [APS1]
associated with thé’ metrlc g%® on TZ,, the connection V¢ and also the
boundi.ry conditions of [APS1]. The only difference with [APS1] is that
g%¢is 110t a product near the boundary dZ. However, inspection of [APS1,
Sectiors 2 and 3] shows that the results of [APS1] are still valid in this
case. Note that as in the proof of Theorem 1.5, we can give another proof
which 1oes not necessitate the introduction of the family D¢, .

(b) For any >0, I21, D, and D°, are continuous families of
Fredho'm operators in Hom(H', (P), H' ) which define the same index
bundle. By [ APS1, Section 3], for [21, for every be B, D, , and D* b AT€
Fredhclm operators in Hom(#', (P), H'~ "). Since D, , and D¢, , have
smootl coefficients, it is clear that D, and D¢, are continuous sections of
the buadle Hom(H', (P), H'~").

By A, p.158; AS2], the families D, and D°, define virtual index
bundies Ker D, — Ker D _ and Ker l~)e+ —Ker D*_ in K°(B), which do not
depend on L

For 0<s<1, if g2%=(1—s5) g% +sg”* we find that the corresponding
family of Fredholm operators D% depends continuously on s and has the
same properties as D , and D¢, . Therefore, the families D , and D¢, define
the sa'ne index bundle in K% B).

(¢) For £>0 small enough, the family D®_ is a continuous family of
Fredholm operators in Hom(H', , H® ). 1t follows from Chou [Ch] that
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for £ >0 small enough, for any be B, Dj is a self-adjoint operator defined
on its natural domain, which is not explicitly determined in terms of the
Sobolev spaces we are considering, We here need a more precise statement,
in order to prove that the family D°, is a continuous family of Fredholm
operators in Hom(H' ,H®). To do this, we will establish several
estimates in which the constants C may vary from line to line.

We first prove that for any be B, D, , map H'_ , into H® ,. In fact,
from formula (1.8) for D¢, , on the cone C(0Z,), we find that if he H |,
then

£ 2 2 |f|2
[ e yaxsclim, +  La| @e)
z; > C

A ©0zy) ¥

Since DZ is invertible, we get

[ e aysc [ IDEH1 (0 ) dy (37
82z oz
and so
2 DﬁZ 2
[ Mgpasc] Bl e
@z T cw@zy T
<ClhlY . (38)
From (3.6), (3.8), we find that
D, HREC Al (39)

and the constant C in (3.9) can be chosen independently of b (which varies
in the compact manifold B).

To prove that D, , is Fredholm from H' , into H° ,, we will con-
struct a parametrix for D° ,. To do this, we will patch a parametrix for
D?, , near ¢, with a “classical” parametrix for D° , far from J,. Let
C*(0Z,) be the infinite cone

C®(0Z,)= (10, + oo x0Z,) L {J,}

which we still endow with the metric

Recall that F, and F_ are identified on 6Z, and so F, and F_ are
identified on C*(3Z,). Let H ’;‘f’b denote the /th Sobolev space of sections
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of F, ®¢& over C*(0Z) and let H"“°;* be the set of sections 4 of F, ® ¢
on C ©(0Z,) such that if f(r) is a C 2 function of r which vanishes for r
large encugh, then fhe H.>,.

We now use a technique closely related to Atiyah er al [APSI],
Section z ]. For r, ¥’ >0, let K(r, r') be the operator

K : 1 <r,>(n1)/2+0f,2/\/?
Arr)= =
b =\

X(Py 4y =P 4l ,) (3.10)

Since D%* is elliptic, for r'#r, K i(r,r’) is given by a C* kernel
Ki((r, y,(r', y")) on 0Z,, which depends smoothly on r, ' (when r #r').
Also for any y>0, me N, for ¢>0 small enough, when r (resp. r’) stays
away fron 0, the kernel K5((r, y), (¥', ¥')) and its derivatives in r, y (resp.
its derivetives of order <m) tend to 0 as ' |0 (resp. r | 0) faster than r"”
(resp. r?)

Let C7% , (resp. CT3™) be the set of C™ sections of F, ® ¢ on
10, + 00| x0Z, (resp. which have compact support). Let K : be the
operator,

+ 00
K}j:heCcf’jfmp—»J Ki(r,r'Yh(r', y)dr' dye C? . (3.11)
0

We cluim that K extends into a continuous operator from H%%, into
HY'% . Set v=1logr. When 0 <r < + o0, then — o0 <v< + 0. Let 2°5%,
be the operator,

& D 1
D=7

+ —_
o /g 2
If we nse the new coordinate v, D%*, is given by

o DZ i
D5;°f°b=./ee'”<a—v+\/b_+n2 > (3.13)
£

(3.12)

We find that

D*%, =/ & e W0 g5z eln=272 (3.14)

Let L;(v) be the operator

,,, Db
Liw=e (D (P, 10— P41, 0) (3.15)
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Note that Li(v) appears in [APS1] in a related context. For /=0,
let H" ', be the Ith Sobolev space of sections of F, ®¢ on
]1— o0, + o[ x 6Z, (which is now endowed with the metric dv> + g°%). We
claim that for £> 0 small enough, for any be B, =0,

h— L:h: Lth(v,-) = f S0 —v') h(v') do (3.16)

is a well-defined continuous map from H*’ , into H'} ;" ~
If 6 is a variable dual to v, by taking the Fourier transforms h and Lih
of 4 and LA in the variable v, we find that

Lih 4 h.
6 + 7 +5
Since Ker DJ?= {0}, we find that for ¢>0 small enough, L has the
required continuity property. Observe that

2, Dy 1)—1 ]

KZ =__l_e—((n~2)/2)vLZe(n/2)v_ (3.17)
&

The map he H%%, —» e™”?he H%", is an isometry of Hilbert spaces. We
claim that h—e ("~ b defines a continuous map from H'*, into
HY'%>= In fact if he H'}",, for any 4 >0,

# A+ 147

(G

[N [ (

]~ 0, A[ x 6Z) v 2
+|Vh|2]dvdy

Xef(n—Z)venv dv dy

2
1.
Rx3Zy

ov

+ e f
Rx 02y

h|? dy du]. (3.18)

From (3.17), (3.18), we find that K7j is indeed continuous from H%%
into H''%>=. Finally, using obvious notations, we find that

D57 Ky = K§ D%, = Identity. (3.19)

We now will use K§ as a parametrix for D°,_, near §,.

For 0Za<b<], let pl(a, b) denote a functlon of r which is C*, non-
negative, increasing, equal to O for r<a and to 1 for r = b. p(a, b) is well
defined on C(0Z,). We extend p(a, b) to Z, by assuming that p(a, b) =1 on
Z,. p(a, b) is now defined on Zj,.

580/89/2-9



360 BISMUT AND CHEEGER

Let #(0Z,) be the cone (]0,B[x0Z,)u{d,}. Let A% be any
paramet ‘ix for D%’ on the open manifold Z,\C'/*(0Z,). We proceed as in
[APS], Section 3]. Set

0" ,=(1—p( D) Ki(1—p(3, ) +pG, D 45p(3,3).  (3.20)

Clearly for ¢>0 small enough, Q° , maps continuously H® , into
H' ,. "We claim that for ¢>0 small enough, D Q% ,—1dpp | is a
compact operator from H® , into itself.

Here, we essentially need to prove that for ¢>0 small enough, the
operatoi

p'(5 DK(1—p(3, ) (3.21)

is comgpact from H® , into itself. If p'(%, 1)(r)#0, then r2$%, and if
1—p(3, (7 );éO then ' < 2. Also we know that given y>0, £¢>0 small
enough, and r = %, the kernel Ki((r, y), (r, ¥')) and its derivatives in (r, y)
tend to ') as r’ tends to O faster than r'?. Using Schwarz’s inequality and an
equicontinuity argument, it is now clear that the operator in (3.21) is
compact in End(H® ).

Simile rly, set

“e=(1=pG D KYL-p D)+p(3, D) 450G, 3. (322)

Again, for ¢ >0 small enough, J° » maps continuously H° , into H',
Recall that if #' =%, for £>0 small enough, K”((r ¥), (r ') and 1ts
derivatives of order <3 decay as r — 0 faster than r*. The same arguments

as befor: shows that Qﬁ D, ,—1dy , is a compact operator. We thus
find tha: §° , — Q° ,is a compact operator from H® , into H', ,, and
so 0° , D°, ,—Id, , is also compact.

We h ive thus proved that for ¢ >0 small enough for any he B, D°, , is
a Fredholm operator from H', , into H® ,

It is also obvious that be B— D¢, , is a continuous section of
Hom(H', , H® ). The family of operators D*_, has similar properties. The
existenc: of a parametrix for D*_ , also shows that for £ >0 small enough,
for any be B, D is a self-adjomt operator whose domain is H}. In par-
ticular, Coker D°, , is isomorphic to Ker D°_ ,.

(d) Equality of the index bundles for D and 5‘"‘ We assume that
¢>0 is small enough so that for any be B, if i is in the spectrum of D%,
then |4/ /el > 1.

Suppose first that Ker D° = {0}. Then Ker D*, is a continuous vector
bundle on B. Now by the proof of Theorem 1.5, we find that for any be B,
Ker D° , ={0}. Moreover, the proof of Theorem 1.5 shows that if
heKer D¢ , and if U,h denotes the restriction of & to Z, then U,he
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Ker D’i, »- 1t is also elementary to verify that U, depends continuously on
be B. Therefore, Ker D?, and Ker D°, are equal in K°(B).

Assume now that Ker D° is not {0}. Using the elliptic regularity of the
index problem of [APS1] and by proceeding as in [AS2, Proposition 2.2],
we find that there exist C* sections, s,, .., 5., of F_ ® ¢ over M, which
have the property:

If D®, , denotes the operator

q°

(h,A)eH', (p)®C?— D", ,(h, 1)

q
=D, h+Y A5, eH® (3.23)
1

and if 51,,, denotes its formal adjoint (when C? is endowed with its
canonical Hermitian inner product)

WeH' (P)-D° i
=(E£_)bh/, <h/, S1> <h’, Sq>)€1~10+,b®cq

then for any be B, Ker D*_ , = {0}. B

Now D°, is a family of Fredholm operators and Ker D% is a vector
bundle on B. We claim that we can take s, ..., s, so that s, .., s, vanish on
an open neighborhood of oM in M. In fact s, .., s, can be approximated
uniformly in all the Hilbert spaces A % , by smooth sections of F_ ®¢
which vanish on a neighborhood of M. Since the condition Ker D* = {0}
is an open condition, we find that s,, .., s, can be assumed to vanish on
a neighborhood of dM. By definition [AS2] the index bundle
Ker D°, —Ker D®_ is represented in K°(B) by Ker D*, — C*.

We extend s, ---5, to M\ M by assuming they vanish on M'\ M. Then
§y -5, are smooth on M"\ M. We now define the operators D?, ,, D°, , by
the formulas

q
(hA)eHZ ,@C7— D", 4(h,A)=D", ,h+Y is,e H" ,
1

WeH?= , D> (W, )= (D" K, H,s,), . Hys,d)e H® @ CO.
(3.24)

For £ >0 small enough, one verifies that D*_ is still a family of Fredholm
operators. Also, by proceeding as in the proof of Theorem 1.5, we find that
the restriction maps from H® @ C? into H* @ C? or from H'_® into
H'_= permit us to identify Ker D¢, , with Ker D°, , for every be B. Also
for every beB, KerD° ,={0}. Thus KerD° is a vector bundle.
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Moreover, one verifies easily that the identification of Ker D°, with
Ker D?, is a continuous identification of vector bundles.

Since the index bundle Ker D°, —Ker D° is equal in K°(B) to
Ker ﬁi — C4, we find that for ¢ >0 small enough,

Ker D°, —Ker D° =Ker l~)8+ —Ker D* in K%B). (3.25)

(e) End of the proof of Theorem 3.2. By (a), we know that
Ker 5: —Ker D*. =Ker D, —Ker D _ in K°%B). Using (3.25) we obtain
(3.3). Observe that as in the proof no. 2 of Theorem 1.5, by shrinking the
fiber Z i1to the fibers Z defined in (1.27) (or equivalently by “bending” the
cones C(0Z) near éM), we may avoid the introduction of the family
D .1

Remark 3.3. Inspection of part (c) in the proof of Theorem 3.2 shows
that if | /] /\/’g > 1 for every A in Sp(D?%), then D, is a Fredholm operator
from H' into H .
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